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The work of Neumann and Tewordt is generalized to obtain the first-order correction (in
1-T/T,) to the Ginzburg-Landau expression for the free energy of an inhomogeneous super-

conductor.

From this expression, the generalized Neumann-Tewordt equations for the first-

order corrections to the solutions of the Ginzburg-Landau equations are derived. For two
important geometries, the normal-superconducting wall and the mixed state of type-II super-
conductors, we show that the free energy can be rewritten so that it involves only the solutions
of the Ginzburg-Landau equations. We apply this formalism to the calculation of the N-S wall
energy, where we calculate oyg as a function of T and &/I for k=1/v2, and to the mixed state
of type-II superconductors, where we calculate Hy as a function of 7', «, and £,/1 for singly

and doubly quantized isolated vortices.

I. INTRODUCTION

Neumann and Tewordt' have obtained from earlier
work by Tewordt? a general expression for the
first-order correction in 1 - T/7T, to the Ginzburg-
Landau® (GL) expression for the free energy of an
inhomogeneous superconductor near 7=T,. They
used this result to derive an expression for the free
energy of an isolated vortex explicitly in terms of
the order parameter, the magnetic field, and the
superfluid velocity; the differential equations for
the corrections to the GL equations were derived
and solved for a mesh of values of k and the mean
free path. The solutions of the differential equa-
tions were then used to evaluate the free energy of
a singly quantized isolated vortex and hence the
lower critical field H,.

In Sec. II, we review the Neumann-Tewordt (NT)
theory and derive an expression for the first-order
correction to the GL free energy; our expression
is explicitly in terms of the order parameter, the
magnetic field, and the superfluid velocity, and is
valid for all geometries. From this expression we
derive the generalized NT equations for the correc-
tions to the solutions of the GL equations; these
equations are believed valid for all geometries.
We then expand the free-energy expression in pow-
ers of 1 =7 /T, and show that the term involving
the solutions of the generalized NT equations can
be written as the integral of a divergence; for two
important geometries, the mixed state of type-II
superconductors and the normal-superconducting
wall problem, we show that this integral can be
written solely in terms of the solutions of the GL
equations—it is not necessary to solve the gener-
alized NT equations in order to evaluate the free
energy.

In Sec. III, we apply the formalism developed in
Sec. II to the calculation of the normal-supercon-
ducting wall energy for k=1/v2 and general values
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of the mean free path.

In Sec. IV, we apply the formalism to calculate
the lower critical field H,, as a function of « and the
mean free path for both singly and doubly quantized
isolated vortices. Good agreement with the results
of NT for the single-quantum case is found.

The results of this paper are used in the succeed-
ing paper* to calculate k., the critical value of «
for type-II superconductivity, near T=T,.

II. FREE-ENERGY AND DIFFERENTIAL EQUATIONS

The NT expression® for the Gibbs free energy of
an inh_gmogeneous superconductor in an applied
field H,, relative to the Meissner state, is

47AG/H2 N = [adr [n? - 2R B, + 3(1 - £?)2

+ik3 (V)24 F 2]+ (1 —t)fdsrP(i") ,(2.1)

where
P(F) = Q(T) +[14g0 13841+ Nac(0 15051 + 814851 + 84,0 53)]

X (0,0,)(0,0,)* (2.2
and

Q(T)=n.f U1 = £ =mp(1 = F A2V )2+ f 2]
+noks 2 AV (2.3)

The notation in Egs. (2.1)-(2.3) is essentially
that of NT!: The reduced temperature is ¢ = 7/T,;
the microscopic magnetic field in reduced units is
R=H(F)/V2H,=Vxa and the applied field in reduced
units is R, =H, /V2H,; 2 is given by 2=A(F)/VZHA
and lengths are measured in units of the penetration
depth A; ¢ is given by §=¥/¥,, where ¥ is the GL
order parameter and ¥, is its value in wholly su-
perconducting material; f is a real quantity defined
by § = fe'® and the gauge-invariant superfluid ve-

locity V is defined by
V=ksWWo -2, (2.4)
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where
ks=V2(2e/lic)HA? ; (2.5)

O is the operator O =k, ¥V —43; and the repeated
index summation convention has been used in Eq.
(2.2) for P(¥). The various i’s and the quantity ¢
{defined by the expansion

k3=k[1+(1 =)p]+0Q —1)? (2.6)

of kg in powers of 1 —¢} are, except for 7,, functions

of the mean free path / through their dependence on
a=7t,/2yl =0.882¢,/1; the expressions are

Ne= -31£(5)/986%(3) , 1=~ 4(25y +559/7¢(3Sz ,

Nw=— 8841/7§(3)821 ) (2- 7)
|

N4a= = a833/28212 ’
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Nac= "3533/103212 ’ ¢ =2n,~n ”SIZ/SZI ’

where ¢(x) is the Riemann ¢ function and

Sy(a)= Z; Cr+1)2n+1+a)?, (2. 8)
1=

The expression for P(T') - Q(r) given in Eq.
(2. 2) is not satisfactory for many calculations and
it is necessary to work out the terms to obtain the
explicit dependence on f, v, and h. The coefficients
of 7,, and 74 have been obtained by NT for the case
of an isolated vortex [where f= f(»), V=v()8, and
B=h(r)z]. The calculation of these coefficients is
considerably more difficult for the general case of
an inhomogeneous superconductor; the details are
without interest and we give only the final result

P(T) = Q(T) = (yg+3n4) {ks292f = f0212+ k327 AV - ( £27)]2} + Naoks 2 F 22 - 4R - (VX T £)]

+N4o26572V « [5 k5 2V(V 1) 2= kg (V) (VEF) 402V 24 FH(T - V)

In Appendix A we show that this result can be sim-
plified to

P(T) - Q(T) = (nyg+ 3n4o) (g™ 2V2f = f?)?

+ge ks [ f -4 R (FXV])] 5
(2.10)

the omitted terms are either identically zero to the
order in 1 ~¢ to which we work or vanish on inte-
gration for the geometries of interest. Our expres-
sion (2. 10) contains the result of NT for a singly
quantized isolated vortex as a special case; the
coefficients of all terms but that for 7, are identical
as they stand, while those for 74, can be shown to
be equal by an integration by parts.

K32 —(8F 2 = 1+vd)f1 ~ 2fo Voo Wy

-

-V V- (F3)]. (2.9)

The differential equations for v and f can be ob-
tained by the usual method!; on defining

F=fo+r(L=8)fy+---, (2.11)
‘-;=Vo+(1—t)\71+"' s (2.12)
R=Rp+ (1 -8Ry +--- (2.13)

and expanding ky according to Eq. (2.6), we obtain
the GL equations®

= (Mo +Mag+ 3N40) foll = fo)(A = 3FD) + 20 fo fo? = 1 +0¢D)+ k"2 (61 4g + 1800 = 1y = M) Fol VS o)?

€ 2V2fy - fwo? - fol f -1)=0, (2.14)
exﬁo= fozv‘] or Gx(exVO)‘*’foa-‘;o:o (2. 15)
and the generalized NT equations
|
+ (2049 + 6N4e + M = M) Fov0® + [ + M) fo =Ml ol = foD) + e k43 foho? + 2fo™veD) ,  (2.16)

= VX (VXT) = £y = 2fo fiVo = (2Nag+B04e = M) Fo2(1 = oDV +Mae k72 {2RgX T(£?) = fo! Vo + VX [FoX V(FI]} .

These last two equations reduce to the differential
equations of NT for f; and V, in the case of an iso-
lated vortex.

In general, the evaluation of AG from Eq. (2.1)
requires the solution of Egs. (2.16) and (2.1%7) for
f1, Vi, and By; even for simple geometries where
the partial differential equations go over into ordi-
nary differential equations, a large amount of
numerical work is required. For some geometries
of interest, however, the unpleasant task of solving

(2.17)

|
Eqgs. (2.16) and (2. 17) can be avoided if we do not
require f; and V; as functions of ¥ but need only
calculate the free-energy difference AG. To show
this, we go back to expression (2.1) for AG and
expand in powers of 1 —¢; the leading terms are

47AG/HA = -2 [ @ B B(F) + €0+ (1 =)y ,
(2.18)
where
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€o= f Arlnd+31 - £+ k¥ $f0)2+f02v02]
(2.19)
and

€= [ [P|(T) -2k (V)%
+2 [a@% [By By - fofi(l = 7D + K72V fo- V 1y
+fofwo®+ fo' Vo V115 (2.20)

the subscript on Py(T) indicates that the functions
f, ¥, and i in Egs. (2.3) and (2.10) are to be re-
placed by f,, V,, and h,, respectively.

On using Egs. (2.14) and (2. 15) and some simple
vector relations, we find that €; can be rewritten as

€= [d7 [PyT) - 226 (T £p)?]

+2 [ @ V- [BpxVy +k72/V fo] . (2.21)
The point of this procedure is that for some geom-
etries of interest it is possible to eliminate f;,

V1, and B, from the expression for AG; one need
then solve only the GL equations (2.14) and (2. 15)
and not (2.16) and (2.17). Since the former equa-
tions contain only one parameter («) while the latter
contain two parameters (x and a), the calculation
of AG is made an order of magnitude less difficult
and involves only slightly more work than the cal-
culation of the GL free energy.

We have investigated two physical situations—a
normal-superconducting wall and the mixed state of
type-II superconductors; in both cases it is possible
to eliminate f, Vﬂl, and B, completely from the ex-
pression for AG. The calculation of the normal-
superconducting wall energy is described in Sec.

IIT and the mixed state is considered in Sec. IV.
One can easily show that to calculate the nth-order
correction to the GL free energy for these geome-
tries, one need solve only the differential equations
for the (z —1)th-order corrections to the solutions
of the GL equations.

III. N-S WALL ENERGY

The energy of formation of a normal-supercon-
ducting interface was considered by GL in their
famous paper® on the phenomenological theory of
superconductivity. This energy is calculated from
the one-dimensional solutions of Eqs. (2.14) and
(2.15): f= f(x), R=H(x)z, and V=v(x)y. Loosely
speaking, the sample is divided into two parts, the
region x >0, which is “superconducting” in that

f-1, v-0, k=0 as x— +°, (3.1)
and the region x <0, which is “normal” in that
f=0, v—~const—h,x, h=h, as x——-o. (3.2)

The separation into normal and superconducting
regions is sharp only in the limits k<1 and x> 1,
where % and f, respectively, vary rapidly at the in-
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terface. Since thefree-energydensitiesatx= +
and x = - mustbe equal, H,is required to be equal
to H, (i.e., h,=1/V2).
In the GL regime (T very close to T,), the N-S
wall energy oy is given by
4roys /H A =golk) , (3.3)
where
go= f.: ax [hoz —\/_Zho“‘%(l ’foz)z*'fozvoz"'lf'z(fu')z]
(3.4)

to lowest order in 1 —#; f,, vy, and hyin Eq. (3.4)
are the solutions of the one-dimensional versions
of Eqs. (2.14) and (2.15). GL? obtained the ap-
proximate expression

470y s/H,2\= 202 /3« (3.5)

for k <1, which shows that oys >0 for k<<1. They
also showed analytically that gys<0 for x> 1 and
found from numerical solutions of Eqs. (2.14) and
(2.15) that the dividing line occurs at k=1/V2,
where oys=0. An expression for oys, valid for
k>1, is’

4n0ys/Hyn= -5(V2-1) . (3.6)

The extension of Eq. (3.3) for oyg to lower tem-
peratures is, from the results of Sec. II,

410ys/H2A=go(k) + (1 - 1) g4(k, @),

where

g1=2[:dx d%[(f!z“—ho)vﬁ'('zfifol]

+f dx{nefo’(1 = £o2)? = me(1 = £k fo )2+ fovo® ]

(3.7)

+ k"2 fofo )2+ (Maa+ 3ng) K72 F " = fwo®]?
=20k £ )2+ Naok [ fo2 ho® + 4 fofo volol} + (3.8)

By virtue of the boundary conditions [Egs. (3.1)
and (3. 2)], the first integral in Eq. (3.8) is identi-
cally zero and we are left with an expression for
g1 which involves only f, kg, and v,. Thus it is
necessary to solve only the GL equations to obtain
the correction to the GL results for oyg.

We have solved the one-dimensional versions of
Eqgs. (2.14) and (2. 15) numerically for x=1/v2 and
give in Table I values of g,(1/v2, @) as a function
of @; numerical results for go(«) and gy(x, @) for
k #1/V2 will be published separately.® The values
given in Table I are used in the following article*
to calculate the .critical value of x as defined by
oys=0. :

1V. MIXED STATE OF TYPE-II SUPERCONDUCTORS

In the mixed state of type-II superconductors,
f, Vv, and B are independent of z, h is in the z di-
rection, and V has no component in the z direction.
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TABLE I. gjy(k, @) [defined by Eq. (3.8)] as a function of
o for k=1/V2.

&g1(1/V2, o)

a

0 -0.0209
0.1 -0.0275
0.2 -0.0328
0.5 —0.0441
1
2
4

—0.0548

—0.0650

—0.0735

10 —0.0823
20 —-0.0873
50 —0.0920
100 —0.0943
© -0.0979

Our expression (2.1) for AG, per unit length in the
z direction, becomes

ATAG/H A\ %= — 2Nh21p /K3 + €9+ (1 —1)€; , (4.1)

where N is the number of flux unit cells in the
sample. €, and €, are given by

€0=fd27’[h02+%(1 —f02)2+l<'2($f0)2+f02’002]

(4. 2)

and
€1=€+€1y (4.3)
€10= [ d% [Py(F) = 20674 T £)?] (4.4)

involves only the solutions of the GL equations
(2.14) and (2. 15) and

€1=2 [ d¥ T+ [BpX ¥, + 2V o] (4.5)

involves the solutions of both the GL equations and
the generalized NT equations (2.16) and (2.17). In
deriving Eq. (4.1) we have used the relation

J @ R(F) Z2=N1lim2m ()-8 asr=0
=N2mp /K , (4.6)

where p is the number of flux quanta per unit cell;
a proof of Eq. (4.6) is given in Appendix B. As in
the case of the calculation of the N-S wall energy,
it is possible to eliminate the dependence of €;; on
the solutions of the generalized NT equations. The
calculation is given in Appendix C and we quote
here only the result

€41= Nduhy(0)( - ¢p/k) , (4.7)

where hy(0) is the microscopic magnetic field (in
reduced units) at the center of the flux line to low-
est order in 1 ¢,

The above results can be used for approximate
calculations of the properties of type-II supercon-
ductors near T'=T, for all values of the applied
field H, between H,, and H.,;; work in this direction
is in progress. We restrict our attention here to

the case of an isolated vortex [f= f(r), V=v(r)8,
H=n(r)z], in which case the partial differential
equations (2.14) and (2.15) reduce to ordinary dif-
ferential equations.

The case p =1 for an isolated vortex was con-
sidered by Abrikosov’ for k> 1. The generalization
of his result for H, /H, to p >1 is®

Hy/H,=(p/V2k)Ink . (4.8)

The first calculation of H, /H, for k~1 was made
by Harden and Arp, ® who obtained numerical solu-
tions of Egs. (2.14) and (2.15) for the isolated
vortex geometry. These calculations are of course
based on the GL equations.

NT' calculated the first-order corrections to GL
results; they solved the isolated vortex forms of
Egs. (2.14)-(2.17), evaluated the integrals in Eq.
(2.18), and obtained H,, /H, by setting AG equal to
zero. We have repeated their calculations using
the formalism described above, which requires
only the solutions of the GL equations. We follow
the notation of NT! in describing the correction to
the GL result by

Hopy /Ho=(Hpy /Ho)| 6 [1+(1 =004k, )] 5 (4.9)

the values of H, /H, at T=T, are given as a function
of k in Table II and 8,(k, a) is plotted in Fig. 1.
Good agreement with the previous results of NT

is found.

The GL theory of a doubly quantized isolated
vortex was considered by Matricon®; some of his
results are given in the review article by Fetter
and Hohenberg.!® We describe our results for
H, /H, for p=2 Dby

Hoy /Ho=(Hy /Ho)| o [1+(1=1)04(k, @)]; (4.10)
we give in Table II the values of H, /H, at T=T, as
a function of k and plot 3,(k, @) in Fig. 2.

The above results are used in the following arti-

cle? to calculate the critical value of x for T <7,
from the definition H, =H,.

APPENDIX A
On going from Eq. (2.9) to (2.10), we have dis-

TABLE II. Hy/H_at T=T,as a function of « for singly
quantized (p =1) and doubly quantized (p = 2) isolated
vortices.

Hy/H,at T=T,

K p=1 p=2
12 ‘ 1.0 1.0

1 0.8180 0.8553

2 0.5490 0.6288

5 0.3169 0.4080
10 0.2019 0.2809
20 0.1242 0.1842
50 0.0624 0.0985
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S FIG. 1. 64(k, o) as a function of @ with
! k as a parameter. The values of k are
-0.10 given at the right-hand side of the graph;
the abscissa is linear in o for @ <1 and
linear in 1/ for a >1.
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carded two terms; here this step is justified.
The first term which has been neglected is

(1 =) nag+3nu )™ [ AV - (F29)2 .
On taking the divergence of the second GL equation
(2.15) and using the vector identity V- (Vx7V)=0,
where V is any vector, we find that

Ve (fe2V)=0. (A1)

Thus the above term can be neglected for the pur-
pose of calculating the first-order correction to
the GL theory; it does, however, contribute to
higher-order corrections.
The second term which has been neglected is

[ar¥-7,
where .

2 = (1 - t)2174clc3'2 [% Ks-z _V.( ef)z - Ks-z( ef)(vzf)

+02V () + FAV - VIV =V V. (F2V)] . (A2)

The neglect of this term must be justified separate-
ly for each geometry.

For the N-S wall problem, where f=f(x), V
=v(x)y, and R=h(x)z, the above expression reduces
to

/ dxV - Z=(1 = )2n4k52 W3f a ,

e ax | yeew

which vanishes by virtue of the boundary conditions
(3.1) and (3. 2).

For the mixed state of type-II superconductors,
we show that the above expression vanishes when
the integral is taken over a unit cell of the vortex
lattice and thus that it vanishes when the integral
is taken over the entire volume of the supercon-
ductor. The divergence theorem can be used to
write

dzﬂ*z.2=¢ din-7, (A3)
cell (o3}

where C, is the path along the boundary of the unit

0.20
0.1 0f
© FIG. 2. &4(k, o) as a function of & with

S k as a parameter. The values of k are

2 given at the right-hand side of the graph;

-0.10 the abscissa is linear in o for o <1 and

linear in 1/ for @ >1.

-0.20

-0.3 | 1 | 1 I

a= 0 0.25 0.5 0.75 | 4/3 2 4q ©

I/q= © 4 2 4/3 | 0.75 0.5 0.25 0
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cell and # is the unit outward normal to C;. Since
¥ and Vf at the boundary are normal and parallel
to the boundary, respectively, the integral along
the path C,; vanishes and we obtain the desired re-

sult
2. .7
@7V +Z=0. (A4)

The justification for step (A3) is the following:
If fand V are expanded as

(A5)
(A6)

where g;, Wy, etc., are independent of 7, one finds,
for p> 1, that Z -0 as 7—0; for p=1, it is neces-
sary to make the reasonable assumption that the
coefficient g, isindependent of § to obtain this result.

fgr’ +gat g ttiae o,

V=pb/ky + Wy + W34 ees |

APPENDIX B

To prove Eq. (4.6), we must evaluate the integral
_ 5, BT, 2
I=[_ drE(F)Z. (B1)

Since I is just the flux through the unit cell, we
have

ke 1
I_pZew/_ZHcA ’

hc/2e is the flux quantum. On using Eq. (2.5), we
obtain

I= 2171)/[(3

(B2)

(B3)
or
J @ B(F)-2=N2mp/ks . (B4)

Equation (B3) can be used to determine the be-
havior of V near the center of a vortex; since i
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= - VXV, we find, with the help of Stokes’s theo-
rem, that

I=2mp/ks= —ﬁlv-dT-ﬁZV-dT+£adzrh(r) ,

(B5)

where C, is along the boundary of the unit cell, C,
is along the circumference of a circle of radius
R - 0 about the axis of the vortex, and A, is the area
inside this circle.

On assuming that ¥ at the boundary of the unit
cell is perpendicular to the boundary and that V(T)
-v(»)8 as »~0, we find, from Eq. (B5), that

V(F)=pb/kgr asr=0. (B6)
APPENDIX C
To evaluate the expression (4.5) for €,;;, we use
the divergence theorem to write
_ A . - ~ . - 2 = . -
<u/N-¢;1dln Y+9§czdzn T f a9-¥,
(C1)

where

Y= 2(BpXVy + K2/ V) © (C2)

The integral along C, is zero since Vv and Vf at the
boundary of the unit cell are, respectively, perpen-
dicular and parallel to the boundary. The integral
over the area A, is easily seen to approach zero as
R -0 and we are left with

€, /N=1lim27R{-%. [ho(O)ﬁ; xph (k3= k™Y /R(1=1)
+70R?* N,  (C3)
= — 4mpho(0) ¢/ k . (c4)

Equation (C4) is just Eq. (4.7).
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