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The work of Neumann and Tewordt is generalized to obtain the first-order correction (in
1—T/T~) to the Ginzburg-Landau expression for the free energy of an inhomogeneous super-
conductor. From this expression, the generalized Neumann-Tewordt equations for the first-
order corrections to the solutions of the Ginzburg-Landau equations are derived. For two
important geometries, the normal-superconducting wall and the mixed state of type-II super-
conductors, we show that the free energy can be rewritten so that it involves only the solutions
of the Ginzburg-Landau equations. We apply this formalism to the calculation of the N-8 wall
energy, where we calculate ops as a function of T and (p/E for f(: = 1/~2, and to the mixed state
of type-II superconductors, where we calculate H,f as a function of T, ~, and (p/l for singly
and doubly quantized isolated vortices.

I. INTRODUCTION

Neumann and Tewordt have obtained from earlier'
work by Tewordt2 a general expression for the
first-order correction in I - T/T, to the Ginzburg-
Landau' (GL) expression for the free energy of an
inhomogeneous superconductor near T = T,. They
used this result to derive an expression for the free
energy of an isolated vortex explicitly in terms of
the order parameter, the magnetic field, and the
superfluid velocity; the differential equations for
the corrections to the GL equations were derived
and solved for a mesh of values of z and the mean
free path. The solutions of the differential equa-
tions were then used to evaluate the free energy of
a singly quantized isolated vortex and hence the
lower critical field H,z.

In Sec. II, we review the Neumann-Tewordt (NT)
theory and derive an expression for the first-order
correction to the GL free energy; our expression
is explicitly in terms of the order parameter, the
magnetic field, and the superfluid velocity, and is
valid for all geometries. From this expression we
derive the. generalized NT equations for the correc-
tions to the solutions of the GL equations; these
equations are believed valid for all geometries.
We then expand the free-energy expression in pow-
ers of 1 —T/T, and show that the term involving
the solutions of the generalized NT equations can
be written as the integral of a divergence; for two
important geometries, the mixed state of type-II
superconductors and the normal-superconducting
wall problem, we show that this integral can be
written solely in terms of the solutions of the GL
equations —it is not necessary to solve the gener-
alized NT equations in order to evaluate the free
energy.

In Sec. III, we apply the formalism developed in
Sec. II to the calculation of the normal-supercon-
ducting wall energy for ~ = I/~2 and general values

of the mean free path.
In Sec. IV, we apply the formalism to calculate

the lower critical field JJ,& as a function of g and the
mean free path for both singly and doubly quantized
isolated vortices. Good agreement with the results
of NT for the single-quantum case is found.

The results of this paper are used in the succeed-
ing paper' to calculate ~„ the critical value of ~

for type-II superconductivity, near T = 7.', .
II. FREE-ENERGY AND DIFFERENTIAL EQUATIONS

The NT expression' for the Gibbs free energy of
an inhomogeneous superconductor in an applied
field H„relative to the Meissner state, is

«&0/Hc ~ = fd & [h —2h 'he+ 2(1 —f )

+K, (v7f) +f v ]+(1-t) J d xJ'(r), (2. 1)

where

&(r ) = Q(r )+ I n4u~;gfai+n4. (&«f xi+ f «a~&~+ ~«~&a)l

x (0 0&g)(0 0&()* (2 2)

and

@(r ) = g,f '(1 -f ') '- q, (I -f ')[z,-'( vf ) +f 'v' ]

+q x, 'f'(&f)' (2.3)

The notation in Eqs. (2. 1)-(2.3) is essentially
that of NT'. The reduced temperature is f = T/T„
the microscopic magnetic field in reduced units is
h=H(r)/WH, =&&&a and the applied field in reduced
units is h, = H, /W2H„a is given by a = X(r )/v 2H, X

and lengths are measured in units of the penetration
depth X; g is given by g= 4/4„, where 4' is the GL
order parameter and 4„ is its value in wholly su-
perconducting material; f is a real quantity defined

by g= fe' and the gauge-invariant superfluid ve-
locity v is defined by

(2.4)
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n«= - 3Sgs/10S„', y=an, -n, -s„/s„,
4, = v 2(ae/ttc)a, x'; (a. 6)

0 is the operator 0= x3 V' —ia; and the repeated
index summation convention has been used in Eq.
(2. 2) for P(r }. The various n's and the quantity P
{defined by the expansion

z, = «[1+(1 t)y]—+O(1 -t)' (2.6)

of zs in powers of 1 —t ) are, except for n„ functions
of the mean free path E through their dependence on
n = vg, /Syl =0.882)0/l; the expressions are

n, = —3g(6)/88t'(3), n, = —4(as„+s„)/vg{3)s

n„= -8Se/Vt(3)S„, n„= —nS„/2S„', (a. V)

where ((x) is the Riemann f function and

S),(n)= Z (an+1) '(am+1+o. ) '. (a. 8)

The expression for P(r ) —Q(r) given in Eq.
(2. 2) is not satisfactory for many calculations and

it is necessary to work out the terms to obtain the
explicit dependence on f, v, and h. The coefficients
of g«and g4, have been obtained by NT for the case
of an isolated vortex [where f= f(x), v =6(x)e, and
h=h(x)s]. The calculation of these coefficients is
considerably more difficult for the general case of
an inhomogeneous superconductor; the details are
without interest and we give only the final result

)=(ng+an )6 'f-f ']'+ 'f '[ ~ (f' )] ]+ p [f h -4fh ( f)]

+n«aa, 'V [-', K, V(Vf) —~, {Vf)(V'f)+e'Vf +f (v ~ V)v-v V ~ (f'v)]. (29)

In Appendix A we show that this result can be sim-
plified to

P(r ) —Q(r ) = (n4g+ 3n4, )(~g 'V'f —fv')'

+n«Ks '[f 'I '-4fh {v X Vf)] '

(2.10)
the omitted terms are either identically zero to the
order in 1 —g to which we work or vanish on inte-
gration for the geometries of interest. Our expres-
sion (2. 10) contains the result of NT for a singly
quantized isolated vortex as a special case; the
coefficients of all terms but that for g4, are identical
as they stand, while those for q4, can be shown to
be equal by an integration by parts.

v =vo+ (1 —t) v)+ ' ' '

h = ho+ (1 —t) Kg + ~ ~ ~

(2. 12)

(2. 13)

and expanding ~z according to Eq. (2.6), we obtain
the GL equations

~ 'V'fo-feo'-fo(fo'-1)=o

Vxho=foavo or V&&(V&&v ) 0f +vo0=0 (a. is)

and the generalized NT equations

The differential equations for v and f can be ob-
tained by the usual method~ on defining

(2. 11)

K 'V'fi -(3fo'-1+~0')fi —afovo vx

= (nc+n«+ 3n4,)fo(1 —fo')(1 —3fo') + a&f0(fo' —1+v,')+ e'( 6n+ 18n4, —n, —n )f ( Vfo)'

+(an«+6n«+no n}fo'~n'+-[{na+n.)fo'-na]fo(1-fo'}+n«~ '(3fo@0'+afo'~0'), (2 16)

-Vx(V&&&~) —fo'v~-af f~v, ={an«+6n«-n„)fo'(1- f,')v, +n„a '(ah, &&V(fo) —f v +V&&[v &V(f, )]] .
(2. 1v)

These last two equations reduce to the differential
equations of NT for f, and v~ in the case of an iso-
lated vortex.

In general, the evaluation of hG from Eq. (2.1)
requires the solution of Eqs. (2. 16) and (2. 1V) for
fq, vq, and Kq,

' even for simple geometries where
the partial differential equations go over into ordi-
nary differential equations, a large amount of
numerical work is required. For some geometries
of interest, however, the unpleasant task of solving

Eqs. (2. 16}and (2. 1V) can be avoided if we do not
require f& and vz as functions of r but need only
calculate the free-energy difference 40. To show
this, we go back to expression (2. 1) for d,G and
expand in powers of 1 - t; the leading terms are

4wnG/H, 'z =-2f dr h, h(r)+e, +(I -t)s, ,

(2. 18}

where
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co= f d r[ho + ,'(1-—f, ) +» (Vf,) +fovo ]

and
(2. 19)

e, = fd'r [P,(r) —2»-'y(Vf, )']

+ 2 fd r [ho hg —fof4(1 —fo ) +» Vfo Vf,
+fafjvo +fo vo'vs] i (2 20)

the subscript on Po(r ) indicates that the functions
f, v, and h in Eqs. (2. 3) and (2. 10) are to be re-
placed by f„vo and ho respectively.

On using Eqs. (2. 14) and (2. 15) and some simple
vector relations, we find that e& can be rewritten as

4&= fd r[Po(r) —2» $(Vf )o]

terface. Since the free-energy densities at x = +~
and x = —~ mus t be equal, H, is required to be equal
to H, (i. e. , h, = I/W2).

In the GL regime (T very close to T,), the N-S
wall energy 0» is given by

4»o„o /a, oz =g,(»), (3.3)

where

go= f„dx[ho v-2ho+o(I fo) +fovo +» (fo) ]
(3.4)

to lowest order in 1 —t; fo, vo, and ho in Eq. (3.4)
are the solutions of the one-dimensional versions
of Eqs. (2. 14) and (2. 15). GL' obtained the ap-
proximate expression

+2fd'rV [ho&&v, +» f~Vfo]. (2. 21)
4»n„, /a, 'x = 2&2/3» (3.5)

The. energy of formation of a normal-supercon-
ducting interface was considered by GL in their
famous paper on the phenomenological theory of
superconductivity. This energy is calculated from
the one-dimensional solutions of Eqs. (2. 14) and
(2. 15):f= f(x), h=h(x)z, and v=v(x)y. Loosely
speaking, the sample is divided into two parts, the
region x &0, which is "superconducting" in that

f-l, v-O, h-0 as x» +O.
q (3.1)

and the region x&0, which is "normal" in that

f-O, v-const-h, x, h-h, as x- —~. (3.2)

The separation into normal and superconducting
regions is sharp only in the limits K«1 and K»1,
where h and f, respectively, vary rapidly at the in-

The point of this procedure is that for some geom-
etries of interest it is possible to eliminate f„
vz, and h& from the expression for &G; one need
then solve only the GL equations (2.14) and (2. 15)
and not (2. 16) and (2. 17). Since the former equa-
tions contain only one parameter (») while the latter
contain two parameters (» and n), the calculation
of &G is made an order of magnitude less difficult
and involves only slightly more work than the cal-
culation of the GL free energy.

We have investigated two physical situations —a
normal-super conducting wall and the mixed state of
type-II superconductors; in both cases it is possible
to eliminate f„v„and h~ completely from the ex-
pression for 4G. The calculation of the normal-
superconducting wall energy is described in Sec.
III and the mixed state is considered in Sec. IV.
One can easily show that to calculate the zth-order
correction to the GL free energy for these geome-
tries, one need solve only the differential equations
for the (n —l)th-order corrections to the solutions
of the GL equations.

III. N4' WALL ENERGY

for K«1, which shows that o„~&0for K«1. They
also showed analytically that a»o & 0 for»» 1 and
found from numerical solutions of Eqs. (2. 14) and
(2. 15) that the dividing line occurs at »= I/v 2,
where 0„~=0. An expression for a», valid for
K»1) 1S

4»a„,/H, 'x = ——o'(A -1) . (3 6)

The extension of Eq. (S.3) for o»o to lower tem-
peratures is, from the results of Sec. II,

4vo„o/a, 'a=go(»)+(1-t)g, (», n), (3.7)

where

g, =2 dx — -ho v, +» of fo'
dx V4

+6» (fafo') +(rt44+ 364 )[» fo" fovo l

» (fo ) +64~» [fo ho +4fofo voho]] (3.8)

By virtue of the boundary conditions [Eqs. (3.1)
and (3.2)], the first integral in Eq. (3.8) is identi-
cally zero and we are left with an expression for
g, which involves only fo, ho, and vo. Thus it is
necessary to solve only the GL equations to obtain
the correction to the GL results for 0„&.

We have solved the one-dimensional versions of
Eqs. (2. 14) and (2. 15) numerically for» = 1/v 2 and
give in Table I values of g4(1/W, n) as a function
of n; numerical results for go(») andg&(», n) for
» 41/v 2 will be published separately. The values
given in Table I are used in the following article
to calculate the critical value of K as defined by
+N' S

IV. MIXED STATE OF TYPE-II SUPERCONDUCTORS

In the mixed state of type-II superconductors,
f, v, and h are independent of z, h is in the z di-
rection, and v has no component in the z direction.
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TABLE I. g&(x, n) [defined by Eq. (3.8)] as a function of
0. for re=1/~2.

0
0.1
0.2
0.5
1
2
4

10
20
50

100

gq(1/~2, n)

—0.0209
—0.0275
—0.0328
—0.0441
—0.0548
—0.0650
—0.0735
—0.0823
—0.0873
—0.0920
—0.0943
—0.0979

&1 &1O+ &11 ~

&,o= fd'r [Po(r ) —2y» '( Vfo)']

(4. 3)

(4.4)

involves only the solutions of the GL equations
(2. 14) and (2. 15) and

s»= 2f d rv ~ [ho+vt+» ftVfol (4.5)

involves the solutions of both the GL equations and
the generalized NT equations (2. 16) and (2. 1V). In
deriving Eq. (4. 1) we have used the relation

fd rh(r) z=NIim2srv(r) ~ e as r 0-
= N2vp/»o, (4.6)

where p is the number of flux quanta per unit cell;
a proof of Eq. (4.6) is given in Appendix B. As in
the case of the calculation of the N-S wall energy,
it is possible to eliminate the dependence of &&& on
the solutions of the generalized NT equations. The
calculation is given in Appendix C and we quote
here only the result

Our expression (2. 1) for LG, per unit length in the
z direction, becomes

4vnG/H~ X = —2Nk, 2'/»o+ Eo+ (1 —t)et, (4. 1)

where N is the number of flux unit cells in the
sample. &o and && are given by

so= f d r[ho +~a(I fo ) +» (vtfo) + fo vo ]
(4. 2)

the case of an isolated vortex [f=f(r), v=v(r}6,
h = h(r)z], in which case the partial differential
equations (2. 14) and (2. 15) reduce to ordinary dif-
ferential equations.

The case p =1 for an isolated vortex was con-
sidered by Abrikosov~ for g»1. The generalization
of his result for H, & /H, to p )I is

H„/H, = (P/W») ln» . (4.8)

TABLE II. H&/Hc at T=Tc as a function of ~ for singly
quantized (p =1) and doubly quantized Q = 2) isolated
vortices.

The first calculation of H,&/H, for» = 1 was made
by Harden and Arp, who obtained numerical solu-
tions of Eqs. (2. 14) and (2. 15) for the isolated
vortex geometry. These calculations are of course
based on the GL equations.

NT' calculated the first-order corrections to GL
results; they solved the isolated vortex forms of
Eqs. (2. 14)-(2.1V), evaluated the integr ale in Eq.
(2. 18), and obtained H„/H, by setting ttG equal to
zero. We have repeated their calculations using
the formalism described above, which requires
only the solutions of the GL equations. We follow
the notation of NT' in describing the correction to
the GL result by

H, /H, =(H, /H, )~ [1+(1—t)5 (» o')] i (4 9}

the values of H, t /H, at T = T, are given as a function
of » in Table II and 5t(»n) , is plotted in Fig. 1.
Good agreement with the previous results of NT
is found.

The GL theory of a doubly quantized isolated
vortex was considered by Matricon", some of his
results are given in the review article by Fetter
and Hohenberg. We describe our results for
H, t /H, for p = 2 by

H„/H, =(H„/H, )i„[1+(I-t)5,(», o.)]; (4.10)

we give in Table II the values of H, t /H, at T = T, as
a function of » and plot 5o(», o.) in Fig. 2.

The above results are used in the following arti-
cle4 to calculate the critical value of g for T &T,
from the definition H, & =H, .

APPENDIX A

On going from Eq. (2. 9} to (2. 10), we have dis-

~„=N4vh, (0)(-yp/»), (4.V)
Hot/H~ at T =T~

where ho(0) is the microscopic magnetic field (in
reduced units) at the center of the flux line to low-
est order in 1 —t.

The above results can be used for approximate
calculations of the properties of type-II supercon-
ductors near T = T, for all values of the applied
field H, between Il,& and II,&, work in this direction
is in progress. We restrict our attention here to

1/~2

5
10
20
50

1.0
0.8180
0.5490
0.3169
0.2019
0.1242
0.0624

p=2

1.0
0.8553
0.6288
0.4080
0.2809
0.1842
0.0985
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cell and i is the unit outward normal to C&. Since
v and Vf at the boundary are normal and parallel
to the boundary, respectively, the integral along
the path C& vanishes and we obtain the desired re-
sult

f,.„d'rV K=o. (A

The justification for step (A3) is the following:
If f and v are expanded as

f=ger'+ g,r"+g ~o"+ ~ (A5)

(A6)
A 3v =p 8/~ y +w,r+ w, r + ~ ~,

where g&, w&, etc. , are independent of r, one finds,
for p& 1, that 2 0 as y 0; for p=1, it is neces-
sary to make the reasonable assumption that the
coefficient g& isindependentof 0 to obtain this result.

APPENDIX B

hc 1
~2e v2ax' ' (a2)

kc/2e is the flux quantum. On using Eq. (2. 5), we
obtain

or

fd'rh(r) ~ 2 =N2~P/x, .
Equation (B3) can be used to determine the be-

havior of v near the center of a vortex; since h

To prove Eq. (4. 6), we must evaluate the integral

I=f d'~h(r") 2. (I)
Since I is just the flux through the unit cell, we
have Y=2(hoxv~+x f~V fo) . (C2)

The integral along C, is zero since v and Vf at the
boundary of the unit cell are, respectively, perpen-
dicular and parallel to the boundary. The integral
over the area A~ is easily seen to approach zero as
R-O and we are left with

aqua/N=lim2vR( 0 ~ [ho(0)2-xp8 (z, ' —g ') /R(l f)

+ rO(R"-')]j, (CS)

= —4vphg(0) Q/ x ~

Equation (C4) is just Eq. (4.7).

(C4)

= —7'&v, we find, with the help of Stokes's theo-
rem, that

I= 2'/K, = — v dr- v d1+ f d rh(r),C] Cg Ag

(B5)
where C& is along the boundary of the unit cell, C,
is along the circumference of a circle of radius
R - 0 about the axis of the vortex, and A2 is the area
inside this circle.

On assuming that v at the boundary of the unit
cell is perpendicular to the boundary and that v(r )- v(r)8 as r 0, we find, from Eq. (B5), that

v(r)-p8/x, r ass-0. (B6)

APPENDIX C

To evaluate the expression (4. 5) for e,q, we use
the divergence theorem to write

fu/N= din Y+ din Y+f drV ~ Y,
Cg Ca A2

(Cl)
where
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