
PHYSICAL REVIEW B VOLUME 4, NUMBE R 8 15 OCTOBER 1971

Effect of Anharrrlonic Libron Interactions on the Single-Libron Spectrum
of Solid H&and D~~

Cornelius F. Coll, III" and A. Brooks Harris
DePa&ment of Physics, University of Pennsylvania, Philade/Phia, Pennsylvania 19104

(Beceived 19 January 1971)

The effects of interactions between the elementary excitations (librons) in the orientationally
ordered phase of solid H2 and D2 are studied using diagrammatic perturbation theory. This
formulation leads naturally to the construction of a renormalized dynamical matrix which in-
cludes all anharmonic effects. The cubic anharmonic interactions are by far the dominant
ones, and we have calculated the energy shifts of each of the zero-wave-vector libron modes
self-consistently to lowest order in the expansion parameter 1/g, where g = 12 is the number
of nearest neighbors. We find the libron energies (in units of the electrostatic quadrupole-
quadrupole coupling constant I') to be ll. 29 (13.66), 14.07 (17.72), and 19.55 (29.04) with the
corresponding harmonic values in parentheses. In contrast to the harmonic theory, these an-
harmonic results provide a striking fit to the observed Baman spectrum of solid H2 and 02 with
reasonable values of I', e.g. , I"=0.59 cm ' for H2 and 1 =0.83 cm for D2. We develop an.
expression for the Baman intensities in terms of the single-libron spectral weight function.
The group-theoretical simplifications in our calculations are discussed in detail in the appen-
dices. The cubic anharmonicity is shown in the accompanying paper to lead to a two-libron
spectrum which explains the appearance of "extra" high-energy lines in the Baman spectrum
of solid hydrogen. These effects are shown to be included in the renormalized dynamical ma-
trix in the present approximation. Sum rules for the Baman intensities are derived and are
used to check the calculations.

I. INTRODUCTION

The analogy' between spin waves in a magnetic
system and librational waves in solid hydrogen is
a very direct and appealing one. In magnetic sys-
tems spin waves can be observed directly via in-
elastic scattering of neutrons, ' and by means of this
technique the validity of the concept of spin waves
has been demonstrated beyond any doubt. In prin-
ciple, these observations should also demonstrate
the presence of anharmonic interactions between
the elementary excitations, since these interactions
cause the energy of the elementary excitations to
have a temperature dependence. Unfortunately, in
the low-temperature regime where these anhar-
monic effects can be treated theoretically with the
most confidence, the resulting energy shifts are
too small to be easily measured in most cases. It
is probable, however, that recent experiments
on CrBr3 or on layered antiferromagnets will en-
able a convincing comparison to be made between
the theoretical and observed anharmonic tempera-
ture-dependent shifts in the spin-wave energy.
Another complementary method is to observe the
two-magnon spectrum, as can best be done in anti-
ferromagnets. 7 Here the two magnons are created
on neighboring sites and their binding energy ac-
counts for the difference between the energy of two
free spin waves and the observed peak in the two-
magnon density of states. ' These observations
directly confirm Dyson's model oi spin-wave inter-
actions as applied to antiferromagnets. As we shall

see, the situation with regard to the direct obser-
vation of anharmonic interactions between the ele-
mentary excitations is more favorable in solid hy-
drogen, and the aforementioned effects for magnetic
systems have more important analogs in solid hy-
drogen. In this paper the effects of anharmonicity
on the single-particle spectrum will be the subject
of a detailed calculation. The results are modified
slightly from those we reported previously. The
two-libron spectrum is discussed in the accompany-
ing paper. "

Before continuing the discussion of the analogy
between solid hydrogen and magnetic systems, let
us review the experimental situation. By now it
seems quite likely, both on theoretical'3 and ex-
perimental grounds, ' ' that the dominant interac-
tions between molecules are the electric quadrupole-
quadrupole (EQQ) interactions. Based on this
model, one can understand a variety of observa-
tions, such as specific heat"" "or (sp/sT)»
measurements, ' NMR splittings, 2 ~ line
shapes, ~ ~'~ ' and relaxation times. a ' ' ' Thus
in contrast to magnetic systems, the interactions
between molecules are fairly well established from
first principles. It was therefore surprising that
the observation~ of the k =0 libron spectrum should
show five lines" instead of three as one would have
expected44 '0 for the assumed configuration of
molecules on an fcc lattice with four molecules per
unit cell. " Even the fit of the lowest three of
these observed lines to the calculated single-libron
spectrum was not satisfactory. Several possible
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explanations for the observed Raman spectrum have
been advanced. For instance, Hardy gt gE.
have suggested the possible existence of a distor-
tion to a structure of lower symmetry. They also
speculated on the possible importance of libron-
phonon interactions. Perhaps the most appealing
suggestion was that by Elliott'3 and Nakamura and
Miyagi' that the "extra" two lines in the observed
spectrum were due to two-libron excitations.
Neither author was able to give a plausible mech-
anism for such a process, however. More re-
cently, Coll et aE. ' have proposed a mechanism
based on the existence of cubic anharmonicity which
permits a virtual libron to decay into two final-
state librons. This explanation was motivated by
our previous observation that the cubic libron-
libron intezp. ctions in solid hydrogen are quite
large.

Let us consider the effect of these large cubic
libron-libron interactions in terms of the analogy
between librons in solid hydrogen and spin waves
in magnetic systems. In magnetic systems cubic
magnon-magnon interactions arise mainly from
dipolar interactions, ' '" and hence they usually have
a negligible effect on the excitation spectrum. As
mentioned above, the effect of the quartic magnon-
magnon interactions, which arise from the anhar-
monicity inherent in the Heisenberg Hamiltonian,
is small at low temperatures. ' Likewise, in an
antiferromagnet, zero-point effects on the magnon-
energies due to quartic magnon-magnon interactions
are generally rather small. ~ '" In contrast, the
effects of the cubic libron-libron interactions on the
libron energies in solid hydrogen are quite large, 4

leading to energy shifts of order 20gp. Since these
interactions cause mixing of one- and two-libron
states, they permit the observation of two-libron
states in the nominally single-libron spectrum. As
reported earlier, "the large energy shifts and ex-
tra lines caused by these interactions are in strik-
ing agreement with the observed five-line Raman
spectrum and hence clarify its interpretation.

Since this paper is concerned with the calculation
of the effects of libron-libron interactions on the
single-libron energies, let us review the status of
various approximations which have been used to
treat the analogous magnetic problem. A commonly
used approach, qualitatively valid over a wide
range of temperature, is the random-phase approx-
imation (RPA). Here, since each spin is treated
as if it precesses in the average field of its neigh-
bors, one predicts that the excitation energy eg is
given as'~

~-„=e'„-((S,)/S)

when the effects of anharmonicity are included.
Here g„- is the unperturbed magnon energy for wave0 .

vector k, and (S,) is the thermodynamic average of

the s component of spin. Owing to zero-point mo-
tion we see that in an antiferromagnet the BPA
predicts that

tj/cy& 1 .
On the other hand, for the ferromagnet, Dyson's

rigorous result, obtained using diagrammatic per-
turbation theory, gives essentially'0

~.- = ~~[U(T)/Uo1 (1.3)

where U(T) is the internal energy at temperature
T and U0 is the ground-state energy. The result
in Eq. (1.3) is physically more plausible than that
of Eti. (l. 1), since the former takes better account
of the strong correlations between neighboring
spins. A clear physical explanation of these effects
is given by Keffer and Loudon. '7 These results are
al,so qualitatively correct for the antiferromagnet,
as can be seen from aguchi's formal analysis, "
providing we interpret U0 as the energy of the Neel
state, —Nz I /IS . However, it is clear from the
variational principle and also from Ref. 58 that
U(0), the true ground-state energy, is less than

Uo, so that U(0)/Uo& 1. Thus, at zero temperature
one expects

Kj/tg & 1, (1.4)

as has been found. ' Hence the RPA cannot be used
to discuss zero-point effects.

This discussion has obvious implication for solid
hydrogen. Since the libron energy gap is very
large, ' thermal effects will be small in com-
parison to zero-point effects except possibly very
near the order-disorder transition. Thus, except
near the transition, the RPA will be qualitatively
incorrect and we must rely on perturbation theory.
In fact, the RPA is even worse for solid hydrogen
than for magnetic systems, because it neglects
completely the effects of the cubic-anharmonic
terms. This same shortcoming has been noted and
overcome by Horner' in his treatment of phonons

in solid helium. His theory resembles ours in that
inclusion of cubic anharmonicity self-consistently
in second-order perturbatiori theory leads to large
single-phonon energy shifts and to the appearance
of two-phonon excitations in the nominally single-
phonon spectrum.

Higher-order effects have not been treated in
detail for the anharmonic phonon system, and the
expansion parameter has not been identified with

any certainty. For the system of interacting spin

waves governed by the Heisenberg Hamiltonian the
parameter 1/z, where z is the number of nearest
neighbors, can be identified as the expansion pa-
rameter in cases where an expansion in powers of
1/S is not suitable. ~ This scheme is clearly ad-
vantageous here, since the system of (J'=1) mole-
cules is isomorphic to a spin-1 magnetic system.
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This formulation has several advantages. First,
by identifying 1/z as an expansion parameter we
are able to estimate that correction terms beyond
second-order perturbation theory will not qualita-
tively affect our results. Second, it enables us to
give many analytic results. Finally, as shown else-
where~ for magnetic systems, this formulation
seems to eliminate the kinematic effects of those
multiexcitation boson states which have no physical
reality.

Briefly, this paper is organized as follows. In
Sec. II we discuss the model we use in which the
molecules are treated as rigid rotators on a rigid
lattice. The Hamiltonian describing molecular
rotations is expressed in terms of boson operators
so that conventional many-body techniques can be
used. We discuss the approximation scheme upon
which our calculations are based and argue that the
approximation of low libron density leads naturally
to the I/z expansion. In Sec. III we introduce the
Green's-function formalism. In the present calcu-
lation the normal-mode structure necessitates the
use of matrix Green's functions. We show that the
quasiparticle energies may be determined from a
dynamical matrix which incorporates anharmonic
effects. In Sec. IV we present results within
various approximations for the average libron en-
ergy, the libron energies at zero wave vector, and
the Raman intensities at zero wave vector. In Sec.
V we compare the results of our calculations with
the Raman data ' for the zero-wave-vector modes
and with the thermodynamic data30'~3 for the average
libron energy gap. In conclusion the various ex-
perimental determinations of the EQQ coupling con-
stant and proposed topics for future study are dis-
cussed.

Appendix A deals with the diagonalization of the
dynamical matrix. Here group-theoretical consid-
erations are used to reduce the anharmonic dynam™
ical matrix to block-diagonal form for zero wave
vector. In Appendix B the Raman intensities of the
normal modes are calculated by expressing them
in terms of the spectral weight functions of the
Green's functions evaluated in Sec. III. The sym-
metry properties of the Green's functions are dis-
cussed in Appendix C and sum rules for the Raman
intensity are obtained in Appendix D.

II. DESCRIPTION OF MODEL AND APPROXIMATION
SCHEME

A. Description of Model

Solid hydrogen is a molecular crystal in which the
molecules interact mainly via weak long-range
forces such as van der Waals interactions. Many
of the bulk properties, such as the compressibil-
ity, 6' appear to be insensitive to the orientational
configuration of the molecules. This fact is partly
due to the relative weakness of the orientational in-

teractions and partly due to the fact that such an-
isotropic interactions tend to cancel in the highly
symmetric crystalline environment. For these
reasons it seems clear that it is possible to treat
phonons and molecular rotations as separate entities.
The interactions between phonons and molecular
rotations have been shown~ ~ to lead to renormal-
izations of the orientational interactions. Although
these renormalizations change the strength of the
EQQ interactions, they do not alter their angular
dependence. 64 As a result, the EQQ coupling pa-
rameter I"0 [see Eq. (2. 5) below] should be replaced
by an effective value I' which is about 15-20'fo
smaller than l"0. ~ ~ Apart from this renormaliza-
tion phonons will be completely ignored, and we
shall henceforth treat the molecules as if they weT0
on a rigid lattice. .: =,'O'Lg ''I'U»;. '

As mentioned above, we consider it e%$5i'Ished
that the orientational coupling between hydrogen
molecules is primarily of EQQ character. We shall
neglect the much smaller valence and dispersion
terms in the interaction between molecules. " These
EQQ interactions are much smaller than the energy
differences between adjacent kinetic-energy levels
of the freely rotating hydrogen molecule. As a re-
sult, the hydrogen molecule is a quantum rotator
in the sense that the rotational angular momentum

J, of the ith molecule is essentially a good quantum
number.

Let us consider the possible values of the J,'s.
As is well known, different parity rotational wave
functions must be combined with different parity
nuclear spin functions. Thus even and odd J mole-
cules are essentially different species. Although
there is a gradual conversion towards the lower
energy, i. e. , J=O, species, we may consider the
solid as being a random alloy with a fixed propor-
tion of even and odd J molecules. ~ Since we are
only interested in low temperatures, all even J
molecules have J= 0 and all odd J molecules have
J'=1. Such an alloy of (J=1) and (J=O) molecules
is similar to a magnetic alloy consisting of spin-I
and spin-zero ions. ' Since the problem of excita-
tions in such an alloy is not completely resolved,
we shall confine our attention to the pure (J= 1)
solid, and make phenomenological corrections when
applying our results to nearly pure (J'= 1) alloys.

In this paper we shall consider only the orienta-
tionally ordered phase. According to x-ray diffrac-
tion88 and neutron-scattering experiments67 the
crystal structure is face-centered cubic (fcc). The
probable ground-state orientations of molecules on
an fcc lattice interacting by means of EQQ forces
were obtained classically by Nagai and Nakamura, '
who found a four sublattice structure. On different
sublattices the quadrupoles are aligned along dif-
ferent (111)directions relative to the cubic axes.
In a quantum-mechanical treatment" the equilibrium
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orientation of a quadrupole becomes the quantiza-
tion axis relative to which the molecule in question
has J, = 0. Thus solid hydrogen in the orientational-
ly ordered phase can be described as a simple-
cubic lattice with a basis of four molecules per unit
cell, whose space group is Pa3(T„).

B. Orientational Hamiltonian

The orientational Hamiltonian is of the form

(2. 1)

where 0, specifies the orientation of the ith mole-
cule relative to the crystal axis. For EQQ inter-
actions the Hamiltonian V,z may be written as'

6 2 2

&;q = ~. tr(70II)'
(2 ~ 2 C(224; M, N)

kf M, N

+ +NN(X1) DN'N'(Xf) r2 (~f) 2 (~f) 4 ( v)
(2. 4)

where we have used the conventional notation I;z
for the EQQ coupling parameter:

6s2 q2 ft 5

25R Rij fj
(2. 5)

r2" (u), ) = AN O", (J;), (2. 6)

where Ro is the distance between nearest neighbors.
As mentioned above, due to phonon renormaliza-
tion~ 64 we should replace I'0 by an effective value
r.

Within the manifold of constant J', we may, by
virtue of the Wigner-Eckart theorem, replace the
spherical harmonic rz" (((),) by a tensor operator
which is a function of J,:

&& r2N(6, ) r2"(fl, ) r4N'N(fl„)*, (2. 2)

where eQ is the molecular quadrupole moment~ and
Q,&

denotes the orientation of the vector connecting
the ith and jth molecules relative to the crystal
axes. We use the phase convention of Bose for the
spherical harmonics F&" and the Clebsch-Gordan
coefficients C(J',J2J2;M, M').

Following Raich and Etters" we write the EQQ
Hamiltonian so that the orientation of each molecule
is specified relative to its equilibrium orientation.
This is achieved by writing in Eq. (2. 2)

with

and

(~)1/2

0&-J« —»
o", =+ (J„J„+J„J„)I(2)'",

—a&A y

(2. Va)

(2. vb)

(2. vc)

(2. aa)

(2. ab)

(2. Sc)

x = Z ~ff v(vow)'~2 r
M, kf', N, N'

C(224;N, N')

TABLE I. Position and equilibrium orientation of sites.

Sublattice"

&a(O, O, O)

ya(1, 1,0)
kg(0, 1, 1)
ga(1, 0, 1)

Direction of
g axis

[111]
[ill]
[1T1]
[111]

Direction of
g axis

[112]
tT12]
[112]
[112]

~Here n labels the sublattice.
"Here a=v 2Rp where Rp is the nearest-neighbor

separation.

r2 +1) ~N NN(Xj) r2 (+/) f (2. 3)

where D„'2„'(X,) is a rotation matrix, X, = (n„p„y,)
are the Euler angles specifying the orientation
of the local (equilibrium) axes relative to the cubic-
crystal axes, and the orientation of the ith mole-
cule relative to its local axes is denoted by +,
—= (e„p,). The local axes, which are identical for
all sites on the same simple-cubic sublattice, are
given in Table I along with the positions of the sub-
lattices relative to the origin of the unit cell. Thus
the Hamiltonian is written in terms of the spherical
harmonics referred to the local axes as

where

J„=J„,~aJ (2. Bd)

Within the subspace of J; = 1 the EQQ Hamiltonian
becomes

with

2j,j M, N
(2. 9)

t;,"~'"=~2N(702)1~2 r q AN AN Z C(224;I', N')
M', N'

r4" '" (flu)*D"' (Xf)*DN" (XI)*

The values of the f's for a particular nearest-
neighboring pair are given in the accompanying
paper. " Values of these constants for other pairs
of nearest neighbors can be found by applying the
symmetry operators, as is discussed in Appendix
8 of Ref. 49. The notation in Eqs. (2. 7)-(2. 10) is
somewhat different from that used previous-
ly. "'42' 2'42 Specifically, the f,z" are related to the

y,"g" of the references cited by

g" "=2y" "g(~)g(N), (2. 11)

where g(+ 2) = 2, g(z 1)= + W2, and g(0) = 3. The
motivation for introducing this notation is that we

,thereby avoid, insofar as is possible, the appear-
ance of arbitrary numerical coefficients in our
equations.
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In the case of the antiferromagnet the classical
ground state is related to the quantum-mechanical
Neel state in a particularly simple way. Likewise,
here the Noel state is one in which J, = 0 relative
to the local axes. Thus, in order to describe
deviations from the Noel state, we expand the
Hamiltonian about J„=0. The correct low-temper-
ature behavior for magnetic systems has been
shown to be most readily formulated using diagram-
matic perturbation theory. For such calculations,
the simplest formalism employing boson operators
is the Dyson-Maleev transformation. '0'~0 Here we
use a similar transformation from angular-momen-
tum operators to boson operators c&, and c, :

Oi = (Ci+Ci++ Ci Ci ) —
g

0 I t t 2 (2. 12a)

0, = [c,.(1 —ci,c„—c, c, ) —(1 —c„c„—c, c, )c, ],
(2. 12b)

o-i (pl)t

2=Of = C)+C

0-2 (02) i

and we shall set

c]g =c], , M=1

M= —1.

(2. 12c)

(2. 12d)

(2. 12e)

(2. 12f)

(2. 12g)

We interpret c,„as the operators which create ex-
cited states for which J„=M when applied to mole-
cules in the ground state. As we shall see, this
notation is convenient in that it allows us to display
explicitly the symmetry between M and —M. The
transformation given in Eq. (2. 12) correctly repro
duces the matrix elements of the angular-momentum
operators within the manifold of three states per
molecule which have physical significance. In addi-
tion, the factors in parentheses in Eq. (2. 12b)
gnsure that the angular-momentum operators have
no matrix elements connecting the physical and un-
physical states. In this respect, the transforma-
tion given by Nakamura and Miyagis in their Eq.
(2. 17) appears to be less suitable. Previously42
we had used a less symmetrical, but simpler,
transformation which led to a formally non-Her-
mitian Hamiltonian. Although that formulation is
economical for a low-order discussion of the static
properties, it leads to a loss of symmetry in the
anharmonic dynamical matrix, which we avoid for
convenience sake. Although the equivalence of the
different transformations is not obvious, it does
seem to hold for magnetic systems;7'

If we introduce the above expressions into Eq.
(2. 9), we may classify the terms in the Hamiltonian
according to the number of bosons operators in-
volved as

(2.13)X= Zo+X2+ V„,
3

where Zo is the energy of the Neel state, X2 is the
Hamiltonian quadratic in the boson operators, and

V„ is the anharmonic term involving n boson oper-
ators. The quadratic Hamiltonian is given by

2%I p, o t Y.' u, -x t
Xg=. ——~ t if CiNCiN —~ fi j CiNCfN

N jtI, N

t(t NjN t t tNjN4 ) .::: - — (2' 14)
f, f
N, N

Here and below a prime on the summatiori indicates
that the magnetic quantum number (e.g. , M or hf)

is limited to the values + 1.
This Hamiltonian is identical to that of Raich and

Etters ~ although the interpretation of the operators
c&, and c&, for which they use the notation a, and
b„respectively, is different, in that in their for-
malism these operators satisfy boson commutation
relations only at zero temperature. The excita-
tion spectrum of the quadratic Hamiltonian was ob-
tained by Hatch and Etters 2 and others, 4'4~ who

considered only interactions between nearest-neigh-
boring molecules. As Berlinsky et a/. have
pointed out, further-neighbor interactions have an
important effect on the libron spectrum obtained
from the quadratic Hamiltonian of Eq. (2. 14). As
noted in Ref. 48, the main effect of further-neighbor
interactions is contained in f,&, where they lead
to a renormalization of the average libron energy
[see Eq. (2. 19a) below]. The effect of further-
neighbor interactions via the hopping terms involv-
ing f,"&'" with M + M'340 is much less significant.
In the context of perturbation theory such effects
are reflected in the lattice sums of the form
Zf IL,"g I [e.g. , see Eq. (4. 3) below], where they
lead to negligible corrections, since f,z" -R&~.
Similar reasoning allows us to restrict the anhar-
monic terms to nearest-neighbor interactions.

Within the approximation we shall use, V, and Ve
do not contribute, so they will not be considered
explicitly. The expressions for V3 and V4 are

r x-e', x t N-N', N2N:V2= Z (/if ' CINCiNiCfN+fif '
CINE CINCfN) y

Jfr, N', N (2. 15)

t r N, -N t N, -Ng~4= ~ 1 if CiNCfNCiN' CfN'+ ~ (~ij CiNCjN' CfN' CfN+ tij ClNCfÃCfN' CfN')
2

M, N'
N, N'
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fj-MO+ t T t Na Ng~bi,~f cizcgNcyz cyan + i~j c~zcgzicyz, coax)f, j (2. is)

We shall study the effects of these anharmonic
terms using perturbation theory.

C. 1/z Approximation Scheme

The deviation of the true ground state from the
molecular field or Neel ground state can be mea-
sured by p(0), the density of zero-point deviations.
Here we define

P(T) = (4No) ' Z'(c,'jrc;„)r,
I

' w'fiere No is the number of unit cells and the bracket
( )r indicates a thermodynamic average at temper-
ature T. Since the orientational system is nearly
in the Neel state as long as the temperature is not
too high, we expect that thermodynamic quantities
can be expanded in powers of the deviations from
the Neel state. In other words, we are treating a
dilute gas of librons whose properties can be ex-
panded in powers of their density p(T). For such a
treatment the diagrammatic formulation of pertur-
bation theory developed by Bloch and deDominicis'~' "
is convenient. From their formulation it is clear
that for each hole line in a diagram there corre-
sponds a Bose factor, which is given approximately
by

&p =P(T) -P(o) =le""'—1~

If the sum is restricted to nearest neighbors, one
obtains E0= 197. Taking account of further-neigh-
bor interactions, Berlinsky et al. 4 found

Zo= 21.2r (2. 19b)

III. CALCULATION

A Formahsm

We consider Eo to be of order z [O(z)] because z
nearest neighbors contribute to this field. The per-
turbation then consists of those terms, which we
denote by V2, omitted from the harmonic Hamil-
tonian of Eq. (2. 14) and the anharmonic terms Va,

V4, etc. Terms in perturbation theory are clas-
sified according to their order in 1/z by the number
of independent lattice sums involved: Sums over
n independent lattice sites are considered to be of
order z". The identification of 1/z as an expansion
parameter enables us to estimate the effects of
higher-order terms in perturbation theory. In addi-
tion, use of such a scheme probably preserves the
kinematic properties of angular-momentum opera-
tors. 6 This view is supported by the agreement
between the average libron energy as calculated in
this paper using boson operators and that obtained
in the accompanying paper' using angular-momen-
tum operators.

0 = Eo ~ cfzckz q

~l
j, N

(2. iS)

where the molecular field energy E0 is given as
2)~ 0, 080 — 3 /~g /gal ~ (2. i9a)

where E~ is the average libron energy. Thus the
low-density (of librons) expansion naturally in-
volves the two parameters p(0) and np. Since the
libron energy gap is rather large (EL, -10 cm '), ef-
fects involving the thermal density of librons, Ap,
will be quite small compared to the zero-tempera-
ture effects, except perhaps near the orientational
ordering transition temperature. Thus, to examine
low-temperature effects, we consider only those
diagrams with no hole lines.

In order to classify in a consistent way diagrams
with no hole lines, we note that the zero-point den-
sity of excitations, p(0), is of order 1/z, where z
is the number of nearest neighbors. ~ This result
is plausible, since it is known that the molecular
field becomes exact in the limit of long-range
forces. The explicit appearance of 1/z as an ex-
pansion parameter is achieved by taking the unper-
turbed Hamiltonian to consist of the molecular field
terms, i. e. , those terms diagonal in the number
of excitations. We write these terms as

G»(t, m; q, N; t) = —t &c,„(t)c,„(0)),,
G„(i, Af; j, N; t) = —i(c,'„(t)c,'„(0)), ,

Gaa(i, LVi;j, N; t) = —i(c,„(t)c&„(0))r,

and their temporal Fourier coefficients are

G„.(iM;jN; i3,)= J G,z(iM;jN; t)e " dt,

(S. 1c)

(3. id)

(s. 2)
where h „= iver/t3, with r an even integer. 7' These
Green's functions do not have a simple structure,
because they do not refer to individual normal
modes. The unperturbed normal modes are ob-
tained by diagonalizing the quadratic Hamiltonian
3CO given in E|l. (2. 14). These unperturbed normal
modes are created by linear combinations of the
ct~ and c,~, and it can be shown that the normal-
mode frequencies and creation operators are found

by diagonalizing an 8 & 8 dynamical matrix. 44 4~ We
shall eventually construct a renormalized dynam-

In this subsection we shall introduce the temper-
ature-dependent Green's functions'4 for the boson
operators. The imaginary-time Green's functions
G„,(i, M;j, N; t) are defined for times in the interval
(0, —ip) as

G„(t, ~;j, N; t) = —i(c„(t)c',„(O)), ,
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ical matrix which includes anharmonic effects. ~6

In this way we avoid many of the algebraic com-
plexities caused by the normal-mode diagonaliza-
tion. To treat this normal-mode structure we have
introduced matrix Green's functions analogous to
those of the Nambu formalism of superconduc-
tivity. In matrix notation the self-energy M is

defined via a Dyson equation as

G=G +G MG, (3.3)

where Go is the Green's function for the molecular
field Hamiltonian of Eq. (2. 18). ExPlicitly Eq.
(S.3) reads

G,~(i, M;j, N; 1„)=C,~(f, M;j, N; 5„)+ Z Z G~(i, Mi, M;i)
gl ]4 gt yt )J Pfl

X M.. .(i', M'; j', N'; 1 „)G,. (j', N'; j,N; 1 „) . (S.4)

K~-Zoo+ Vp, (S.6)

and we must calculate the self-energy from all
skeleton diagrams'2 "which can be formed using
the interaction V3, which is represented by vertices
of the type shown in Fig. 1. It is clear that for
such a quadratic interaction first-order perturba-
tion theory yields an exact evaluation of the self-
energy. Thus we have

Thus, in Eq. (3.3) G, G~, and M are matrices whose
rows and columns are labeled by the trio of indices
(o, i, M), where the Greek index assumes the values
1 and 2, the small Roman index labels the mole-
cule, and the capital Roman index is the magnetic
quantum number + 1. We shall use a matrix nota-
tion in which missing indices label rows and col-
umns. Thus, for example, G,~ is a matrix in the
labels (i, M; j, N) and G„.(M;N) is a matrix inthe
labels (i, j) The.symmetry properties of G and M

are discussed in detail in Appendix C.
The remainder of this subsection is devoted to

showing that the usual harmonic results are ob-
tained when the full quadratic Hamiltonian X~ is
treated. In Sec. III B we show that more generally
the anharmonic normal-mode frequencies are ob-
tained from a dynamical matrix in which the har-
monic force constants are generalized to include
anharmonic effects. ~6

Let us discuss the normal-mode problem in this
formalism when only the quadratic terms in X~ are
considered. We write

Detl (GO) '- Ml =0 (S.8)

The formalism of Sec. IIIA provides a systematic
framework within which anharmonic effects can be
discussed. To do this it is clear that we should
evaluate contributions to the self-energy from the
higher-order anharmonic interactions V3, V„etc.
As we have already noted, this program leads to an
expansion in powers of I/z. Accordingly, we shall
evaluate the self-energy to one order higher in 1jr
than harmonic theory, Eqs. (3. 6) and (3.7).

In conformity with the discussion following Eq.
(2. 19), we consider the matrix elements of the self-
energy in Eqs. (3.6) and (S.7) to be O(1), since
they do not involve any sums over nearest neighbors
or any energy denominators. We note that the
diagonal matrix elements in Eq. (S.8) are of order
s, since they involve the molecular field energy
Eo. Accordingly, we shall evaluate the diagonal
matrix elements, e.g. , M„, (i, M; i, M'; l ), etc. to

These equations are identical to those ]viz. , Eq.
(22) of Ref. 49] for the harmonic normal-mode fre-
quencies. Thus by taking account of V~ exactly,
we reproduce the previous results for the unper-
turbed libron spectrum. 4' " The details of the
treatment of the normal-mode problem within the
present formalism are given in Appendix A.

B. Anharmonic Dynamical Matrix

Mgg(i, M; j, N; I) = —fqg

M„(i, M; j, N; t)=&,";",
(3. 6a)

(3.6b)

as can be seen from Eq. (2. 14). From the general
symmetry relations Eqs. (C6) and (Cll) we have

Ms((i, M; j,¹,i) = M)3(f, M; j, N; —I*)*, (3.7a)

Mmg(i, M;j, N; $)=M~g(i, M; j,¹,—1+)* . (3.7b)

It is easily seen from Eq. (3.3) that this form of
the self-energy leads to a Green's function with
poles. These poles occur at the solutions of

FIG. 1. Diagrammatic representation of the quadratic
perturbations V2. Exact treatment of these interactions
yields the usual linear theory of librons.
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a) b)
4

I

r
b) FIG. 3. Diagrams which contribute to M~2(i; j).

. k

c)

FIG. 2. Diagrams which contribute to Mgg(i; j). To
reduce the number of diagrams we have not explicitly
labeled the lines according to whether they represent
M=+1 or M=-1 propagators. There are no momentum
labels on the propagators, because the unperturbed
Hamiltonian describes localized excitations.

where .'&0 is the single-libron energy for which we
can use either E0 or E~ [see Eq. (3. 21) below].
We note that E0= —-'p~ g,p and since E0=0,0, we
may write Eq. (3.9) as

C=-(3/4) -'~, (lq,", I' lq'-'I') . (3.10)

Written in this form, it is clear that C is of the
same order as the terms from the other diagrams
of Fig. 2. Further insight into this grouping of
diagrams according to powers of 1/z is obtained by
considering the diagrams in Fig. 4, which we have
neglected as being of higher order in this param-
eter. For instance, in Fig. 4(a) we show a typical

order 1, and the off-diagonal matrix elements
M„.(i, M;j, M'; I), i+j, etc. , to order 1/z. In
this way we shall evaluate all corrections to the
harmonic dynamical matrix which are of relative
order 1/z.

In Pigs. 2 and 3 we show the diagrams which con-
tribute to M«('S, ) and M,0(b') in the desired order
in 1/z. Roughly speaking each energy denominator
is of order 1/s and each interaction is of order
unity. An exception to this statement is provided
by the diagram in Fig. 2(e). Here we have two en-
ergy denominators, but also two independent lattice
sums, so that the contribution is of order unity.

Specifically, the contribution C to M«(i, M; i, M; 5)
for the diagram of Fig. 2(e) is

C 1 0 0 Qt )0, 0~ rJN', N ~0 (3.9)
f, A

N', N

contribution involving V8. Here we clearly have
two energy denominators and one lattice sum, hence
obtaining a result of order 1/z, which is one order
higher in 1/z than is obtained from the diagrams
of Figs. 2(a)-2(e). We have also not kept the dia-
gram of Fig. 4(b) analogous to that of Fig. 2(e) for
M«(i, j; 1 „). This diagram has two energy denom-
inators and a lattice sum over R,. As a result, one
might be tempted to classify it as being of order
1/8 and hence comparable to that in Fig. 2(e), which
we have kept. However, note that in Fig. 4(b) R„
must be a nearest neighbor of both R, and R~ (re-
member that we treat only the anharmonic effects
of nearest-neighbor interactions), whereas in Fig.
2(e) the sum over R„ is over all nearest neighbors
of 8&. The former are clearly less numerous than
the latter in the ratio 4:12. Form this we conclude
that the expansion parameter is not simply 1/z,
but is really related to the number of successively
longer random walks on the lattice.

By starting from the molecular field Hamiltonian

b)

FIG. 4. Diagrams which are neglected as being of
higher order in 1/z than those of Fig. 2. Diagram (a)
has one more energy denominators andhence gives a con-
tribution smaller by order 1/z than diagram (e) of Fig. 2.
Diagram (b) has two energy denominators and one lattice
sum. The lattice sum is not proportional to z since the
site k must be a nearest neighbor of both j and j. Hence
this term is of higher order in 1/z than that of diagram
(e) of Fig. 2.
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we avoid the necessity of expressing the anharmonic
interactions in terms of the normal modes. In our
formalism the diagonalization can be performed
after the perturbation-theory evaluation of the
self-energy. For this reason it is perhaps phys-
ically most revealing to present our results in the

form of an effective quadratic Hamiltonian X„,
which is an energy-dependent Hamiltonian defined
by the requirement that it lead to the correct self-
energy. (This formulation is not rigorous. A
more precise discussion is given in Appendix A. )
Thus we write

SC ff ZQ'2 c$'Jgc)Jg + Z Mgg(i, M; j, N)c, „c»+— 5 [Mqt(i, M; j, N)c, „c~'„™~t(i,M; j, N)*c,„c»]
$, N &tNt jtN 2. . .it MtgtN

(S. 11)

and we set

M=M +5M, (3.12)

where M is the value of the self-energy matrix in
the harmonic approximation and 5 M includes the
effects of anharmonicity. As our arguments imply,

I

Mq~(i, M; j, N)= —th)

Mqt(i, M; j, N) = (fJ

(3.13a)

(s. 13 )

From the diagrams of Figs. 2 and 3 we obtain

6 M is of relative order 1/z compared to Mo. Thus

(1 1 )-g Q gg'-N, N'4 tg', N'-N (S.14a)

+ ( 21 )-1 5 gN M', N N'gN', -N'-

O' t N'

(3.14b)
Here 5 0 is the average single-libron energy. It
can either be set equal to Eo or, preferably, be
determined self-consistently. Comparison of Eqs.
(S.13) and (S.14) shows that the perturbative terms
are indeed corrections which are one order higher
in the parameter 1/z.

The remainder of the calculation is now formally
identical to the harmonic theory, except that the
harmonic dynamical matrix (viz. , M ) has been re-
placed by a dynamical matrix (viz. , M) which in-
cludes anharmonic effects. Since the calculations
are algebraically complicated, we shall present
the details in Appendix A and shall outline the pro-
cedure in more general terms here. These anhar-
monic libron energies are found as the roots of
Eq. (S.8). Since crystal momentum is conserved,
one introduces spatial Fourier transforms in which
the position label is replaced by a momentum and
a sublattice label. Then G~ Ga, and M are (16&&16)
momentum-dependent matrices in the subscripts
(n, o; M), where n labels the sublattice and o and
M are as above. The first part of Appendix A [see
Eqs. (A7) and (A8)] is devoted to relating M in this

representation to the results of this section, e.g. ,
Eq. (S.14). The harmonic Green's functions ob-
tained when M is given by Eqs. (3.6) and (S.7) are
constructed [see Eq. (A29)] and yield the usual
harmonic libron spectrum. In the general anhar-
monic case, the secular equation (S.8) is studied
in the momentum representation and it is shown
that the anharmonic libron energies may be obtained
from an (8&&8) matrix as in Eq. (A24). Explicit
anharmonic calculations are confined to the case
of zero wave vector when a group-theoretical re-
duction of the dynamical matrix into one- and two-
dimensional diagonal blocks corresponding to the
irreducible representations F~ and T~, respective-
ly, is performed. The secular equation for the
doubly degenerate E, mode within the approximation
of Eq. (3. 14) is given explicitly in Eq. (A47). The
secular equation for the two triply degenerate T,
modes may be obtained from Eq. (A40) in terms of
(2x 2) matrices which are defined explicitly in Eqs.
(A41) and (A46). Calculations of the anharmonic
libron frequencies throughout the Brillouin zone
are in progress and will be reported later.

IV. RESULTS

A. Average Libron Energy

In order to get a feeling for the size of the anhar-
monicity we first study the libron energy averaged
over all modes and over all momenta in the Bril-
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rz"&=-(21,) ' 8'lM»(~, M;j, ~)l' (4. Sa)

(4. Sb)

The superscripts on the other terms in Eq. (4.2)
indicate the V, involved. Thus AE(3 " is the con-
tribution from the diagram of Fig. 2(a) involving
two VI (cubic) interactions:

~&8-I&
( )-1 P l

— ',
l&&

~, g/, » (4 Sc)

The other terms in Eq. (4. 2) come from the dia-
grams af Figs. 2(c), 2(d), 2(e), and 2(b), re-
spectively, and are

gg&'-" = gg"-" = 3
gj

0
N, N

(4. sd)

louin zone which we denote by E~. In practice the
easiest way to evaluate Z~ is to treat Eq. (3. 11)
using perturbation theory, taking the molecular
field term Eg', &ic,&Ic,„to be the unperturbed
Hamiltonian. Then it follows that

8/ = zo+ 6M&$(i, M; i, M) —(2 1 0)
~ 2/"

l M,a(ig M; j, ~)
l

~

g, N

(4. la)

=ED+3M&i(i M; i; M) -(2ao) ~'IMO&3(i M;j,j,N

(4. Ib)
In going from Eq. (4. la) to (4. lb) we have dropped
the terms in (5M&q) as being of higher order in I/z.
We write this as~

8- =Z + as(2'+ ~Z(3-3)+ ~Z"-"

+ gE(4-2& + g@(2-4-2& + gg(4-4& (4 2)

where bE(3) represents the effect of the harmonic
terms Va on the average libron energy and is given
as

energy in which either or both $ and $ p are set
equal to E~ rather than to El, . Note that in all the
approximations studied, the cubic terms are by far
the most important. Thus, completely neglecting
the other terms gives very good results, as we
have shown in the table.

8. Libron Energies at k=0

We have evaluated the libron energies at zero
wave vector. For the E, mode the anharmonic
secular equation is given explictly by Eq. (A47).
For the T, modes the secular equation was con-
structed and solved numerically in accordance with
the formulation in Appendix A. The results of these
calculations for zero wave vector are compared
with the results of harmonic theory in Table III.
A striking feature of these results is that the
highest-energy mode is strongly shifted to lower
energy by the anharmonic perturbation. This re-
sult is explained by the familiar "repulsion of en-
ergy levels" in perturbation theory. The highest-
energy libron mode is the one closest to the two-
libron modes (to which the large cubic anhar-
monicity couples) and hence has the smallest ener-
gy denominator. In addition the matrix element
coupling this mode to the two-libron modes is also
larger than that for the other modes. These re-
sults differ slightly from those quoted previously"
where we used the value of 50 obtained using Ray-
leigh-Schrodinger perturbation theory, $ 0

= 1VI;
rather than the fully self-consistent libron energy,
3 p

= 16 13I" as we do here. For comparison, we
also include in Table III results obtained using
Rayleigh-Schrodinger and Brillouin-Wigner per-
turbation theory.

We conclude this subsection by making some
comments on the form of our results. We note
that the energy denominators in Eq. (3.14) involve
the molecular field energy, since )()=Eo. We could

gE&2 4-2& =
y (4. Se) TABLE II. Contributions to the average libron energy

E~ within different approximations.

~z""-.'(si, —i) '~ lg""I' (4. Sf)

The results of Eq. (4. 3) differ from those given
previously in Eq. (68) of Ref. 49 where we incor-
rectly did not include the term of Eq. (4. Se) from
Fig. 2(e). In addition, we previously did not in-
clude further-neighbor interactions in E0. In
Table II we give the numerical evaluation of these
terms within various approximations. In the best
approximation, both 3 and h, ~ are evaluated self-
consistently, i.e. , we set i = io=Z~, which yields

Z, =16.13r . (4.4)

Other approximations are generated by using a self-

Term

~(2)

~(3 3)

~(4 2)

~(2 4)

~(2-4 2)

~(4-4)

Self-
consis tent
8- hp-Ez.
—0.37b
—5.26

1.11
1.11

-0.55
—l.11

Rayleigh-
Schr5dinger

5= bp=Ep

-0.28b
—4.00

0.84
0.84

-0.42
—0.84

B�rilloui-
nWigne

$= EI )p=Ep

0.28"
—3.47

0.84
0.84

-0.42
—0.78

E 16.. 13 17.34 17.93
Ep+Lm(~3) 15 94 17 20 17.73

'The results of Ref. 49 were evaluated for $=&p=19I',
as is true for nearest-neighbor interactions. Here we
include further-neighbor interactions, so that Ep= 21 2I'.

"All energies are given as multiples of I'.
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TABLE III. Libron energies at zero wave vector.

Approximation

Harmonic
nearest neighbor~

10.38" 14.32" 26.19"

Harmonic
all neighbor~

Anharmonic
Rayleigh-Schrodinger~
$=g„p =Ep = 21,.2F

Anharmonic
Brillouin-Wigner
jp=Ep= 21.21

Anharmonic
self-consistent
$p = 16.13I'p

13.66

11.62

12.10

11.29

17.72

14.97

15.45

14.07

29.04

23.04

22. 75

19.55

~See Refs. 45-47.
"All energies are given as multiples of 1.
cSee Befs. 48-50.
"In other words, the libron energies are determined as

the eigenvalues of the dynamical matrix evaluated at
$

—gp

(&/E, )'=1.0 —(0.9935)'«1, (4. s)

which gives an alternative justification of our re-
sults. In other words, the effects of finite band-
width are higher order in 1/z.

In view of the large shifts in the single-libron en-
ergies one might wonder if higher-order effects
are important. While we do not pretend to be able
to answer this question definitively, it seems to us
that such effects are less important, although they
may not be negligible. %'e base this conclusion
on the identification of 1/z as the expansion pa-
rameter. A more conservative estimate of the ac-
curacy of our calculations is obtained by assuming

arrive at such a result by alternative reasoning.
Suppose we expressed the interaction in terms of
normal modes. We would then obtain results sim-
ilar to those in Eq. (3.14), except that the energy
denominator would involve momentum-dependent
libron energies. Insofar as these energy denom-
inators can be replaced by Eo, the sums over in-
termediate states can be done by closure and our
results will follow. It is easily seen that such an
approximation will be valid providing the spread in
libron energies, or bandwidth, is small compared
to their average energy. A measure of the band-
width is given by B, where

2a' = (sar, )-' ~& [~,(k)]'- (sx,)-' Z ~, (k)
Qyf u, f

(4. 5)
where &u~(k) is the libron energy for wave vector
k and mode index jtL, p, =1, . . . , 8. From our
previous work4~ we have

that since we find a 30/o shift in the highest-energy
libron mode in lowest-order perturbation theory,
a second-order calculation would give fractional
shifts of order (0.3)~=(0.1). This argument would
suggest that the two lower energies are accurate
to within 5% and the upper one to within 10/p.

(4. V)

A spectral resolution yields

A~ A2
h-E j —E2

(4. s)

TABLE IV. Intensities calculated within various
approximations.

Approximation

Harmonic
nearest neighbors"

Harmonic
all neighbors~

Anharmonic

Rayleigh-Schrodinger

Anharmonic
Brillouin-Wigner

Anharmonic
self-consistent

4.88c

4.14

4.32

4.15

3.98

T(-) a

1 46c

1.31

1.10

l.05

0.84

T(y) g

0 17c

0.17

0.31

0.27

0.32

Here T~~& (T(~&) is the lower- . gher-) energy T ~
mode.

'See Ref. 49.
'Here we quote 8'/Cp as calculated from Eq. (819).
See Befs. 49 and 50.

C Raman Intensities

We may evaluate the Raman intensities within
this formalism. To do this it is necessary to re-
late the Raman intensities to a correlation func-
tion ' in much the same way as has been done for
the cross section for inelastic scattering of neu-
trons by crystals. 2 In Appendix 8 w e thereby
express the Raman intensities in terms of thy
Green's functions. In this way we have included
anharmonic effects in the calculations of the Raman
intensities. The results of these calculations are
shown in Table IV. They differ from those given
in Ref. 11, where the intensities were calculated
using the harmonic formulas, but inserting the an-
harmonic frequencies. That type of approximation
does not reflect strongly enough the alteration in
intensity which inevitably accompanies perturba-
tive frequency shifts. 83

It should be noted that such a calculation gives
nonvanishing intensity from two-libron processes.
These resonances are reflected by the appearance
of poles in the self-energy for hen = 2EO. To sim-
plify the discussion let us consider a single-particle
Green's function of the form
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with e=1, E,=Ez, Az= I V I /Ez, and Ez=2Ez, as-
suming I V I /Ez «1. The interpretation of this re-
sult is clear: In addition to single-particle excita-
tions, there are weaker two-particle excitations.
Thus the poles in the self-energy at 2EQ reQect the
existence of the two-libron states whose energies
are calculated in the accompanying paper. A
similar argument shows that there will be reso-
nances involving three or more librons at even
higher overtones, but these will be broader and
weaker in intensity.

Interesting information about the two-libron modes
can also be obtained through the use of sum rules
which the correlation functions must satisfy. In
this respect the theory of libron waves is formally
identical to that of phonons. It is clear from the
work in Appendix 8 [see Eqs. (85)-(87)] that the
frequency dependence of the Raman intensity, W(&u),

is given by the spectral weights of a linear com-
bination of Green's functions. Let us denote this
linear combination of Green's functions by H(l).
Thus we have

W(e) = 2Cz(1 —e ") (2vi) [H(&u —i0') —H(ur + i0')],
(4. 9)

where CQ is a constant. Then, by dispersion theory
we may write

citations of each symmetry. Expressions for the
coefficients M1 and M2 are derived in Appendix 0 in
terms of our approximate self-energies. In Table
V we compare the evaluation of M, as calculated in
Appendix B for the E, and T modes with the cor-
responding values of the frequency moments taken
over the calculated single-libron spectrum. As
we have mentioned, the two results should agree
exactly in the harmonic approximation. In the an-
harmonic calculations we cannot expect to satisfy
these sum rules exactly, because the calculated
frequency moments do not include the two-libron
modes. In fact we can obtain an estimate of the
intensity of these processes by assuming that all
the weight in the multiple-libron Baman spectrum
is concentrated at the two-libron energy, which we
take for this calculation to be 2E~ =301. The re-
sults we obtain are shown in Table V. Note that the
two-libron intensity we estimate in this way is in
reasonable agreement with the total intensity of the
two-libron spectrum as calculated in the accompany-
ing paper ~

Note added in proof. Shortly after this paper was
submitted more refined observations of the Raman
spectrum of solid Hz and Dz were reported by
%. ¹ Hardy, I. F. Silvera, and J. P. McTague,
Phys. Rev. Letters 26, 127 (1971). There'it was

H(i)= (2Cz) ' f (1 —e ")d(u . (4. 10) TABLE V. Sum-rule check on the calculated Baman
intensities.

In Appendix D it is shown that H(l ) is an even func-
tion of 1 and therefore that W(cu)(l —e~") must be
an odd function of ~. Thus for large 5 we have an
asymptotic expansion of the form

Symmetry
Energy intensity

(co) I I(oc

Harinonic, nearest neighbors

10.38 4. 88 50. 65. 50.67

Two-libron
intensitye

0. 0

H(&) - m, &-z+ Z,&-'+ ~ ~ (4. 11) 14.32
26. 19

l. 45
0. 17

20 91
4. 45

0.0

where

M, =(2cz) ' f W((o)(1-e z")u) dcu

= Cz J W((o)(1 —e ")(g d(g
0

= Cz' f +W(&u) dv,

(4. 12a)

(4. 12b)

(4. 12c)

Harmonic, all neighbors

13.66 . 4. 14 56. 55 56. 53

17.72
29. 04

1.31
0. 17

23, 21 28. 264. 94

Anharmonic, Rayleigh-Schr5dinger

11.62 4, 32 50. 20 50.20

0. 0

0. 0

0. 0

and likewise
14.97
23. 04

1.10
0.31

23 527. 14 0.0

~z=Cz f W(&u)(1-e z")v dv
0

f" ur W(&o)d&u, T 0.
0

(4. 13a)

(4. 13b)

12. 10 4. 15 50.22 61.47

15.45
22. 75

1.05
0, 27

16.22 29.286. 05

Anharmonic, self-consistent

Anharmonic, Brillouin-Wigner

0.37

0.23

Thus we see that the coefficients in the large- h ex-
pansion of H(l) are related to the frequency moments
of the Baman spectrum.

%e can exploit these relations in various ways.
For the harmonic calculations, they provide an ex-
act check on our analytic and numerical work, be-
cause within this approximation all the intensity
occurs at the single-libron frequencies. In fact,
these sum rules can be applied separetely to ex-

ll, 29

14, 07
19.55

3 ~ 98

0. 84
0.32

44. 93

11,82
6.26

63, 02

29.59

0.60

0. 38

ann units of j. .
We tabulate 8'/Co as evaluated from Eq. (819).

'Here I denotes intensity times energy.
Evaluated from Eq. (DS) or (D12a) as 1s appropr1ate.

'calculated assuming all the missing weight {Mi-I~)
to be concentrated at the two-libron energy at -301.
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TABLE VI. Comparison of the observed and calcu-

lated Raman spectra. All energies are given in cm i

and the relative intensities are given in parentheses.
Here I'eqq denotes an effective value of I which must be
corrected to allow for the presence of a small amount of
(J'=0) impurity in the sample. As a result the values of
I' deduced from the Raman spectra are about 6% larger
than I',zz. The estimated limits of error. in the anhar-
monic calculations are indicated.

Anharmonic theory
(self-consistent)

Observed
(see Refs. 42 and 43)

Harmonic theory
(all neighbors)

r,«=O. 56 cm-'

6.3+0.3 (1.00)
7.9~0.4 (o.2o)

10.9+ 1.0 (0. 12)
16.2' (O. 29)'
2o. 5' (o. o6)'

6.2+1 (1.OO)

8.0+a (0.18)
11.3+ a (o. o5)
16.8+ 1
21.0+2

I'~g=0. 44 cm 1

6.2 (1.00)
8.0 (0.32)

13.0 (O. 04)
None
None

I'e~f =0.78 cm

8.8+0.3 (1.00)
11.0 + 0. 5 (0.20)
15.2+ a. 5 (o. 12)
22. 6' (0.29)'
28. 5 (0. 06)a

8. 8+1 (1.00)
11.2 + 1 (0.34)
15.a+a (0. 12)
22. 5 + 1 (0.20)
29.9*2 (0. 04)

I'etc=0. 64 cm ~

s. 8 (1.oo)
a1.3 (0.32)
18.6 (0.04)

None
None

'See Ref. 12.

V. DISCUSSION AND CONCLUSION

A. Comparison with Experiment

pointed out that the polarization dependence of the
intensity of the single-libron modes depends only
on their symmetry. It was found that the experi-
mental intensities for various yolarizations agreed
extremely well with the group theoretical predic-
tions. The same reasoning can also be applied to
the two-libron modes, since they are also con-
tained in the single-libron spectral weight func-
tion. Accordingly, we have used the theoretical
polarization dependence of the Raman intensities
associated with E~ and T» modes as given by
Hardy et al. to determine the symmetry of the
two-libron processes. Thus by assuming relative
fractions x and 1 —x of 8» and T~ symmetry for
the two-libron process we determined x by a least-
squares fit to the observed polarization dependence
of the two-libron intensity. The resulting-value
x= 0. 61 is in close agreement with that predicted
in Table V using sum rules. The two-libron in-
tensity for a powder can also be deduced from the
data of Hardy et al. and is found to be about 20fp
of the most intense single-libron line, in fair
agreement with the calculations of this and the
accompanying paper.

r=0. 59 cm-' for H, ,

I'=0. 83 cm for Dz . (5. 2b)

The anharmonic corrections found here also in-
Quence the analysis of other experiments. For in-
stance, Ramm et al. 23 have analyzed the libron
specific heat as determined both directly~0 and in-
directly via their (sp/sT)» measurements in terms
of the harmonic density of states calculated by
Mertens et a/. 4~ In the absence of a calculation of
the anharmonic density of states we assume that
the effect of libron-libron interactions is merely to
rescale all the libron energies by the same ratio
as they do ZI. . Then we identify the value of Z~ for
the pure (J= 1) solid,

processes in the Raman spectrum. In Table VI
we compare the calculations of Sec. IV for the
single-libron energies and those of the accompany-
ing paper for the two-libron energies with the ob-
served Raman spectrum. A similar comparison
with the harmonic calculations is also given. It is
clear that the large downward shift of the highest-
energy single-libron mode is needed to bring theory
and experiment into agreement. From this table
it is seen that the agreement between theory and
experiment is closer for the frequencies than for
the intensities. Nevertheless, the fit is excellent
and the effects of anharmonic libron-libron inter-
actions are strikingly confirmed. A graphical com-
parison of the theoretical and experimental Raman
spectra is shown in Figs. 3 and 4 of the accompany-
ing paper. '

Actually, the above analysis does not take account
of the fact that the experiments were performed,
not on pure (J'= 1) solids, but on alloys containing
about 3% of the (J=0) species as an impurity. As
a result I' is somewhat larger than the effective
value of I; denoted l;«, used to fit the Raman
data. However, since the theory of excitations in
multisublattice alloys has not been established, we
shall rely on the experimental data of Ramm
et aE. to extrapolate the experimental results to
the pure (J=1) solid. 8' By measuring (sfp/sT)„
(a quantity which is essentially equivalent to the
specific heat) they showed that the average libron
energy Zl. depends on the concentration of (8= 1)
molecules, x, as"

Zi (x)/k~ = (38. Qx —19.0) K

for x near unity. Since the Raman work was done
on samples with x=0.97, this relation implies that
I'/I'. ..= l. 08. Thus the fit in Table VI yields

As we have seen, the inclusion of anharmonicity
reduces the libron energies, especially that of the
highest-energy mode. In addition, the anharmon-
icity is responsible for the appearance of two-libron

Z,/~, =19.9 K,
with Eg. (4. 4) and obtain ~

I'=0. 79 cm '.
(8.3)

(5.4)
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TABLE VIE. Experimental values of l.

0 82~0 04C

0.81 +0.02

0.82+ 0.05
0.90 +0.10
0.79 +0.04

0.60 +0.06
0.82+0.04

0.75 +0.04

0.84 +0.05

0.81 &0.04
0.80 +0.10
0.87~+0.10

0.88 +0.06
0.82 +0.02

0, 60+0.10
0.994 0.06

0.95 +0.04
O. 83 +0.08
0.70+0.10
0.92 +0.0,8

Method

Solid H2. F0=0.698 cm '

NMR of isolated (J=1)pairs
Raman spectrum of isolated
(J=1) pairs
{8p/BT)„ for s &0.07
Specific heat fora=0. 0022
Neutron scattering for

@=0.27
NMR, T& for g&0.10
Ortho-para pressure

difference, T =OK
Neutron scattering for

g=0.68, 0.74
Raman spectrum, x =0.97,

T =1.5K
NMR, T& for T &5K
Specific heat for T &5K
Vapor pressure of ortho-para

solids

Solid D: ro=O. 839cm ~f

(ep/8T)„for ~ &O. O7

Raman spectrum of isolated
(J=1) pairs

NMR, Ti for x&0.10
Raman spectrum, z =0.97,

T= 1.5K
(8p/8T) for g &0.83, T &2 K
Specific heat for T &7K
NMR, TI for T&6K
Vapor pressure of ortho-para

solids

References

17

22
88
18, 89, 62

370 36, 28
22, 90

18,16,89, 62

42, 43, d

38, 32, 28, 41
19,21
62, 91,92

23
87

39,40, 36, 32
42, 43, d

23, d
20, 21
39,40, 32, 33, 41
93, 92

~1 ~t denotes the experimentally deduced value of I'.
We took RD = 3.755 A (see Ref. 66) and Q =0.4883aop

(see Ref. 68).
'The error ranges indicate the experimental errors and

do not reflect uncertainties in the theoretical models.
This work.

'For these experiments the interpretations cited took
account of the temperature dependence of the lattice con-
stant by properly scaling the EQQ coupling constant:
I'(T) = 1'(0) [Rt(T)/R0(0)], where Ro(T) is the nearest-
neighbor separation at temperature T.

We took Ra=3.50 A (see Hefs. 66 and 67) and Q
=0.4873ao (see Ref. 68).

This value of I' is about 25% larger than would be
obtained using the harmonic theory (including all-
neighbor interactions). Finally, we remark that the
anharmonicity does not drastically change the
ground-state energy, 50 and consequently, the deter-
mination of 1 from the zero-temperature extrap-

~olation of the pressures' due to EQQ interactions
is not grossly affected by anharmonicity.

In Table VH 7 93 we give a summary of the amil-
able determinations of I' for both Dz and Hz. We
note that most of the methods are quite consistent,
except that the low-concentration T, datas~'3 '~
give anomalous values of I; probably indicating that
the theory~8 ~ is inadequate. From the values I'
given in this table we see that there is no longer any

evidence to support the suggestion that the phonon-
renormalized value of I' is smaller at high (Z= 1)
concentration than at low (J= 1) concentration. It
also appears that the phonon renormalization is less
important in D~ than in H~. This result is certainly
plausible, but was not indicated by the rough cal-
culations in Ref. 64.

B. Conclusion

We may draw several important conclusions from
our work.

(i) In agreement with our previous work, we find
that the cubic anharmonicity, which is completely
ignored in the RPA, is much more important than
the quartic anharmonicity. In fact, ignoring the
noncubic anharmonic terms is an excellent approxi-
mation.

(ii) The anharmonic shifts in the single-libron
spectrum are significant, especially for the highest-
energy libron mode. The energies of the two lower-
energy modes are reduced by about 15/o and the
highest-energy mode by about 35'%%uo due to the cubic
anharmonicity.

(iii) The cubic anharmonicity also influences the
intensity ratios in the Raman spectrum. Signifi-
cantly, the relative intensity of the highest-energy
single-libron mode is thereby greatly enhanced.
Using sum rules we predict that the two-libron in-
tensity is about 20$ that of the single-libron pro-
cesses. In agreement with experiment (see note
added in proof) most of the two-libron intensity
arises from the spectral weight function for librons
f Ee symmetry

(iv) The present calculations, since they include
all corrections of relative order I/s, where s is
the number of nearest neighbors, are expected to
be qualitatively correct.

(v) The values of I' deduced by fitting (a) the
Raman spectrum or (b) (8p/8T)» and specific-heat
data to the calculations of the libron spectrum are
increased by, respectively, 15 and 25/o owing to
anharmonicity. Apparently the phonon renormaliza-
tions are much less important than previously sup-
posed, especially for Dt.

Several fruitful lines of future investigation are
clear. First of all, calculations of the anharmonic
libron frequencies should be calculated throughout
the entire Brillouin zone. This work is currently
in progress and mill be reported later. It will be
extremely interesting to compare such calculations
with determinations of the libron spectrum via in-
elastic scattering of neutrons. Such experiments
would also enable us to place a bound on the size
of the non-EQQ-interactions, which are usually
assumed to be negligible. In addition, with the ad-
vance of experimental techniques it is quite possible
that calculation of the energy widths of the single
libron-modes will prove useful.
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APPENDIX A

Momentum-Sublattice Representation

As is the case with any system with translational
periodicity it is convenient to introduce spatial
Fourier transforms as a means of facilitating the
determination of the normal modes. In such a
description one characterizes the quantities of in-
terest, such as the self-energy, by a momentum
vector k rather than by site indices R, and RI. Now

since the PaS(T)~) structure consists of a simple-
cubic Bravais lattice with four molecules per unit
cell, one must specify the position of the molecule
within the unit ceQ in addition to the pseudomomen-
tum k. The position of a molecule within the unit
cell is designated by 7 and is listed in Table I.
We will, for convenience, denote the sublattice by
0., with @=1,..., 4.

We introduce operators c,„(k)which are the
Fourier transforms of the operators c» by the fol-
lowing:

c~))(k) = N Z c)g e ' '"& (Al)
)6e

where N& is the number of unit cells and k is a re-
duced reciprocal-lattice vector lying within the
first Brillouin zone. The notation Xz,„is taken to
indicate that we sum over all sites on a given sub-
lattice a. This is a generalization of the usual
Fourier transform and reflects the fact that we are
dealing with a space lattice which has a sublattice
structure. The Fourier transform of any function
of the sites i and j, V(i, j), can be similarly gener-
alized and reads

V(k),~= Z V(i, j)exp[-ik (R, —R~)],
5&0
(«e)

(AS)

where j is summed over the entire pth sublattice,
and n and p range from one to four. The notation
(ice.) indicates that i is not summed, but denotes
any fixed site in the ath sublattice. Thus, spatial
Fourier transforms in the four-sublattice structure
can be viewed as (4x4) matrices where the rows
and columns of the matrix V ~ are specified by the
sublattice indices a and p, respectively. Likewise
we interpret the operators c ))(k), for given M, as.
a column vector of four rows.

It is instructive now to rewrite the effective Ham-
iltonian of E)l. (S.11) in the momentum representa-
tion as

Z ct „(k)cl„(k)+ Z M))(M, N; k)~c„))(k)egg(k)

+ —p' [m»(m, N;k)„,c,'„(k)c".„(-k)+~»(~,N;k)~~c.„(k)c»(-k)],
2 R, e, e

N, N

(AS)

~M)(k) =
Mg) (1, - 1;k) q

~g)( —1, 1;k) g hP„( —1, —1;k) ~

where, in accordance with our prescription for
spatial Fourier transforms,

M.~(i)f, N;k).,= E M~(i, m;q, N)
$80

(k se)

xexp[ —ik (R, -R,)]. (A4)

The (8x 8) matrices M» and M)), are defined in
analogy with Eg. (3.12) as

~M)(k) = M))(k)+5 M )(k), (Asa)

~MB(k) = M,m(k) + 5 M)3(k), (A5b)

Iwhere M))(k) and ~M, (k) are the values of ~M)(k)
and M)3(R) in the harmonic approximation:

Mq~(1, - 1;k) ~gMin(1~ l~ k)
~M', (k)—

M~)(-1, 1;k)~ Mg~(-1, -1;k) g

Using Eqs. (S.7) and (AS) we find

M,~(M, N;k), = Z f/'" exp[ —ik ~ (R, - R~)],
$8S

(5 6e)
(A7b)

and within the approximation of Eq. (3.14) we have

Mq)(M, ¹ k)~y = — Q fq~g exp[ —ik (R) —Ry)],
f II3

(5 ee)

(A7a)
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+(&-3i,)-' Z Z e~[-tk. (R, R-, )]t"„'
j 6Q jf', P' .

($ 6n)

(ABa)

5 M„(M, Nk, l) =5 g5, ( —2&0) O'
I&~j 'I +( 3&0) & ~ exp[ t-k (R &-&)1&0"''" '&"~''"' .

$68 8'
¹

O', ¹ ($ sn)

(A8b)

The following symmetry relations discussed in Ap-
pendix C will prove useful later:

M, ) ( —M, —N; k, 5 ) = M, )(M, N; k, () *)*,

M, (.( - M, —N; k, i ) = M,~(M, N; k, l *)* .
(A9a)

(A9b)

In order to emphasize the physical aspect of our
calculations we have described the effects of anhar-
monic interactions in terms of an effective Ham-
iltonian, Eq. (A3). In this interpretation the ef-
fective Hamiltonian describes a system of harmonic
oscillators coupled by frequency-dependent "force
constants" which have been renormalized to include
the effects of anharmonicity. This formulation is,
strictly speaking, not precise since the frequency
dependence of such renormalized force constants
can not be defined in a completely satisfactory way.
In order to discuss the frequency dependence of the
effective interaction a more formal calculation
is needed. Such a calculation is achieved by con-
structing the complete self-energy M(k, l). The
components M»(k, l) and M,()(k, i) havebeengiven in
Eqs. (A7) and (A8). The other components of
M(k, (j) are determined by the symmetry relations
of Appendix C as

M„(k, h)=M„(R, -3~)+, (A10a)

~Ma(k, l) = M»(k, —l*)* . (Ajob)

Having constructed the momentum representation
for the self-energy we proceed to the solution of

(Alla)

(Allb)

GB,(M, N; k, t)„((=—t(c,)((-k, t)c()N(k)),

G„(M, N; k, t).,= —t(c'.,(-k, t)c„(-k)),
with t in the interval (0, —tp).

The temporal Fourier coefficients
G„,(M, N;k, &,) ~ are defined as in Eq. (3.2).

Solution of Dyson Equation

(Allc)

(Alld)

In order to find the anharmonic normal modes
and their associated frequencies we need to solve
Eq. (3.4) for 6 in terms of the self-energy M. In

doing so we naturally find that the quasiparticle
energies are determined by the condition

ReDetl(G') '-MI =0 (A13)

This is a generalization of the usual formula

Ref(d —ef —M(",((d ))= 0 (A13)

and reflects the fact that we deal here with matrix
Green' s functions.

We can write the Dyson equation in terms of the
matrices 6„.and M„. as follows:

the Dyson equation relating the Green's function to
the self-energy by first introducing the momentum
representation of the Green's functions defined in
Eq. (3.1):

G„(M, N; k, t).,= —t(c.„(k, t)c',„(k)),

G)))(M, N; k, t),8= —t(c „(k, t)ca„(-k)),

6=
~61 ~Gq

(i —E())I- M), (k, l)

-Mg2(k, —I) *)*

—Mgp(k, f()

—(l + E())I ~M)(k, —$*)~
(A14)

where we have used-the symmetry relations of Eq.
(A10). In Eq. (A14) the (8&&8) unit matrix is denoted

by I.
To simplify Eq. (A14) we introduce the 8&8 ma-

trix 8 whose matrix elements are defined by

ft(M, N).,=6 (A16)

We may now rewrite Eq. (A9) as

RM~, (k &)R=M»(k, l*)*,

R M)2(k)R = Mqq(k)

(A16a)

(A16b)

where we have used the fact that M» is independent

of 3 in our approximation. Henceforth we will not

indicate explicitly the momentum dependence. Us-
ing Eq. (A16) we rewrite Eq. (A14) as
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(&-E )I-M, (&)
6=

—R M1PR —(l +ED)I-R M,i(- I)R
(A1'la)

(& -E,)l- M„(&) —M1~R

—(l + E~)I- Mii(- g )
(Alv))

where 0 is the (8&&8) null matrix. We now separate
M» into parts even and odd in 3:

EOI+Mii(h) =A(l )+ hC(l ), (A18)

where

A(&') = E,I+-.' [M„(&)+M„(-q)]

C(&') = (2&)-'[M„(l)—M„(- &)] .
Then we have that

(A19a)

(A19b)

&I-A-&C

—M13R

0 -1

—)I-A+ hC 0 R
(A20a)

I 0 I-C 0 )I-A' -B' I 0
(A20b)

0 R 0 I-C -B' -&I-A 0 R

where ~K= A-(A'-B')(A'+B') . (A23b)
A =(I —C) A

B = (I- C) M,2R .
(A21a)

(A21b)

From this discussion it is clear that the quasi-
particle energies are given by

The matrix inversion in Eg. (A20) yields ReDetK, =ReDet~K=O .
Harmonic Approximatiori

(A24)

I
16=—
2 0

(l I+A' —8')Kj'

+ (h I+ A'+ B')Q

( —hI+ A' - B')K,

(W —A' —B')~K-'

(l I+A' —B')Kj'

—(t I+A'+ B')~K'

( —k I+A' —B')Ki

+(- i I+A'+ B')~K-'

It is instructive to examine the solution of the
Dyson eiluation, using the formalism discussed
above, for the situation where the anharmonicity is
completely ignored. We will find that we reproduce
results found previously by others. In the harmonic
approximation we have

C=O, (A25a)

I-C
X

0
0

where

K, =il I —(A'+B')(A' —B'),

I 0

0 R
(A22)

(A28a)

A=A'=Eol+Mii

B'™iaR= —Mii, (A25c)

and we may write Ki = K2 = K, with K defined by

K= i I —ED(EOI+ 2M, i) (A25d)

Then it follows from Eil. (A22) that

11 126 G

~61 ~63

[(5 + Eo)I+~Mi]K '

RMi K

M„K R

—R[(h —Eo)I —~Mi]K iR
(A28)

We denote by U (k) the (8&& 8) unitary matrix which
diagonalizes Mi, (k). In the language of transforma-

t

tion theory, Uo(k) is the transformation matrix be-
tween the momentum-sublattice and what we call
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[U (k) ~Mg(k)U (k)]„„=6~„m„(k). (A27)

the energy representations. Ne label the rows of
U by n and M and the columns by an index p,, where
p, = 1, . .., 8. Thus the matrix elements of Up(k) are
denoted U (f) „.„.By the definition of UP(kg we
write

Z, (k) = [Z,(E,+2m. (&))]'". (A28)

An exylicit evaluation of G,~ (M; N; k; & ) can be
given using UP(Q, and we obtain from E(l. (A2V)

Then the normal-mode energies E„(k), determined
from the eigenvalue e(luation (A24), are

(A29b)

G„( MN;k;))„Z U'(k)', .U'(k)g, .n. ())P.(k),—,— .-)) (A29c)

V

(A29d)

where

p( )
Ep+m„(k) 1

2Z„(u)

~(~) Ep+ m„(k) 1
2Z„(e)

and we have used the result that

U (k) g., „= U (k)*

which is a consequence of the fact that

M&~(~, &;k)=MP„(-m, -X;k)* .

(A30a)

(A30b)

(A31)

(A32)

adapted basis functions will not diagonalize the
(8&& 8) matrix Mn, but will only reduce them to
block-diagonal form. The (8&8) matrix V which
effects this reduction is

1 0 1 0 e 0 e' 0

0 -1 0 —1 0

0 —1 0 1 0 -e' 0 e

1 0 1 0 -1 0 —e' 0 e
V=—

2 0 1 0 1 0 e 0 e-

Explicit Anharmonic Calculation for k=0

To avoid excessive algebraic complications we
now specialize the discussion to zero wave vector
k. From a group-theoretical analysis it is found
that the libron modes at k = 0 transform as E, + 2T„
where E, and 1", label the irreducible representa-
tions of the group of the wave vector. Since one
of the representations is repeated, the symmetry-

—1 0 —1 0 e 0 e' 0

-1 0 1 0 -e 0 e' 0

1 0 -1 0 -e 0 e' 0

(A33)

where e'= e""i'
The matrices M», ~A ~C and A' assume the same

form and we write for k=0

xe' - xe 0 —y

—x*e' x*e

x*e y

—x*e' -y
ge —y —y —@*e+ 0

x*e x* 0
(A34)

—xe xe' x

—xe

0 —xe -y

where x denotes x(h) and x* denotes x(l*)*. The matrix ~Mp is of the form for k=0
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8 -S
ve —ve'

ve 0 -v

We wouM like to put the matrices above in block-diagonal form. %'e shaQ denote the transformed block-
diagonal matrices with carets, so that for any matrix M we write

M=V-'MV .
The block-diagonal forms of ~M, (P, = 0) and ~Ma(k = 0)R are

(AS6)

l

ze+ Syj

$0+Sy
~

I 2@+ gg y
Il

' n-y -2x ~

I I

I -2x* se-y I

K y 2X

I -2g K-y

A

~MBR =—

'u+Ss!
———

I
——~

t u+3s I

l

I

u-S -2V
I

~ -2v~ u-s I

t

t u- s -2v
i -2v+ u-s i

L

I u-s -2v
!
I
-2v u-s

(ASS)

Detfv 'K,vf =Det) K, )
= o,

which is written as

(ASG)

Det~ l'1- (1-C)-'(A+M„R)(1-C)-'(A- M„R)
~
=O.

Since the determinant is invariant under a unitary
transformation we may write the eigenvalue equa-
tion (AS4) as

T, symmetry. In this notation we write Eqs. (AS7)
and (ASS) as

[M»], = w+ Sy, (A41a)

[M„lt].= —(u+ as), (A4lb)

K —y -2y
[M»l =

2X 'N

(A4o)

We shall label the blocks of the transformed
matrices by the subscripts e for the (1x1) matrices
of g~ syznmetry and by f foz the (Sx P) matz'lees of

u-8' -2v
(A41d)



C. P. COLL, III AND A. B. HARRIS

~(l )= yo+ &X(l)

I= Qg+5N p

s=sQ+58 ~

8= 5Q+55 p

(A42c)

(A42e)

where seQ, xQ, ..., etc. are the values of the ma-
trix elements in the harmonic approximation. Ve
have '

%'e separate the harmonic and anharmonic contribu-
tions to the matrix elements as follows

1s(l) = 1s,+5m(l),

x(l)=x, +sr(i),

~) gN' -1,N' +gN', N'-1
0 fj

g es N'¹
1[551)

= (4. 544-8. 4omf) r',

g
N' -1,N' 0

g
N', N' +1

gas N'
¹

(4.6&)

g1-N', -1-N' gN', ¹

g ea O', ¹

($ 51)

= {-8.v89+o. 2ssf},

(A45c)

ggQ= @=O. V32X',

~=~, =(3.ovo-o. 552')r,

QQ 8Q 2e 311I p

(A43b)

(A43c)

g1 N~
~ 1 ¹gN', ¹ 8 O98r3

gsa
(i ei)

( )
Qss s1 sss
2lo (2lo-l) (3lo- l) '

t

5N(l) = - 2sp(2l, —l),
&y(l) = —»g(2lo —l ),
su= »gl, ,

by = —s5/l 0,
58=-8

where the s„are lattice sums defined by

(A44a)

(A44b)

(A44c)

s, = — Z ~C"„' ""I'=8-4 Vsr', .
jttN* N j

i'"i'= s.Qsr',1

and by comparing E1f. (AS) with Eqs. (A34) and
(A35) we find The numerical evaluation of these lattice sums is

facilitated by the symmetry relations among the
discussed in Ref. 49. In the evaluation me

have restricted the sums to nearest neighbors.
Since each term in the sum depends on the inter-
molecular distance 8,&

as A, &~Q, further-than-
neaxest neighbors can safely be neglected.

%e find the explicit forms for the matrices A and
C in terms of these lattice sums 8„:

[A(l )]@=Zo+ 100+3$O+
2tII Q

Ma(s1+ 6s4) lal asm ( )4ja ja 9)3 )3

iQ Q

8$ Q83
2xQ+

4 3 )g
hQ

982
. EQ+ QLQ PQ+ 2)Q

.484 —28'.- 18kiQ82
Q 4,)z )3 9ja )3

(A46c)

2s4- sg 6sp
4)3 pa 9,$3 g

3
4sg

4hQ- k

2S4 Sg 682

4yQ-P. QPQ- P
3 3 8 8
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Using these results and also Eq. (A41) we can evaluate the eigenvalue equation (A40). For the E, mode we

have

f(E) s — )+ g p+ g g)
s&+ Gs Gsm

80 SD

Ssi 2&()(s, + 6s4) 18s()s() 2si —Ss()
Ep+'(M)0+ 3/0+ y g j 3 Kp+ 3/0+ = 0 o

2$D 48$ ~ 9~0 $0
(A4V)

The secular equation for the T, modes is quite complicated and was solved numerically.

APPENDIX B: CALCULATION OF RAMAN INTENSITIES

General Formulation

In this appendix we shall obtain formulas and
numerical results for the Raman intensities of the
single-libron lines. The calculation consists of
two steps; first we express the Raman intensities
in terms of the spectral weight functions associated
with the single-particle Green's functions, and then

by use of the symmetry coordinates discussed in
Appendix A we are able to numerically evaluate the
formulas we derive for the Raman intensities.

It can be shown that the transition probability per
unit time, W(k, &o), that a system makes a
transition from an initial state to a final state with
the transfer of energy k~ and momentum k due to
an external perturbation may be conveniently ex-
pressed in the form of a temporal Fourier trans-
form of a correlation function. '~ For the par-
ticular case of light scattering, in which the inter-
action of the radiation field with the crystal is
treated in the polarizability approximation, we
may write the per.'~rbation as

R, i = —Z ~~ C(112;M, N —M)c(N( ) (Ri)*E)iE)i ii,
j)IN

(»)
where o.„' '(R, ) is the Nth spherical component of the
polarizability tensor for the ith molecule and E„
is the Mth spherical component of the external field
at the position of the ith molecule. In this case
the transition probability W(k, (d) for unpolarized
incident radiation and a powder sample takes the
form

W(k, ~) = inc ki k~ V 5~ Z e '"'
&

"q'
- fif N

where c(„' '(R, , f) is a time-dependent operator in
the Heisenberg picture. The momenta of the in-
cident and scattered photon are denoted by kI and

k„respectively, and k=k, -ki. In Eq. (B2) we

have the desired expression relating the transition
probability to the Fourier transform of the polar-
izability-polarizability correlation function.

We have shown previously49 that

i/2
n„"'(R )=a~a(Pq En"'. (jjl)"&g" (0),

u'

where o is.the average polarizability and ~ is the
anisotropy of )he polarizability. With the use of
Eq. (BS) the transition probability becomes

W(k, (d)=ifc ki kiV ()c a) &~ Zr DN(e„)(X~))+$
f,f N, N

y~-$&~(@)-Rf) dg~fc((it yN ~ g yN

&QQ

(B4)

where i(z, are the Euler angles specifying the local
axes of molecule i relative to the local axes of
molecule j.

Let us define the correlation function

Q(i, M; j, N; f) by

q(i, M; q, N; f) = (2Ov/S)(r;"(~„ f)r,"(~,)) (B6)

and its frequency and wave-vector-dependent
Fourier transform Q(M, N; k, (d) i by

x ee«' ~"' R ~n"' R 0*
(B2)

x Q(i, M; j, ¹ t) .
Then the transition probability is

(B6)

W(k, u)=iikc V krak~(s c() No ~ D)ig(X()~)"( —1) Q( —M, —N;k, (()) () .
o,g
N, N

(B&)

The correlation functions Q(M, ¹ k, &u) () can be re-
lated to the following imaginary-time Green's func-
tions:

I (i, M;y. , N; f) = ~ &i &r[r,"(&„f)r,"(~„o)]&,

(B6)
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where T here is the time-ordering operator. ~4

We also define the frequency-dependent Green's
functions through the Fourier coefficients

P(i, M,j,N; k„)= f e & P(i, M;j, N; t) dt,

where 1„=vir/P, with r an even integer.

(B9)

py the general theory of Green's functions' we have

Q(M, N;k, &o)= . [1—e s"] lim[P(M, N;k, &u+ i5)-P(M, N;k, e-i5)]
27rz 6 0+

(Blo)

and in particular, at zero temperature, we have

Q (M, N; F, (u) = —8((o) Res[ P(M, N; k, a))], (B11)

where 8(&o) = —, (&u+ I ~ I)/ru and Res indicates the re
sidue in the case where the Green's function has
only poles, but more generally is the discontinuity
across the real axis as indicated in Eq. (B10).

With the use of Eqs, (2. 6) and (2. 12) we write
the correlation function of Eq. (B5) in terms of the
operators c&& and e&&. There are contributions to
the transition probability which may be interpreted
as the scattering of photons with the simultaneous
excitation of two librons. [These are the M, N=0,
+ 2 terms in Eq. (B7).] Since we are interested in
the transition probability at essentially zero tem-
perature, these two-libron processes depend on
the zero-point disorder in the system which is
known to be quite small. In fact, Nakamura and
Miyagi5 have calculated the Raman intensity from
these two-libron processes and have shown it to be
very small. We shall therefore neglect these pro-
cesses here. Thus we restrict ourselves to the
terms M, N= + 1 in Eq. (B5). Then the Raman in-
tensity is determined by the Green's functions,

P(M, N;K, t) s
——i([c .«(-k, t) —c «(k, t))

with t in the interval (0, —iP).
In order to evaluate these Green's functions, we

may relate them to those of Appendix A. If we ex-
pand the operator product in Eq. (B12), we see
upon comparison with Eq. (A11) that

P(M, N; k, t) s
= + G»(M, N; k, t)~- G~s(M, —N; k, t) s

—Gsg( —M, N; k; t)~
+ Gss( —M, —N; k, t),s . (B13)

If we use the matrix R introduced in Eq. (A15), we
may write

P (k, t) =+ G»(k, t)-~Gs(k, t)R- R~Gg(k, t)

+ R~Gs(k, t)R . (B14)

By using Eq. (A23) and taking the temporal Fourier
transform of Eq. (B14)we find

P(k, (u) = [A'(k, .(o)+ B'(k, (o)]K~ (k, (u)[ I- C(k, (o)]

(B15)
Furthermore the summation in Eq. (B7) is in the
form of a matrix product, if we define the (8& 8)
matrix D(M, N), s by

D(g, N). s = (- I)"'D-'«, -«(X.s)* .
&& [cs,«(k) -cs „(-k)]) (B12) Explicitly we have

+9e

+e'

+e9

2
9

g e2

2
9 +ge +e'ge

e

0

+9e

+e'ge

~e 0
g! e9 9

9 9

a 5
9

(B17)

+e
g

e'

We can thus write the intensity W(k, ~) as

W(k, &u)=sskc V kzks(& n) Ns

x Z D(N, M)s„Q(M, ¹ k, ~)~

(B18a)
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I'c V k/ks(&n) NoTr[DQ(k, &u)],

(B18b)

and at zero temperature we have that

W(k, &u)=soke V ~Nok ks(ra) Res Tr[DP(k, &u)]

(B18c)

=/saic V Nok/ks(K n) Res Tr(D[A'(k, (o)

A A

N= [A —MgoR], ,

and we write

W,'(0, v) = 3Co Res TrS,

where

S = [D], L M(sPI —L N L M) L .
We write S in the form

(B24c)

(B26)

+ B'(k, (u)] ~K~(k, (o)',[I- C(k, (o)] ~] .
(B18d)

Raman Intensity at k =0

We now specialize to consider W(k, &o) for k=0.
We may use the results for A'(k, &o), B'(k, a&), and
C(k, ~) for k = 0 in Appendix A to rewrite Eq. (B18d)
as

W(0, &o) = C~Res Tr(D[A'(&o)+8'(&u)]K, [I-C(~)]j,

(B19)
where we have used the symmetry-adapted coor-
dinates to put the (8x 8) matrices in block-diagonal
form.

For the E» modes

[Dl.=; (B20)

and the results for [A'], and [B'],are given in Ap-
pendix A. Hence

W, (0, ~) =2C, Res[D, ][A.'+B'],[Z ],[I-C]

(B21)

where co, denotes the frequency of the E» mode.
This expression was evaluated numerically and the
results are given in Table IV.

For the three-fold degenerate T» levels which we
label T,-'" we have

so that

taI
b~ la I

(B28)

R = (Det R) o, R ~o (B29)

where ~o is the Pauli matrix. Thus we may write

S g-1D L Ml /2 (~oi Ml /2L N L Ml /2)o Ml/2L

(B30)
where

b, =Det(ur I —MLNL) . (B31)

Also, for matrices R of the form of Eq. (B28) one
has

S=[D] LM ( I —M LNLM ) M L

(B2V)

Providing M ' can be defined, this relation canbe
verified by showing that the right-hand sides of
Eqs. (B26) and (B2V) agree to all orders in e o.

In order to define M' 2, M must be a positive ma-
trix, ~ i.e. , it must have positive eigenvalues. This
condition is certainly fulfilled for (sr/Zo) of order
unity, since then A+~M~R=EOI, as can be seen
from Eqs. (A46) and (A41).

Next, we note that all matrices appearing in Eq.
(B27) are of the form

(B22) R o~ R = (DetR)o~ (B32)

The intensity W,'(0, &u) for the T,'" modes is given
by

W,'(0, &u) = 3Co Res Tr( [D],[A'+ B'],, [~K'],

x[I-C]i')I ..., ~ (B23)

I.= [I-C] (B24a)

M= [A+ MgoR]~, (B241)

The evaluation of W,'(0, v) is rather involved
since it requires taking the residue of a complicated
matrix expression. We show below that the taking
of the residue can be separated from the matrix
operations.

Consider the (2x2) matrices ~L ~M and N:

Repeated use of this relation yields

S= 6 [(o Dq L ML —(DetM)(DetL) D, o.No, ],
(B33)

so that finally we obtain

W,'(0, &o)=3CoRes(h i)i„

x Tr[aPD, LML —(DetM)(DetL) D, o', N~o] .
(B34)

The advantage of this formulation is that the taking
of the residue is separated from the matrix op-
erations. In addition, the residue of b, , denoted
Res(s '), at (u = (o, is [(ea//s(o)„„, ] ', a quantity
which is a natural byproduct of a numerical search
for the eigenvalues ~,. The Qnal result is there-
fore
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W,'(0, (d) = 3CO
94 j

Tr(D, (I —0,) 1[A, + (~MIR) ] (I—C, ) '(d~ —Det[A, + (M»R), ]Det[ I- C,]~D, s,

x[A1 —(~MAR)1]c~] ~ „„,. (B35)

APPENDIX C: SYMMETRY PROPERTIES OF
GREEN'S FUNCTIONS

In this appendix we derive some symmetry rela-

tions for the Green's functions. From the defini-
tion of Eqs. (3.2) and (3.3) we obtain after analytic
continuation into the complex $ plane the explicit
representations

(. M. . N. g ~ ( I I )( I ',„In) (nI t„l )( I,„I )111) iA s3 n 3t+E„—E y+ E —E„'

(nlcmlm)(m)c~ In) (n(ccntm)(mlcmln)}
p+ E„—E 8+E —E„

(n I c,„lm)(m I c&„ In) (n I c;„Im)(m I C11M In)
211) iA uk n +@m, n n m n

( i c,„lm)(m I c;. In) (nl c~ Im)(m I c,„ln))
P+E„—E 3I+E —E„

(Cia)

(cib)

(Clc)

(cld)

where In) and I m) are eigenstates of the Hamilto-
nian and P„ is the canonical probability of the state
In):

P„=e '" / Z„-e ' ~, (c2)

where P -=(kT) '. From Eqs. (Cla) and (C1d) it is
clear that ~G& and ~G2 are Hermitian:

G»(i, M;j, N; s)*=G11(j, N;i, M;s*),

G21(1; M; j, N; &)*= GP2(j, N; 1; M; &*) .
In addition we have

G11(i, M; j, N; —f)) = Gpg(j, N; 1; M; tt) ~

Combining E(ls. (C3b) and (C4) we obtain

(C3a)

(c3b)

(c4)

G12(i, M; j, N; S).= G»( j, N; q M; —S),

G21 (&, M; j, N; 'S) = G 21 (j,N; 1,M; - S ) .
We also find that

G13(i, M; j,¹,s)*= G21(j, N; i, M; S*) .
Combining Eqs. (CSa) and (CV) we have that

G»(i, M; j, N; S)= G»(~; M; j, N; —S*)* .

(Cea)

(C5b)

(cv)

(cs)

Let us now discuss the symmetry between the
8,= 1 and Z, = —1 excitations. From Eq. (2. 10) we
see that

Ga~(i, M; j, ¹&)=G11(i,M; j, N;-S*)*. (C5)

From E(ls. (Clb) and (C1c) we find that G,a and ~G1
arg symmetric:

)NnNc)c ( 1)M+Ng M, N--
kj fj (c9)

Using Eq. (C9) we see that the Hamiltonian of E(I.
(2. 14) has the following symmetry:

K(C(M) C1M) X(C1 N) Ct N) (clo)

In matrix notation we may write

R ~G@ (h )*R= G,g (f *) . (c13)
Finally, we note that each site possesses inver-

sion symmetry. Moreover, inversion leaves the
sublattice labeling invariant. We therefore conclude
that all spatial Fourier transforms will be even
functions of k. Hence all the relations of this ap-
pendix hold when the site indices R, and Rz are re-
placed by the Fourier transform variable k.

The analagous relations hold for the self-energy:

M11(M, N; k, (I)+~()
——M11(N, M; k, 1+)q, (C14s)

Mga(M, N; k, l )+6 = M11(N, M; k, it +)()~,

M11(M, N; k, it ) ()
= Mqq(N, M; k, —

&.}()

(C14b)

(C15a)

M~2(M, N; k, It)~() = M11(M, N; k, —1+)+~, (C15b)

Note that the eigenfunctions of X* are just the com-
plex conjugates of those of 3C. This enables us to
write

G»(i, M; j, N; i)*= G»(i, —M; j, —N; I*) . (C11)

Similar reasoning heads to the relation

G»(i, M; j, N; I )*= G»(i, —M; j, —N; I*) . (C12)
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M»(M, N; k, 1)~t)
= M»(N, M; k, —$)~~,

Mmq(M, N; k, 1)~8=M2)(N, M;k, —i)))~,

M»(M, N; k, h)~)) =Mg~(N, M;k, 1*))),,

(C16a)

(Clsb)

(CIVa)

M„(M, N;k, )) ~=M„(M, N;k, —)+)+, , (CIVb)

RM~,.(k, 1)R=M, (k, 1*)*. (cls)

APPENDIX D: EVALUATION OF SUM RULES FOR
RAMAN INTENSITY

In this appendix we shall obtain expressions for
the coefficients of the large-) asymptotic expansion
for the response function which determines the
Raman intensity.

From Appendix 8 it is clear that we may write

&(k, &) = (1 —e ") . (2co)[H(ru+i0') —H((u —i0')],
2iri

(Dl)

as in Eq. (Bl&). We shall obtain explicit expres-
sions for M, and M3 by constructing the large-~ ex-
pansion of H(h) using this representation. For this
purpose we need keep only terms of order ) ~ and
)-4

The simplest case is when Rayleigh-Schrodinger
perturbation theory is used. Then, as in the har-
monic case, the dynamical matrix is frequency in-
dependent, and the large-$ expansion is obtained
by expanding the matrix inverse in Eq. (DV) in a
geometric series. Thus, for the frequency-inde-
pendent cases we have

M, =-', Tr[D(A'+B')(I- C) '], (Ds)

M~= —,
' Tr[D(A'+B')(A' —B')(A'+B')(I- C) ] .

(D9)

More generally, the matrices in Eq. (DV) are
frequency dependent. In fact, since C is of order
h ~, we may use

where (I- C)-'=I+~Cs ', (D10)

H(h) = Z Z D(N, M)q P(M, N; k, t ) q,
N, g M, N

from Appendix 8 we see that

(D2) where ~C is the coefficient of h in the Laurent ex-
pansion of C(h). Later A2 is defined similarly. In
addition, we recall Eq. (A21):

P(MNk ~) =
3

Z
Jf 6Q

($68)

D( —M, —N)~ ——D(N, M)g (D5)

With the use of Eqs. (D4) and (D5) it follows that
H(3) is an even function of ai and consequently has
the asymptotic expansion

H(&) = M, (&)-'+M, (&,)-'+ ~ ~ ~ . (D6)

Determining the coefficients in this expansion from
Eq. (4. 10) we obtain Eqs. (4. 12) and (4. 13) in the
text.

within the approximations of this work we have

-$8

x e'"'(r[r, "((o, , t)y,"((u„0)])dt,
0

(D3)

from which it may be shown that

P(M,¹,k, I)~q=P( —N, —M, k, —1)g~ .

The matrix D also satisfies the relation

A'+B'=(I —C) (A+M»R) . (Dl1)

Using these relations we obtain the results

M, =-, Tr(D[A( ) + M»( )R]}, (D12a)

where we have dropped ~B, since it vanishes within
our approximations.

Since the response function is actually the sum
of independent response functions for each type of
symmetry, we can obtain separate sum rules for
E, and T, symmetry. Thus we write

H, (s)=M,.s-'+M t,
'

~ ~ ~,

M, ())) = M, ,s-'+ M„s-'"
(D13a)

(D13b)

where the subscripts denote the symmetry. Thus
we have

M„=-,' T (D, [A, ( )+(M„( )R).]},
which we evaluate as

(D14)

M, =-,' Tr(D(~C[A( )+M»( )R]+[A( )+M»( )R]~C

+~A+[A( )+M, ( )R][A( )-M„( )R)

x[A( )+M, ( )R]}), (D12b)

H(l) = —,
' Tr(D(A'+8')[41 I- (A'-B') M„=a [Z, +(58,+68,)(2$,) '] . (D15)

x(A'+ B')]-'(I—C) '} (DV)
The explicit expressions for M„, M3„and M3, are
amore complicated and will not be given here.
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