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In order to investigate the influence of Fermi-surface geometry on the lifetime of an elec-
tron due to interactions with other electrons, we have performed a calculation (using Fermi's
"Golden Rule")of the energy- and temperature-dependent lifetime of an electron on a cylindri-
cal Fermi surface. At zero temperature, the dominant energy dependence of the inverse
lifetime or the decay rate is & [ ln&( for small values of the parameter & which is the electron
energy relative to the Fermi energy p measured in units of p. At finite temperatures the de-
cay rate leads to an electrical resistivity proportional to T I ink T/p I instead of the T depen-
dence characteristic of a spherical Fermi surface. In addition, the similar calculation (using
Fermi's "Golden Rule" ) for a spherical Fermi surface has been done exactly at zero tempera-
ture. The magnitude of the correction to the well-known & term has been obtained. Further-
more, in an appendix, written with N. D. Mermin, the dominating influence of the density of
states on the wave-vector dependence of the susceptibility is demonstrated.

I. INTRODUCTION

The possibility of observing the contribution of
electron-electron scattering to the resistivity of
metals is a subject of much current experimental
and theoretical interest. ' In the analysis of experi-
mental data such scattering processes have usually
been assumed to contribute a term proportional to
T~ in the resistivity. The rationale for this is the
well-known result that the rate of decay due to
electron-electron interactions of an electron in state
p, with energy e~ (measured from the Fermi energy
p) is proportional to [(wkT) +a~], when the Fermi
surface is spherical. Such a rate of decay causes

a resistivity proportional to T provided a mecha-
nism for degradation of the total momentum exists.
This energy and temperature dependence of the de-
cay rate is derived on the assumption that kT«p
and a~«p. , which is also the region of interest in
the present investigation.

In this paper we report a calculation of the energy
and temperature dependence of the decay rate of an
electron on a cylindrical Fermi surface in order to
illustrate the effect of geometry on the availability
of phase space for the scattering. The cylindrical
geometry is supposed to arise from a band-struc-
ture calculation that gives one-electron energies
a~ =p /2m, where p is the magnitude of the compo-
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nent of the momentum perpendicular to the cylinder
axis.

We find that the rate of decay in the cylindrical
case is dominated by a term proportional to
T I ink T/p I rather than T . In metals with cylindri-
cal pieces of Fermi surface one would consequently
expect the electron-electron scattering on the cylin-
drical pieces to contribute a term proportional to
T

~ lnkT/p I to the resistivity.
It is frequently' argued that the contribution of

electron-electron scattering to the resistivity is
proportional to T, since the temperature depen-
dence of the decay rate arises from the need for
satisfying the exclusion principle twice. This in-
troduces two factors of (kT/p) in the decay rate,
since (kT/p, ) denotes the fraction of the total number
of electrons that can undergo scattering. Our re-
sult for the cylindrical geometry shows the limita-
tions of this argument and demonstrates in a specif-
ic example the effect of a nonspherical geometry.

One reason for expecting the decay rate on a cy-
lindrical surface to differ from that on a spherical
surface is the observation that the two-dimensional
density of states for noninteracting electrons is in-
dependent of energy, whereas the three-dimensional
one depends on the square root of the energy. This
difference between the cylinder and the sphere can
be shown to affect a quantity such as the static
wave-vector-dependent susceptibility )((q). For
noninterac ting electrons occupying a cylindrical
Fermi sea, X(q) turns out (Appendix A) to be con-
stant for q (perpendicular to the axis of the cylinder)
less than the diameter of the cylinder and only
starts to decrease when q exceeds that value. By
contrast, the static susceptibility for a sphere of
noninteracting electrons decreases monotonically
with q as q goes from zero to infinity.

The plan of the paper is as follows: In Sec. II we
calculate the decay rate in the cylindrical geometry
by Fermi's "Golden Rule" keeping terms propor-
tional to T llnkT/pl as well as terms proportional
to T . In Appendix A the static susceptibility of a
cylindrical Fermi sea of noninteracting electrons is
discussed in detail. A useful relation between co-
ordinates is dealt with in Appendix B and the evalua-
tion of a certain integral is discussed in Appendix
C. Finally, Appendix D demonstrates another way
of calculating the decay rate via the frequency-de-
pendent susceptibility function, and contains the re-
sult of an exact calculation of the decay rate on a
spherical surface by this method.

II. DECAY RATE AT TAO K

Our consideration of the decay rate of an electron
on a cylindrical Fermi surface starts from the usual
expression

(- =~ ~ dPI"'(I f;-, )fy, (I f;-;)
Ql QP

&«(p|+ pa —pi —pa ) t)(e 1+ e2 el'

which is the rate of decay of an electron in state p&

due to the collision process (p„pm)- (p, , pa. ).
The 5 functions assure conservation of momentum
and energy in the electron-electron collision. The
transition probability is W [which is equal to
(2w/K) IV;, g, . I in the Born approximation, V;, , ;,
being the matrix element of the scattering poten-
tial]. We shall treat W as a constant in the follow-
ing. Provided W tends towards a constant at small
values of the momentum transfer in the collision,
one can neglect the momentum dependence of S', as
discussed in Appendix E. ' However, the Fermi
factors f; depend strongly on energy and cause the
dominant temperature and energy dependence of
I/~.

The Fermi sea is a cylinder of length L, which
means that the energies, and hence the Fermi fac-
tors, depend only on the components of the momenta
perpendicular to the cylinder axis. It is therefore
very convenient to introduce cylindrical coordi-
nates.

In (1) we may change the sums over phase space
into integrals and then remove three of the nine in-
tegrations over components of mornenta by virtue
of the momentum-conserving 5 function. The re-
sult is

=2, d'P, ,
)(

d'P, (I f;,,)-
2v@ '

x ff (1 fg +; —g, ) 5-(e, + ep —(,, —(,, ), (2)

where the factor of 2 arises from spin considera-
tions. Furthermore, we have used the assumption
of a constant W. Note that in (2) e2, = (1/2m)

(Ps+Pa Ps') ~

We now introduce cylindrical coordinates

d p, .= p, , dp, . d8, , dq, ,
3

d p2= pzdpz diaz dqz .

The azimuthal angles are measured with respect to
p&. The q's are the components of momentum along
the axis of the cylinder. In (2) neither the Fermi
functions nor the energy & function depend on the
q's. Consequently, we may take all four rnomenta
to lie in the same plane perpendicular to the cylin-
drical axis (Fig. 1).

We first integrate over 8,. keeping p, , pg, and
~2 constant. Therefore, in the energy-conserving
6 function only E2. depends on 8, We may then
write



304 HOD GE S, SMI TH, AND WI LKINS

~-e0
I(A)= d8z(A+sjnz8z) ~/z

ee0

I dg
(1 uz) 1/ 2

(A + z) 1/ 2
ND

(8)

pp where the second equality follows from the substitu-
tion u = sin82. The lower limit for u is

FIG. 1. The relevant angles between the components
of the momenta perpendicular to the cylinder axis (cf.
Eq. (3) and Appendix B].

8&2,
6(z, +zz —z,.—zz, ) = 6(8~, —8~.),881.

0

(4)

where 81 is determined by the zero of the energy
0

6 function. In Appendix 8 we determine 8,. and
D

8&2,

eg 1, e1z

0, A&P
D 0 )A)1/2

When kT «p, the quantity A is small and the ellip-
tic integral (8) is approximately

f(A) = ln4 ln (9)

for both positive and negative A. The first correc-
tion to (9) is proportional to (kT/p) and gives rise
to a term of order T I lnkT/p I.

The insertion of (9) into (6) together with the iden-
tity

f"dx f"dzf(z) [1-f(x}][1 f(t+z -—x)]

using conservation of energy and momentum. The
result is

8&2,
=2[( g

— z)(zg-zg )
8&, e,, .e,.0

+ (p+ z, ) (p+ zz) sin 8z]'/', (5)

allows us to write (6) in the form

(10)

2$' 2 2()=( )
8 mL(kT) 2 dx dz

~ OQ
w OQ

xf(z) [I -f(x)] [I-f(t+z —x)] f(A}, (6)

where f(x) = (e*+1) ' and f(A) is defined in (7) and (8)
below. The integrations over x and z have been ex-
tended to minus infinity. The angular integral
f(A), where

A = (kT/p)' (x —z) (t —z) (7)

is given by

where all energies are measured from the Fermi
energy p, . The condition that the quantity under the
square-root sign of (5) be positive or zero puts a
constraint on the integration over 8z. In (5) we may
furthermore approximate (p+ z, ) (p+zz) by pz.
This only affects terms of higher order in (kT/p)
or (z,/p) rather than the T I lnkT/p I and T terms
we are after. With the definitions

t= z, /kT, x-=z,-./kT, and z= z, /kT, -
after integrating over q, , q2, and 8,. and using
dc g

= (P,./m) dP, ~ and diaz= (Pz/m) dPz, we finally
obtain

where

x [z (In4+
I
ink T/ t/

I ) (v + t ) —F(t)], (11)

F(t) = [I-y(t)] ' ,' f"dx f—"dzl"
I (x z) (t x— —

&f(z) [1 —f(x)] [1 —f(t+ z —x)) . (12)

The evaluation of (12) is discussed in Appendix
C. The function F(t) is even in t and equal to 0. 41
for t = 0. The range of interest is that in which
—8f/St is appreciable [see Eq. (18) below]. The
variation with t of F(t) over the range of interest is
shown in Fig. 2 and compared with the function
(ln2) (v + t ) appearing in (11). It is evident that the
former contribution to the T term of I/r(t) is nu-

merically smaller than the latter in the range of
interest (t & 4). We therefore conclude from (ll)
that the T I lnkT/p. I term in I/v(t) dominates the
T term as long as p/kT is large compared to 4.

The transport relaxation time that enters into a
calculation of the resistivity is not r(t) itself, but
rather r(t) [1-f(t)], which is the reason we have
taken out the factor [1-f(t}]in 1/r(t). If we neglect
the scattering into the beam in the manner of
Herring the temperature dependence of the resis-
tivity p obtained from (11) is given by
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gy dependence of (15) is

du e(e - «-y)
(1-u')'i~ [(x+ )(e —x)+s']"'

IO
dz dyln z f+y —z + ln4

2
Q

t)
l2)

f
at

&=

I

t/2

Fig. 2. The solid curves show the magnitude of
the T contributions to 1/&(t) as given in (12). When
t the leading term of F(t) equals yt lnt. Note that
ln2(~2+ t ) dominates F(t) in the range of interest (t & 4)
where —ef/&t is appreciable (indicated by the dashed line).

j. - ef—cc —~ r(t) [1-f(t)]dt.
p ag

(13)

Upon neglect af the terms in 1/v(t) proportional to
T, the resistivity deduced from (11) and (13) be-
comes

(14)

According to the discussion following Eq. (12),
the result (14) is valid for p/kT»4, which is easily
satisfied under normal experimental conditions.

III. DECAY RATE AT ZERO TEMPERATURE

The calculation of the decay rate is somewhat
simpler at zero temperature, since the Fermi fac-
tors are then step functions. The expression (6)
for the decay rate is therefore replaced by the fol-
lowing:

L'm'8' P'
v(e, ) (2')' 2v

dern dx dy g gagy [(x-y)(e —x)+sin'8, ]"' '

(16)
where energies are now measured in units of the
Fermi energy p rather than kT, that is, x-=e,./p,
e=-e,/p, and y-=eq/p Since (x.—y) (e —x) is never
negative, the lower limit on 83 is 0.

Letting y -y and introducing a new variable
z = & —x we find as before the terms which dominate
as 4 - 0. To terms of order & ulna I and & the ener-

= (- ~ lne+4+in2) e . (16)

The decay rate (15) then becomes

=4, + +ln2+
2

ln e, . (17)

We note from the result (17) that the characteris-
tic T IlnkT/p I term in (11) at zero temperature is
replaced by t fllne, /p I as one might reasonably ex-
pect.

The zero-temperature expression (17) can also
be obtained directly from (11)by letting T- 0.

IV. CONCLUDING COMMENTS

In conclusion we have found in a specific example
that the effect of Fermi-surface geometry on the en-
ergy and temperature dependence of the lifetime is
considerable. Whether Ti

I lnkT/g I terms in the
experimentally measured resistivity can actually be
identified remains an open question. Real metals
do not have Fermi surfaces which are ideally cylin-
drical. Palladium might be considered as a candi-
date. However, the open scaffold structure of Pd
is for our purpose not well appraximated by (inter-
secting) cylinders as shown by recent band-struc-
ture calculations. Furthermore, the total resis-
tivity would also contain contributions due to mutual
scattering of the electrons on the closed nearly
spherical part of the Fermi surface as well as their
scattering against the electrons of the open scaffold
structure. In addition, contributions owing to in-
elastic processes such as scattering against spin-
density fluctuations would have to be considered.
The scattering processes involving only the closed
nearly spherical part of the Fermi surface would be
expected to give rise to a T term in the resistivity.
For these reasons the extraction of a T 1nlkT/pl
term in the measured resistivity of Pd does not ap-
pear promising.

Although not immediately applicable to a real
metal, the result of the preceding calculation does
however warn one against assuming that electron-
electron interactions invariably contribute a T term
to the resistivity regardless of the shape of the
Fermi surface. Furthermore if the "cylinder" in
question were a long thin elipsoid, then the argu-
ment of the logarithm would contain an additional
term depending on the radii of curvature of the elip-
soid. Hence even though the resistance were still
proportional to T, its coefficient could be consid-
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erably enhanced over conventional estimates. It
would be interesting to attempt a calculation using
the Golden Rule for other shapes of Fermi surface
such as the cubes found in chromium or the cigars
of beryllium.
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APPENDIX A: DENSITY OF STATES AND SUSCEPTIBILITY

It has been observed that the static susceptibility

of a noninteracting gas occupying a cylindrical
Fermi sea is independent of the wave vector q if the
component of q perpendicular to the cylindrical axis
is less than the cylindrical diameter, which we de-
note 2k&. For q & 2k&, the susceptibility decreases.
That this result can be uniquely related to the den-
sity of states has not been previously noted and is
demonstrated here.

The susceptibility function is defined as

f5r1/2 f5-I/2
x q)=~

8- a/2 i+q/2
(A1)

Sp P2 p q+ 1 q2 P2 2~ P2+p q+ 1 q2 I'2 2~
~

(2v) K~p q/m
(A2)

since ed=5 p /2m (in this appendix p and q denote
wave vectors). As usual f," is the Fermi function.

We utilize a trick originated by Celli and Mermin
to write

= [m/(2') ] (L/g) (1 —[1 —(2k/r/q) ] )

q & 2k/, . (A7)

('dP f
X(q)-J( (2 )s (-1) dlI

(ag / )
~f

x f [(p—'+xp q+-,'q'))I'/2m) (As)

APPENDIX B

In this appendix we derive the result (5). We re-
mind the reader of the fact that all momenta lie in
the same plane perpendicular to the cylinder axis
(Fig. 1). The angle 8, ~ is found using energy con-
servation

(A4)

In (A4) we have changed the momentum variables
to p =p+ —,'Xq. The derivative of the Fermi function
with respect to its explicit argument is denoted byf'. At zero temperature we repla, ce it with the neg-
ative of a 5 function and obtain

2 2 2 2
P2' +P 1 ' P 1 + P2

and momentum conservation

p2' (p1+p2 pl')

=p+P+& +2P P o ~ -2P P2 2 2

—2pgrp2COS(8g 82).r

(al)

(B2)

1 2q2 1 2)t(q)= — deN(e) dab c+ —(1 —X') —p (A5)
-f

-S2
dXN kr~ —(1 —X )q /4, (A6}

-1 r

By combining (Bl) and (B2) we may write

ps'=ps'pecos s'+ps'pmcos( s' 3) p&pm cos s
2

pf p2 Sin~2
sin(8, .+u) —p, pmcos82, (as}cosQ

where we have introduced the density of states for
a single spin N(f) and used that the chemical poten-
tial is u=h'k/I, /2m.

The result (A6) is valid for a sphere as well as a
cylinder. Specializing to the case of a cylinder of
length L/ff in wave-vector space we use

N(c) = const = [m/(2vg)'] (L/g), e & 0

otherwise.

The integral (A6) for q perpendicular to the axis of
the cylinder whose diameter is 2k+ becomes

where

Pf+P2 cos~2
tanu =

P2 sin

From (B2) it follows that

BP2e
2

= 2p~.p~ sin8~. + 2p~.pz sin(8~, —82)98f,

cos(8&. + u)= —2pf.p2 sin~2
COSQ

(B4)

(as)

)|(q) = [m/(2v8')') (L/lf), q & 2k/, This equation is rewritten as
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4Pi P2 sin'e
a cos (8,.+u

fI} &, g& p
cosw

( p1s (pf +pz —pg ~ ) —4p, pmcos 8z)

(B6)

where the latter equality follows from solving (B3)
for 8&. = 8~.p. We always measure energies from
the Fermi energy p. Then (B6) becomes

= 2[(t + z, ) (1 + ~&+ ea- &i ~ )

—(p+z, ) (p+ cz) cos'8, ]'~'

From (C4) one observes that F(t) is even, F(t)
=F( t)-.

The value of F(t) for t = 0 can be evaluated analyt-
ically. We may write

F(0) = 2 dy
p SMl y

= 4Z dy y ln y e "~'
t5

=4+ z dyy lnye "-ln(1+2m)1
2m+1

=

2(ego�(6

g+ cz —Eg ~ ) —cgf z

+ (&+e&) (g+Ez) sin 8z) . (B7}

vz ~ ln(1+2m)8, (1+2m)z (C6)

The condition that (B3) has a solution 8,. = 8,.O is
identical to the condition that the quantity beneath
the square-root sign in (B8) is positive. This re-
sults in the constraint onsine2 given in the main
text.

APPENDIX C

Here we discuss the details of the evaluation of
F(t) as given by (12). It is convenient to consider
the terms with ln l x —z I and ln I t —x l separately.
We shall prove that they are in fact identical. In
the integral involving ln lx —z I, we make the vari-
able transformation y = —x+ z, which requires us to
evaluate an integral of the form

1&(t)= f.dx f d»n ly I

xf(y+x) [1-f(x)] [1 f(t+y))-
= 1:d»nly I

[y/(e"-1)] [1 f(t+y)], (Cl-)

by the use of the identity

At zero temperature one can easily relate the de-
cay rate of an electron above the Fermi sea to the
wave-vector- and frequency-dependent susceptibility
function X(q, &u) defined by

(~ ) Q f5s II z f5 —5/2

gg g
—6y ~ gg 2+ I(d + $5

(Dl)

In (Dl} p and q denote wave vectors. At (d =0 (Dl}
is identical to x(q) given by (Al).

In order to establish the connection between the
decay rate and the susceptibility function (Dl) we
write Eq. (2) of the main text in the form

1 2W 1——Imj dq(1-fy q)

Here y is Euler's constant, y =0. 577215. The sum
was evaluated to give F(0) = 0. 41 388. The integral
(C4) has been calculated numerically for t4 0, and
the result is shown in Fig. 2. The numerical calcu-
lation gave F(0) = 0.412, which compares reason-
ably with the analytic result (C5).

APPENDIX D

f dxf(x+y) [1-f(x)]=y/(e' —1). (C2)

The term with lnlt -xl is handled similarly by
changing variables to y = t —x and performing the
integration over z by means of (C2). The result is
seen to be identical to (Cl).

The function F(t) is therefore

F(t}=[1-f(t}l' f dylnlyl [y/(e' —I)l (I f(t+y)]-

We have changed to wave-vector variables and
written p, .=p, —q, pz. = pz+ q in going from (2) to
(D2}.

The susceptibility function can be separated as
follows:

1
dy lny

2 sinh2 y

cosh-,'t cosh —,'t
cosh-,'(S —t) cosh-,'(S ~ t))

(C3)

(C4)

fS,.h- S,
x(q, ~)=~

~a ~2 ~a'~
E'- —E' - -+ SM +f5

f;,(I f;„;) f-;,(1-f;;~)
-- &- +~&+i6 E- —&.-+hv+i5

&p ~p+~

3}
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x -=q/2k „and xo
-=I&a/4g . (D5}

According to (D4) the frequency variable &o equals
(I/8) times the energy difference e;, —a';,«. For
a sphere or a cylinder of "free" electrons, for
which as= 8 ps/2m, with p denoting the magnitude
of the transverse wave vector in the cylindrical
case and the magnitude of the wave vector itseU
in the spherical case, we have

XQ +Sf' ~ X2

in terms of the variables

a -=cosq = (pi q}/p~ q (DVa)

Note that each of the two terms depends on only
the magnitude of q and not on its direction. At
zero temperature the energy difference (e; «- es )
is positive in both terms because of the factor
f; (1-f&«). Therefore, the first term contributes
to the imaginary part of p only for negative fre-
quencies, whereas the second one contributes
only for positive frequencies.

At zero temperature the decay rate may there-
fore be written as

2W1 f'
dq (1-fs, ~)imX(q, es —es «),

(D4)

where the prime on the integral sign indicates that
the range of q is restricted to the region defined by

~o —~i -e ~0
1 1

The connection (D4) between the lifetime and the
susceptibility is valid for an arbitrary Fermi sur-
face. For the discussion of X(q, v) in specific
examples it is convenient to introduce the reduced
variables

axis in the cylindrical case).
The restriction to positive frequencies means

that xQ &0 or

QZg&X . 8)

We may remove the factor (I fs «-) from the in-
tegrand of (D4) provided we restrict further the
region of the q integration by requiring that the
scattered electron has an energy greater than the
Fermi energy is=)i kr/2sn, i.e. , e;;&p or equiv-
alently

where a= (p, q)/pq and Ip, l =p (see Fig. 4). At
zero temperature f '(x) = —5(x —p). The imaginary
part of (D10) is trivially written dawn in terms of
integrals over the product of two 5 functions and +.
The volume element for d P in the cylindrical case is

d'p= pdpd q dp. ,

axe &x+(xf —1)/4x .
In addition to (D8) and (D9) the range of a is ob-
viously limited by the condition o'& 1. The re-
sulting region af integration in the x- a plane S(x, a)
is shown in Fig. 3 (heavy lines) for the case x, = l. 2.

We proceed to calculate the imaginary part of
the susceptibility for a cylindrical Fermi surface
and compare it with the well-known result' for a
sphere. In both geometries we can utilize the
trick which was employed in Appendix A for cal-
culating the static susceptibility. Then for cylin-
drical geometry (Dl) becomes

(dsp 1 )' - f'((gs/2ns)(ps+pqaa+qs/4))
(2v}' 2, —a+ s&sus/ pffqi+5

(D10)

xi -=pi /kr

Here p is the angle between p, and q (it is under-
stood that the wave vectors are transverse to the

with y=cos 'a (see Fig. 4). The integral over
the axis af the cylinder whose length is L/5 in
wave-vector space is trivially performed. Then,
where we have used the identifications (D5) and
e = (p/kr)', (D10) becomes

I (2v)s 2 I

d& d
(1 — s, ags 2 p I d& a5(a —xo/xv«)5(~y2xaX4c+x —1}

& Q

I 1 m
8s P

g J (zs/~)s

XQ X 2d6
( ( / )s) )Is 5(6+2xsX+x 1) (D12)

The & integral is trivially performed to leave an
integral over X between a lower limit (-1) and an
upper limit X„which is determined by constraints
arising naturally from the argument of the 5 func-
tion and the lower limit of the e integral in (D12).
There are two regions in the (x, xs) space where

case a: 0&xQ&x —&,2 0&x &1 (D13a}

case b: x- x &xQ&x+x, 0&x&1

I

X„ is different from (-1},in which case (D12}is
zero. These are
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x(= q/2kF) X=Q XI Im X (q, &u) = ~ G (x, xp),
k~ m

(D16)

xI where G( x, xp) is simply obtained from (D15) by

replacing all square-root signs with parentheses.
Thus, for case a, G (x xp) =4xp/x .

We now proceed to calculate the lifetime for the
cylindrical case. As discussed earlier [see Eqs.
(D8) and (D9)] we obtain the lifetime by integrating
ImX over a certain region S(x, &) in the x-& plane.
Apart from a numerical constant the energy depen-
dence of the inverse lifetime or decay rate is
therefore given by the x, dependence of the integral

dQ
/ Q E xy xo x& +& xp

(D17}

0 I

X
I

I XI

=a aL

(= '
)

PIQ

FIG. 3. Regions of integration in the x-n plane for
the case where x~=—p~/k~=1. 2. The solid lines mark the
boundaries of the region S(z, of) defined by (D8), (D9), and«1. The dashed lines correspond to the regions given
by (D18a) and (D18b). Inside the regions marked a and
b in the figure the expression (D15a) and (D15b), respec-
tively, should be used for EQ, sob, +, z&)) in (D17). The
exact decay rate equals the sum of the contributions from
a and b.

case a: 0& x«x&, 0«xg & 1

where F(x, xp(x, n, x,)) is (D15a), and

(D18a)

case b: —,'(ox, —1) &x& —,'(1+ &x&), 1«x& & xq

(DI8b)

where xp is given by (D6) and x, defined in (D7b).
The region S(x, ot) is defined by (D8) and (D9)
together with the condition n & 1. The fact that
F(x, xp) is nonzero only in the region given by (D
13a) and (D13b) has the effect of diminishing the
integration to two regions with S(x, n). These are

x x &xp &x+x2 2 x&1. (D13b)

For these two cases, we have X„= 1 and
[I -x —(xp/x) ]/2xp, respectively. The results
of X integral can be expressed as

where F(x, xp(x, a, x&)) is (D15b). Insofar as the
boundaries of these regions in the x —n plane dif-
fer from those of S(x, n) they are marked with a
dashed line in Fig. 3. We observe that there are
two small triangular regions of S(x, a) where F

L 1 m
Im)((q, &o)=—,p F(x,xp), (D14) (P~ Pz)

where

F(x, xp)= —
I 1+—x) — 1 —

(
—'

x) I,
case a (D15a)

R~ 1/2

F(x, x )= — 1 — P —xx x case b .

(D15b}

We note that F(x, xp) is zero for all parts of upper
right-hand quadrant of (x, xp) space not included in
cases a and b.

The calculation of the imaginary part of the sus-
ceptibility can be calculated for a spherical Fermi
surface in a similar fashion. We find that

I P~I=- P

FIG. 4. In the cylindrical case the wave vector q is
perpendicular to the axis and (t) is the azimuthal angle
with respect to it as indicated in the figure and in (D11).
The magnitude [ p~( of the transverse wave-vector com-
ponent is the p of {D11).
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is zero.
The remainder of the job in calculating the decay

rate is to evaluate (D17) in those parts of the re-
gions (D18a) and (D18b) that lie inside S(x, a) with

F(x, xo(x, &, x&)} given by (D15a) and (D15b), respec-
tively. Here we shall only consider the dominant
term in 1/r(e, } for small values of the parameter
e defined by

small values of y (y«1, e'~2«1} where one would

expect the dominant e in& term to appear. The
contribution to I from the lower limit was found to
be

I=-&«e'ine+O(e') .

~ith (D22} and (D14) the decay rate (D4) finally be-
comes

(D19)
1 2 a p pWm L p(-e inc), (D23)

The contribution to the integral 1 in (D17) from
the regions marked (b) in Fig. 3 [corresponding
to region (D18b) j is then negligible compared to the
contribution from the region marked (D18a). With
(D15a) in (D17) one gets from the integration over x

fxdxF(x, xo(x, o, x,))

= —,'(2x- ~x,) [1—(ox, —2x}']'~'+ —,
' sin '(2x- ox,)

(D20)

When ox, & [x2 —1]'~~ = e' ~2 the proper limits on x
to be inserted in (D20) are given by 0& x& ux,
(compare Fig. 3). The contribution of this region
to 1/7 (e,) results in a leading term which goes
as &

The dominant &~ )ln& j dependence is obtained from
the contribution to (D17) in the region e'~2 & nx, & 1

(see Fig. 3). When the proper limits on x derived
from (D8) and (Dg) are inserted in (D20) the integral
(D17}becomes

1
1

I=
( )tea dX

X 1 y y g —2 1+ g y y & /2

—(1 —y')' y+ —,
' sin 'y ——,

' sin '(y' —e)'

1x ~,~, ~,), (D21)

where y
=—nx, and x, has everywhere been replaced

by (1+ ~}'~'.
Since we were unable to perform all the integrals

in (D21) analytically the integrand was expanded for

which is identical to the leading term of (17). The
treatment given here also exhibits the importance
of the region of small momentum transfer (small
x= q/2k~), since the e2 Inc term appeared as the
contribution from the lower limit e~~~ in (D21)
where x is also small (Fig. 3). If the transition
probability W is assumed to depend on q (and hence
x} instead of being a constant as previously as-
sumed, the E in& behavior would persist provided
W depends weakly on x for small values of x.

The calculation of the decay rate for a sphere
goes through in the same manner. Al.l the integrals
may be performed analytically in the various re-
gions in Fig. 3, when a constant transition prob-
ability W is assumed. Upon expansion of the result
in powers of E we get

The quadratic term of (D24) is just the well-known
(approximate} expression for the decay rate (see,
e. g. , Ref 2) whic. h may be obtained in the manner
of Abrikosov and Khalatnikov. "

The magnitude of the &' term gives an indication
of the degree to which Abrikosov and Khalatnikov's"
approximate transformation of the Boltzmann equa-
tion of a Fermi liquid should be trusted. To our
knowledge such correction terms have not previously
been determined.

If the transition probability here is assumed to
depend on x(= q/2k~) the quadratic term in e that
appears in (D24) is unchanged except for the re-
placement of W with the average fo W(x} dx. The e'
and higher terms, however, are affected by the de-
tails of the momentum dependence of W(x}.
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Fermi-surface dimensions for the (110) plane for molybdenum are determined from caliper
dimensions obtained through radio-frequency size-effect measurements. These measurements
were taken over a frequency range of 6.5-26 MHz on high-purity molybdenum approximately
0.13 mm in thickness. Studies of the frequency dependence of the extrema in the resonance
line shape were used to determine the magnetic field values for resonances along major crys-
ta11ographic directions. The Fermi-surface dimensions are compared with recent theoretical
and experimental work on molybdenum.

I. INTRODUCTION

The Fermi surface and energy-bandstructure of
molybdenum have been the subjects of several in-
vestigations in recent years. The Fermi-surface
model for Mo was first proposed by Lomer. ' In a
subsequent augmented-plane-wave (APW) calculation
Loucks determined Fermi-surface dimensions
along the major symmetry directions, which veri-
fied the Lomer model. However, a detailed calcu-
lation of the Mo band structure and Fermi surface
has not been published. Experimental studies of the
Mo Fermi surface have been reported on the anom-
alous skin effect, the dc size effect, the magneto-
resistance, ' the de Haas-van Alphen (dHvA) ef-
fect, the magnetpacpustic effect, ' cyclptrpn
resonance, ' and the radio-frequency size effect
(RFSE). ' '' In the present publication we present
the results of a RFSE investigation on the (110)
plane in Mo in which the resonance field values were
determined on the basis of frequency studies of the
RFSE line shapes. A preliminary report of this
work has been given. ' Reviews of the experimental
aspects of the RFSE technique have been written by
Gantmakher' and by Walsh. ' The theoretical as-
pects are discussed in a review by Kaner and Gant-
makher and in recent papers by Juras. ' In
RFSE experiments, a flat single-crystal metal
plate, sufficiently pure that the electron mean free
path is on the order of the thickness of the plate at
helium temperatures, is placed in the presence of

a magnetic field. For electrons executing trajec-
tories such that v n= 0 (v is electron velocity and
n is normal to plate surfaces) at the two surfaces
of the plate, anomalies (RFSE resonances) occur in
the surface impedance of the plate. For the mag-
netic field directed parallel to the plate surfaces,
these anomalies yield Fermi-surface caliper dimen-
sions (nfl given by bk= (e/a' )t(nxB„,), where f is
the sample thickness and B„,is the magnetic field
value at the resonance. For central orbits 4k= 2k+.

Because the RFSE resonance linewidth &H extends
over a field range 5-20% of the magnetic field mag-
nitude, the assignment of accurate resonance field
values is difficult. The question therefore arises
as to what are the proper criteria to use to deter-
mine the correct resonance field value. In an in-
vestigation on potassium, Koch and Wagner as-
signed B„,to a point close to the first discernible
departure of the resonance from the background.
This assignment was made on the basis of a study
of the frequency dependence of the linewidth and
from the known Fermi-surface dimensions for po-
tassium. Krylov and Gantmakher found in a sim-
ilar study on In that the resonance linewidth reduced
to zero with extrapolation to infinite frequency at a
field value corresponding to a position quite close
to the low-field side of the resonance. They con-
cluded that the field value obtained with this tech-
nique is the proper value to assign to the resonance.
A result similar to that of Krylov and Gantmakher
was obtained by the present authors. ' In all three


