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Calculation of the Spin-Lattice Coefficients of Gd3' in CaF2 Using a Point-Charge Model
for the Crystalline Field

8. Cal'vo, * M. C, G. 9asseggi, and M. Tovar
Cenfro At&cico Be&loeke, Cceg@i&g Naciesef di Eisergfe Atbmicn,

htetiteto de Skied "8r. d'osf A. Birlseiro, "'UjjArerg g'gg Suctional de Cgyo,
Scig Carlos 4e Se&locke, Argantcnci

(ae eiv~8 5 Pe| rmry aevi)

The cont@bution of the Slump-QH)aeh ineebaniim to the secorid-order spin-lattice coefficients
fox Gd~' in cuQic sites of Cat~ has been calculated vrith a point™chmdLx'ge approach for the orbit-
lattice interaction. Oux' rdeults, 6~ ~.-0.006 0m" and G~~ ~-0.OV cin', , agree in sign. with
the experimental values of Q~~ ~-0.22ein"'. and C~~~=-0. 1l cm '. Diffeeences in magnitude
of g~(&~ can & understood in vie Of the opposite contrkbution of the fourth- and sixth-order
teims of the 6xbit-lattice Hamiltonian. Se.conclude that, the Slume-Qrbach mechanism pre-
dicts values for the spin-lattice. coefficients Cg&~ and G~~~ of 663' in CaF2 in eeasonable agree-

.ment ivith the Mpetimental. data, and that the e&ic crystalline field must be considered in any
calculation of the spi5 lattice parameter's.

L INTROBUC'fION

The c~stalline eldetz'ic fixit acting on yai ae5ag-
netie iona inti i',eed as impurities in a dikmag. -
rietic lattice modify the free-ion states producing
splittings and shifts of its.energy levels. Their ef-
fects on. the ground state are observed by' electron-
parainagnetic -resonance experiments {RPR) where
the data are described in terms of the spin-Hatg-
iltonian formaliSM.

When the crystal is deformed, e,g. , by an ex-
. ternal applied stress, an adNtional component of
the electric field appears hand originates the So-
called orbit-lattice coupliisg. ~ Fi om a phenomeno-
1ogieal point of view, an effective syin formalism,
similar to the spin Hanigtonian, i8 used to fit the
experimental data. This spin lattice -Hsmiltosiasm
H f couples a paramagnetic ion in a' crystal +it4
the deformhtions of the lattice. It tefledts the local
symmetry of the ion and operates on its effective
spin and these defoImations.

The strength of the spin-lattice iiiteraction ie
given by the spin-lattice coefficients, agd can be
evaluated for the ground state of a paramagnetic ion
through EPR exyeri&ent8, where the shifts of the
positions of the lines are mes, shred as a Lection of
an externally ayylied uniaxial stress. 3

By this method several measurements of the
spin-lattice coefficients for 8-state ions in 8, cubic
environment have been reyorted for the iron
group"' (sd', '&, Iq, Mn", and Fe~) and the raxe-
earth group' ~ (4f', I@I(I, Rum', and Qp'), The
interest to study these half-filled shell ions comes
froW the fact that only the combined effect of the
orbit-lattice interaction with the spin-orbit, hpin-
syin interactions, etc., cled produce splittings or
shifts of the ground state, and considerable efforts
have been made to find ehich mechanisms can ex-

pl@in the experimental data.
A detailed account of the calculations for the

iron-group iona is given by Bharma et at. They
considerthe v, arious mechanisms proposed by
othe'", . aufhgrs, ~o ~3

including covalency and overlap
cdjI'r'eationij, and conclude that from Mn

' the pre-
dominant mechanism is that origmally proposed by
Blu'me and, Orbach (BO), ~I where the ground state
&8 4f Mn~' is adfriixed by the spin-orbit interaction
With eicit8d states which are strongly mixed by the
cubic fieldpr, oviding a large contribution to the
spin-ltti. ce coefficients.

Njhouriie~~ reyor ted a detailed calculation of
seteral mec5anis&s contributing to the axial field
sphtting of Gd ' in the B» symmetry of the gadolyn-
ium-ethyl-sulphate crystal. His results are in
agreement in magnitude with, but of opposite sign
from, the exyex'imental values and he suggests that
no purely itic model can account for the observed
hylitting, Recently Detno" calculated the spin-
lattice coefficients for Gds' in Capm using a point-
eharge model for the crystalline electric field and
free-ion state vectors obtained by including elec-
trosthtic, spin-orbit, spin-spin, spin-. other-orbit,
and configuration interactions. He again obtained
agreement in magnitude but opposite signs from the
experimental values. . Dtrio suggests that the cr-
t.or lies in the point-charge inodel used in the cal-
culation rather than in the wave functions.

In this paper we report a calculation of the spin-
lattice coefficients of Gd' in cubic positions of
CaF&. Owing to the reasonable agreement obtained
by Sharma et al. for Mn ', we consider the con-
tribution coming from the BO mechanism. We ob-
tained the values of the two second-order spin-lat-
tice cogfficients G~~ nd Gm~~' which correspond to

and g4 respectively, as defined for the iron-
grouy ions where only second-order coefficients
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contribute. Qur estimation, performed with an
effective point™charge approach for the electric
field induced by the strain, gives results with the
correct signs and in reasonable agreement in mag-
nitude for the trigonal coefficients 6,',g'; the value
for G3»', however, is 36 times smaller than the
experimental value. ' As will be discussed in Sec.
IV, our results indicate that the mechanism of BO
gives a large contribution to the spiri-lattice inter-
action, and that the effect of the cubic field is very
important and should be considered in any future
calculation.

II. BLUME-ORBACH MECHANISM

The ground state of the Gds'. free ion. (4f ~ con-
figuration) is an orbital singlet 8S and the nearest
excited states are 6P, D, 6E, SG, 6H, and ~I. The
orbital degeneracy of the excited states is removed
by the cubic crystalline field of- the Ca,Fz lattice,
and they split according to the irreducible -repr'esen-
tations of the cubic group 0&.

O'Hare and Donlan' have evaluated the cubic
crystalline field parameters- by fitting the Ham-
iltonian

a =a [c'4'+ (/p, ) (c,"&+c",')]

8, [C,"' —(17 ) (C,"' C.'P)],
with optical data. In Eq. (1) the s axis is the [001]
crystal direction, a convention which will be fol-
lowed in this work. -

.They found B4= -2160. '0- cm ~

and Bs= V92. 85 cm '. Because the spatial part of
the spin-orbit interaction transforms like I'4 iri 0&,
only the F4 components of the excited'sextuplets
could be admixed to the ground state in a first-
order theory. 1

The energy matrix for the I'4 components of the
above-mentioned excited terms was then calculated
using the free-ion term energies, ' 'the Hamiltonian
of Eq. (1), and the cubic I'4 wave "functions given by
Griffith. The reduced matrix elements'inside the
f' configuration and the values for the 8-j and 6-j
are from the tables of NieIson and Koster'9 and
Rotenberg et a/. , respecti:vely. This matrix was
diagpnalized, as in the calculation by BO,
cause the size of the cubic fieM is not much sm'all-
er than the relative splitting of the terms. The
eigenvectors are defined as

~,'r. .. M, ) =Q, w, ,~'r, .(L), M.&, (2)

where m=1, 0, -1; I I', , (L), M, ) is the I'4
~

com-
ponent corresponding to the L term (I = P, E, G, H, ,

H, , and I, where u and b indicate the two states
belonging to the 'H term which transform like r4),
and ~, is the s-axis projection of the total-spin
quantum number. The resulting eigenvalues and
eigenvectors are given in Table I.

The I ~r4„, M, ) states are then admixed to the

I S, M, ) ground level' by the spin-orbit intera, ction.
To first order the admixed wave functions will be'2

~'S, M,)'=~'S, M, ) —Z~, ' I[a(M,)~',r. .. M, 1)
i=i

a(M, ) = [-.' (P—+ M,) (-', iM, )]'~',

b(M, ) = —[-,' (p'- M,) (-', M,)]'~',

c(M,)=-[-'. (~-M,)(t ~M,)]'".

(4a)

(4b)

(4c)

Some comments to justify Eq. (8) are important at,
this point. For rare-earth ions the. spin-orbit, in-
teraction. is stronger than the cubi& crystalline
field. However, in the case of an 8-state ground
level departures from j -S.coupling are absent,
and, even if they are important for.the excited
terms, our perturbation calculation for the ground, -
level eigenfunctions remains valid, .

A. Tetragonal Distortion

When a force is applied along the [001]direction
of the crystal, a tetragonal deformation &3g g
= 4(2e,~

—t„„c»),-where the e,&
are the compo-

nents of the strain tensor, is introduced. . If the
orbit-lattice Hamiltonian is expandeQ in terms of
the deformation, the linear part introduced by. this
distortion is

X(3»'8) =f Be) C(2)
o1 & 3g 0

where the B3»' are numerical, coefficients which
will be evaluated from au electrostatic model, and
the linear combinations of the single-electron. op-
erators. "' transforming like X'3» z are those given
by Griffith '8

The matrix elements of the Hamiltonian of Eq.
(5) within the states defined in Eq. (8) were calcu-
lated using, the values given in Table I, .the tables
of Ni.elson and Koster' for the reduced matrix ele-
ments and symmetry arguments. We find

'( S, M, ~X„'
~

S, M, )'=(0. 084B' +0. 060B' ~)

x(--,'[a (M,)+b~(M, )]+c2(M,)jets~ ~ (6)

+ b(M,)
~ &r4, &, M, + 1)+ c(M,) gr4 0, M, ) ],

(8)

where the value of the spin-orbit constant f of Gd3'

is given in Ref. 1V, The a(M,), , b(M, ), and c(M,)
appearing in Eq. (8) are those defined by BO, and
their values for this case were calculated using the
spin-orbit reduced matri. x elements given by Niel-
son and Koster. ' We obtain
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TABLE I. Eigenvectors and eigenvalues of the cubic fieM of the components of the spin sextuplets of Gd+ in Carl,
transforming like I'& in 0&. The energies are referred to the ground state 8S.

Eigenvectors A& L

eg 'a, g (cm-'~

1

3
4

6

0.9660
—0.0106
—0.0237
—0.0023
-0.0

0. 2573

—0.0082
0.9138

—0.4047
0.0115
0.0
0.0313

0.0254
0.4023
0.9108
0.0892
0.0001
0.0057

—0.0069
—0.0474
—0.Q766

0.9956
—0.0010

0.0258

0.0
-0.0001
—Q. Q001

0.0010
1.0000

—0.0

—0.2571
—Q. 0279

0.0161
—0.0269

0.0001
0.9655

33413
54660
53168
60146
60073
35673

in units of cm
The experimental data can be fitted with a spin-

lattice Hamiltonian which contains second- and
fourth-order operators in the effective spin. ' For
a tetragonal deformation it can be written as

fI(3g, 8) [g())) P 0 G( ) (0 0 q 04)] ~ (q)

where the O„are the Stevens operators and Gsg

and a,"g' are the second- and fourth-order sp1n-
lattice coefficients, respectively. When Eqs. (e)
and (I) are compared using the values given in Eqs.
(4a)-(4c), it is seen that the BO mechanism pre-
dicts the same tensorial dependence in M, as that
of the second-order terms in B,&. Vfe find

(:u,& = (-O. O2ea,",' -O. O2OII,",') ~ 1O-' cm-' . (e)

S. Trigonal Distortion

A trigonal distortion appears when a stress is applied along the [ill] crystal direction. In this
case +Op ls

g, () (ly~)(II(3) (
(8& C(3))+fI(4) +~(() a&(( (()) ( (8)) II((),b)(( (6) ( (8 )] e

ease X
where ~sg, g

= a~. The corresponding 0,&
is'

H")'"=«s.'(1&2f) (& —&)+ (:s'g'(1&4f) [(»'.—~(~+ 1)-e) (~'- ~')+ (~l —~'-) (»'- ~(~+1)-e)])&5 g(;

Along the same lines as for the tetragonal distortion, we find, comparing Eqs. (9) and (10),

(- w,' = z [O. OOO2efie, & -O. O242a,",'+ O. Oeeea,";"—O. O2OOa,";"])(1O-'cm-' .

m. EVALUATION OF ORBIT-LATTKE INTERACTION
IN POINT&HARGE APPROACH

The values given in Eqs. (e) and (ll) for Qs ~' and

~sg' were calculated using only the energies of the
free-ion terms, the spin-orbit interaction constant,
and the cubic field parameters of the Gd~' ion in the
GaF2 lattice, which are known from optical data. '6'~'

It remains now to estimate values for the orbit-
lattice Hamiltonian parameters B& '. To do that,
we have used a point-charge model, in a first-
nearest-neighbors approach, valid for the n= 4 and

n = e terms of K „which gives the main contribu-
tion to Eqs. (e) and (ll). For a cubic coordination
of I" ions around the impurity we find

&(a& 32 e ee(((& )
R~

2 2

II (8) (f3) ~ aft ( )
Sg 9

~ g3

3(4) e4 (+le)
8 eetf (~ )

27 A

4
II(4) eo (ge); «.(((& )

Sg 9 gS

(()& 32
@14)

e ee(((&
Sg 9 R

2 6
II((),u) le

(g21O)
~ ~ eever(& )

27 Rv

2 6
f) ((), ))& le

(+4e2) ~ e ee((( + )
81 Bv
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3 4
= -694 cm ~

8

3 6
=-446 cm ~

Rv

With those values and using Eqs. (12), we find

B' '= 6370 cm B,~'= -13V90z cm

B3~~ = —5930 cm

= 3830z cm B ' = 1890z cm"

B3,' and Bs ~' cannot be evaluated by this approach,
but Bs ~ does not contribute to Eq. (8), and a direct
estimation of B~ ~' shows that its contribution to
G„' in Eq. (11) 'can be neglected.

This semiempirical evaluation of the orbit-lat-
tice Hamiltonian parameters avoids making as-
sumptions about the real values of ~, which can
be altered by the local distortions of the lattice,
of (r ) and (r ), which are known only for the free
ion, and of e,ff, which depends on the polarization
and spatial charge distribution of the ligands ions.
Covalent and other effects could yieM different con-
tributions for the cubic field than for the orbit-lat-
tice parameters, and then our values for the B&"
should be taken as a very rough estimation of the
orbit-lattice coupling.

IV, RESULTS AND DISCUSSION

Using the orbit-lattice parameters calculated in
Sec. III and Eqs. (8) and (11), we find

G~~'(theor) = —0. 006 cm

G, ~' (theor) = —0. OV cm

The experimental values of these spin-lattice strain
coefficients are obtained from the values of the
stress coefficients measured by Calvo et al. ,

~ using
the elastic constants of the CaF3 crystala~:

G3~' (expt) = —0. 22 cm, Gs ~'(expt) = —0. 11 cm

It is seen that the signs of both coefficients pre-
dicted by our calculation are correct, but the mag-
nitude obtained for G~' is about 36 times smaller
than the experimental value, and that obtained for

where the F ions are supposed to be a point charge
ee,«at a distance ~ from the Gd

' ion.
The quantities appearing in Eq. (12) were evalu-

ated, as in BO, from the experimental values of the
cubic field parameters. In the point-charge ap-
proach 8 "and 8"' defined in Eq. (1) are

&(4) ~«ene('r) ~s& &«cess('r )
9 g5 y 9 gp

C, ~ is slightly smaller than the experimental value.
In our calculation, the main contributions to G3~'

and 6, ~' come from the mixture of the P states
with the G and I terms (see Table I) induced by
the fourth- and sixth-order cubic crystal fields,
respectively, The resulting 6J' states are admixed
to the 8 ground state by the spin-orbit interaction;
when an axial field is induced by the strain, fourth-
and sixth-order terms of the orbit-lattice interac-
tion will give contributions to the spin-lattice co-
efficients, which are mainly proportional to the ad-
mixtures of the P with the C and I terms due to
the cubic field. For C, ~' the fourth- and sixth-or-
der terms of Eq. (9) contribute in the same direc-
tion, as is seen in Eq. (11)using Eq. (12). This
is not the case for G3~, where the fourth- and
sixth-order contributions have opposite signs and
are comparable in magnitude as indicated by Eqs.
(8) and (12). Then, within our rough estimation
of the orbit-lattice parameters, we can expect
agreement with the experimental data only for |"5~',
as is the case in our calculation.

We have only considered the contribution to the
spin-lattice interaction coming from the mechanism
proposed by BO for Mn '. However, as pointed
out in Sec. I, Wybourne has proposed several other
mechanisms which should be considered in an
evaluation of the spin-lattice interaction. Detrio,
in his calculation of the spin-lattice coefficients
for Gda' in CaF&, uses free-ion state vectors ob-
tained by diagonalizing simultaneously the spin-
orbit, spin-spin, spin-other-orbit, and configura-
tion interactions, and he found that the main con-
tribution to the spin-lattice interaction comes from
second-order terms in K„. The disagreement in
sign obtained by both authors is attributed to the
inadequacy of the ionic model. Probably further
improvement in the calculation of the spin-lattice
coefficients of an 8-state ion could be obtained by
considering the effect of the covalent mixing of the
4f and, more important, the 5P shells, as was done
by Watson and Freeman in the calculation of the
crystal field splittings of Tm '.

Newman 3 has advanced the hypothesis that the
dominant contribution to the zero-field-splitting
parameter of Gds' in axial symmetry comes from
charge-conjugation-invariant components of the
crystal field. At present no numerical evaluation
of this mechanism exists.

Our calculation shows that, even within the weak-
ness of the point-charge approach, the cubic-crys-
taQine field acting on the Gds ion is very important
and should be considered in obtaining the ground-
state wave functions,

We think that it would be very interesting to mea-
sure the B&"'parameters of X,& by uniaxial-stress
optical experiments; these values couM provide a
direct check of the model.
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Additional information about the effectiveness of
the BO mechanism to the spin-lattice interaction
for the f' configuration could be obtained from cal-
culations of t', »' and C5,' for Eu in CaF2, and Gd'
in CaO. These coefficients have been measured, '
and the values for Gds' in the octahedral coordina-
tion of the CaO have opposite signs from those
found for Gd in a cubic environment; this change
could be related with the different signs of the
fourth-order cubic field parameters for those co-

ordinations. Unfortunately no optical data exist
for those systems.

Oseroff and co-workers ' 4 have observed a
variation with temperature of the spin-lattice co-
efficients of Gd

' in ThO& and CeO& which cannot be
explained with the change of the elastic constants.
This variation should indicate that dynamic effects
due to the orbit-lattice coupling contribute to the
spin-lattice interaction. This effect will be dis-
cussed in a forthcoming paper.
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