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A new effective force constant in crystals introduced earlier in the framework of a nearest-
neighbor rigid-ion model of lattice dynamics has been calculated in a self-consistent manner.
The present force constant is general in the sense that it can be evaluated for any frequency
between zero and infinity, The effective force constants defined by the earlier workers are

seen to be special cases of this force constant.

The method is applied to determine force con-

stants both at the positive-ion and at the negative-ion sites in CsI, which possesses a

CsCl crystal structure.

The eigenfrequencies and the eigenvectors for CsI obtained by Mahler

in the breathing shell model have been utilized for evaluating the pertinent Green’s functions.
The results of the calculation of these Green’s functions are also reported.

I. INTRODUCTION

Much experimental and theoretical work on the
dynamical properties of imperfect alkali halides has
been done in recent years. Most of the investiga-
tions were directed toward the study of the behavior
of impurity ions in alkali halides having a rock-salt
structure, although the dynamical response due to
some impurities in CsCl structure has been investigated
in some experiments, e.g., far-infraredabsorption
due to U centers in cesium halides''?and due to mono-
valent cations inCsI *and CsC1* or due to the molecular
ions OH™ and OD" in CsBr and CsI, ® but no elaborate
attempt has been made to understand the data theo-
retically. In order to study the various dynamical
properties of an imperfect crystal, a detailed
knowledge of the lattice vibrations is required. It
is therefore useful to make a systematic study of the
vibrational Green’s functions of these crystals.

In order to understand the various defect proper-

TABLE I. Perfect-lattice Green’s functions used in
Secs. Il and Il. g4;(, 1*, 2) =gy;(y, ny, ng), where the
difference in the lattice vectors (K, —&;.) is denoted by
(14, ng, ng)ia and a stands for the edge of the unit cube.

Symbol giiny, ng, ng)
&t 20, 0, 0)
& &xx(1, 1, 1)
g g1, 1, 1)
gi 2.2, -2, 0)
gt 8022, =2, 0)
& 22 =2, 0)
gf( gxx(z’ 2, 2)
&% £ry(2, 2, 2)
& 2.x(2, 0, 0)
gib 8yy(2, 0, 0)
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ties in the framework of the nearest-neighbor ap-
proximation, the lattice Green’s functions have been
computed for both the anion and cation impurities

in Csl. These Green’s functions have been utilized
to study the resonance and the localized modes due
to impurities. After using the experimentally ob-
served frequencies of the resonance or the localized
modes, a new self-consistent method has been
evolved to determine the earlier defined ® nearest-
neighbor effective force constant for a host lattice.
The method has been applied to the case of CsI using
the positive and the negative impurity ions as
probes. The results are compared with the values
of the force constants calculated by other methods
which are, in fact, special cases of the present
method.

In Sec. II, the defect model is described and two
special cases of the new force constant are dis-
cussed. The numerical results are obtained in
Sec. III and are discussed in Sec. IV.

II. PERTURBATION MODEL

The nearest-meighbor perturbation model for
a substitutional impurity in a solid of CsCl struc-
ure has been discussed in an earlier paper.®
Except for the cases of more comples defects
such as a defect with an off-center configura-
tion or a molecular impurity ion, the cubic point-
group symmetry of the defect site is preserved for
the case of a substitutional impurity. The pertur-
bation matrix P(w?) and the Green’s-function matrix
g(z)= (Lo~ 2I)"! can be easily block diagonalized ac-
cording to the different irreducible representations
pertaining to the point group O,. As defined in Ref.
6, the perturbed phonon propagator g(z) can be ex-
pressed in terms of the unperturbed ones. The
elements g} used in the present calculations are
presented in Table I. The elements of the pertur-
bation matrix P(w?) in its general form have been
discussed in detail in Ref. 6. The perturbation due
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to a single impurity is characterized completely by
three parameters €, A, and M. Here €=AM/M, is
the mass-change parameter, and X and A’ represent
the changes in the nearest-neighbor central and
noncentral force constants, respectively. The up-
per or lower sign (+) on the Green’s functions and
M specifies the quantities for the positive or nega-
tive impurity ions, respectively.

The present model will give a meaningful picture
of the physical situation of the defect problem, if
we are able to specify satisfactorily the parameters
Xx and A’'. In the rigid-ion picture of the host lat-
tice, the assumption of a nearest-neighbor interac-
tion in the present case presents no conceptual dif-
ficulty, but when we consider a deformation dipole
model or a shell model for the host-lattice dynam-
ics, the situation becomes complex. In order to
cope with this difficulty, the parameters X and N
must be considered as effective changes in nearest-
neighbor central and noncentral force constants.

As the noncentral-force-constant changes are, in
general, an order of magnitude smaller than the
central ones, in the alkali halides we assume that
A'=0. The presumption that the noncentral compo-
nent of the force constant is much smaller than the
central one, particularly in Csl, is supported by the
fact that the value of the elastic constant Cy4 is not
much different from that of C,, in CsI.” Also, it
has been observed® that the assumption A= 0 works
well in reproducing the frequency of the low-lying
resonant mode with a reasonable changed central
force constant. The effective nearest-neighbor
force constant for the host lattice is defined for the
optically active F,, symmetry modes. By using the
relations among the different lattice Green’s func-
tions, the calculation is greatly simplified if we re-
strict ourselves only to the changes in the central
forces. In fact, only one Green’s function, i.e.,
g3, is required in the calculation if one knows the
value of the effective central force constant. Con-
versely, we may use this relation to compute the
effective nearest-neighbor central force constant
for the host lattice.

The frequencies of a resonance or a localized
mode in the irreducible representation I' are deter-
mined by

ReDr(z)=0, (1)

where the determinant Dp(z) is the resonance de-
nominator appearing in the irreducible representa-
tion I For central-force-constant changes only,
the perturbation affects only the modes which trans-
form according to the irreducible representations
Ay, Agy, Fy, and Fy,. For these irreducible rep-
resentations we have®

Dy, @)= 14 x0 & — 26345 + 265~
- 285 -85 +2810), (2
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Dy, (@) =1+xM(g] - 285 +85 + 285 +&7
+285 +g5 - 2gh),  (3)
Dy, () =1+5xM3g] +2g5 g5 -~ 387 - 28¢
-6g5 +85 - 285), (4)
and
Dp, (2)=(1- ew’gi)[1+35xM32] + 285 - g3

—-285+387 +685 - g5 +285)]
+ 5 g -2(Vx) g + 285 ) + xew?
x(g2+2g5)],  (5)

where y =M,/M, is the ratio of ionic masses at the
two sublattices. Of these representations, the only
important resonance mode corresponds to the F,,
irreducible representation which may occur in the
whole frequency interval ranging from zero to infin-
ity. The perturbations due to the A, and F,, sym-
metry components of P(w?) are expected to give rise
to resonance modes only in the gap region, if it ex-
ists. No local mode or well-defined low-lying res-
onance modes are expected to occur in these sym-
metry motions. ®

Using the relations among different lattice
Green’s functions as given in the Appendix of Ref. 6,
the resonance denominator in the F,, mode may fur-
ther be reduced to the simple form

Dy, (2)=(1+B)(1 - ew’s) + B(1 + €)(3w?/Bn)(1 + wg}),
(6)

where n=y/M,, v being the nearest-neighbor cen-
tral force constant in the pure crystal and g=\/1
the relative change in the force constant due to the
impurity ion. By using Eqs. (5) and (6) for the
resonance denominator in the F,, symmetry mode,
one can calculate the nearest-neighbor central force
constant for the pure lattice if one knows the values
of the various Green’s functions for the experiment-
ally observed resonance- or localized-mode fre-
quency.

We now consider two limiting cases.

(a) Low-frequency vesonances. In the limiting
case w0, the resonance denominator (6) simplifies
to

DFlu(z)z'1+{3. 7)

Thus for a resonance appearing at very low frequen-
cy we have

B=~-1, i.e.;, M- (8)

This implies a complete decoupling of the impurity
from the host lattice. This is the effective force
constant defined earlier by Benedek and Nardelli. *°
(o) High-frequency localized modes. For a high-
frequency localized mode such as a U-center mode



2776

appearing due to a light H™ ion, the resonance de-
nominator gives approximately

——h(1+8 M{wL) (9)

where M;=1+e€is the relative mass of the impurity
ions with respect to the host-ion mass and is very
small. Equation (9) may be rewritten as

Snen)=-B M, k. (10)

The effective force constant by which the impurity
is coupled to the host lattice is $(n+1). It may be
noted from Eq. (10) that the effect of the vibrating
host lattice on the highly localized impurity motion
is approximately contained in 8, the relative-force-
constant change around the impurity. Klein' has
defined an effective force constant in the high-fre-
quency region by utilizing the U-center localized
mode after neglecting the contributions of the sym-
metry motions involving the neighboring host-lattice
ions of the impurity in the Fy, irreducible represen-
tation. As the U-center mode is highly localized in
space, only the symmetry coordinate containing the
motion of the impurity is expected to give reason-
able results.

III. NUMERICAL RESULTS
A. Green’s-Function Matrix Elements

In order to calculate the complex-valued Green’s
functions appearing in Eqs. (2)-(6), a detailed
knowledge of the frequencies and polarization vec-
tors of the normal modes of the pure crystal should
be known. The necessary data for the eigenfrequen-
cies and the polarization vectors were supplied to
us by Mahler, ? who has studied the lattice dynamics
of Csl at 4. 2 °K using the breathing shell model. 3
In this calculation, a set of the eigenfrequencies
wy,s and the polarization vectors &(x|K, s) were
chosen for 2744 distinct points distributed uniformly
in the first Brillouin zone (BZ). These points are
produced by selecting 120 points in the irreducible
45 part of the first BZ.

A staggered bin averaging procedure is followed
in the machine computation of the Green’s functions.
The Green’s function is separated into real and im-
aginary parts as

f(&)
G(w?) =§ [ ey ey

=p 2 ;ch@—z +in 2 fR)o(wh-w®).  (11)
k We— W k

First, the expressions 3, f(#)5(w,— w) are calculated
and the histograms are obtained for the various
Green’s functions. To carry out the actual integra-
tion for the real part of the Green’s functions at low
frequencies, the method of Maradudin' has been
followed. We may write
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4
o QT(w ) - QT(w)
ReG(w?) f S S
QT(w) pOmt @
2w w,,, -w (12)

where QT(w) =7, f(£)5(w, — w) and w,, is the maxim-
um frequency of the lattice. The imaginary part in
terms of QT(w) is given by

ImG(w?) = (1/2w) QT(w). (13)

The whole frequency range is divided into 60 equal
bins and the histograms are calculated at the center
of each bin, Since the mesh points have finite size,
the increment in the frequency used in the actual
integration should be finite. The value of the incre-
ment in the frequency is chosen in such a way that
the spurious fluctuations appearing in the Green’s
functions are minimized. The value 0.6 in the units
of the bin width is found to be appropriate in the
present calculations.

For the defect model considered here, in all only
ten Green’s functions are needed for a particular
impurity. The value of the element g5 (=g,) re-
mains the same for the case of a positive or a nega-
tive impurity ion. The real and imaginary parts of
the 19 Green’s functions, which are pertinent in the
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FIG. 1. Green’s function gi (solid curve, real part;

dashed curve, imaginary part).
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FIG. 2. Green’s function g7 (solid curve, real part;

dashed curve, imaginary part).

framework of the nearest-neighbor approximation,

are plotted in Figs. 1-7.

B. Effective Force Constant

As discussed in Sec. II, the effective nearest-
neighbor central force constant can be evaluated by
using the resonance or the localized-mode frequen-
cies. Recently, Genzel et al. % have measured the
impurity-induced infrared absorption in CsI. There
appears a resonance at 14.1 cm™! in the case of CsI
doped with T1*. It has been used to determine the
change in the nearest-neighbor central force con-
stant X by using Eq. (5). This effective force con-
stant is defined in the framework of the rigid-ion
model for the host lattice considering only nearest-
neighbor interactions. The change in the central
force constant is — 0. 325X 10?® sec’®. Using this
value for A in Eq. (6), the nearest-neighbor effec-
tive force constant (=§7) is 0.92% 10* sec™.

The case of the substitutional negative impurity
jon is furnished by the local-mode absorption due
to U centers in cesium halides observed by Dtsch
and Mitra.? For the local-mode frequency in CsI,
the values of the Green’s-function matrix elements

in units of (rad/sec)™? are
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gi(w}) =-3.6250% 102,
g1(w?) = - 3.6081 x 102,
g5(w?) =1.5434%X 10°%,
23(w?) =1.4133x 10°%,
£i(w?) = - 0.55401 % 10",
2:(w?)=0.13845X 10°%,
ga(w?) =-0.19255% 10" %,
g7(w?) =-0.19981 % 10°%,
g3(w?) =~ 0.53986 X 10°%,
Zo(w?) =2.9529 % 107,

Zio(w?) =—-0.46863% 10720,
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FIG. 3. Green’s functions gy, g%, g5, and g} (solid curve,
real part; dashed curve, imaginary part).
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FIG. 4. Green’s functions g7, g%, and g (solid curve,

real part; dashed curve, imaginary part).

The local-mode frequency is

w; =5. 33074 X 10" rad/sec.

The change in the effective central force constant

£ calculated from Eq. (5) is - 0.48 X 10?® sec™® and

the value of the nearest-neighbor effective force

constant

Now we calculate the value of the force constants

for the two special cases (a) and (b) discussed in

Sec. II at both the lattice sites occupied by the posi-
tive ion and the sites occupied by the negative impurity
ion. The values of the force constants derived in these
different ways are presented in Table II.
ues of the force constants computed by Benedek and

Nardelli

shown in Table II.

from Eq. (6) is 0.693% 10%® gec 2.

The val-

15 in the deformation dipole model are also
It must be noted that in their

calculation the authors used van der Waals forces
which were actually determined for a rock-salt

structur

From

€.
IV. DISCUSSION

Table II we note that for the case of the

positive-ion site, the value of the force constant de-
termined by Eq. (6) using the frequency of a low-ly-
ing resonance node due to a heavy small-sized T1*
in Csl is very near to the value obtained in Benedek
and Nardelli’s approximation given by Eq. (8). The
agreement is seen to be very close, which might re-
sult from the fact that the comparatively much
smaller T1' occupies the site of the larger-sized
Cs* ion and consequently nearly a perfect decoupling
of the impurity ion from the host lattice is observed.
A very large change in the force constant, i.e.,
94%, also supports this assumption. Further, the
present value in the breathing shell model is in
complete agreement with the value calculated by
Benedek and Nardelli®® in Hardy’s deformation di-
pole model. This is a very interesting result in
view of the fact that two quite different sophisticated
models for the lattice dynamics of the host crystal
have been used in the calculations. For the case of
the negative-impurity-ion site (U center), again the
value obtained from Eq. (6) is very near to a value
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FIG. 5. Green’s functions gg, g3, g%, g7, and g (solid
curve, real part; dashed curve, imaginary part).
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FIG. 6. Green’s functions g3, g5, and gj (solid curve,
real part; dashed curve, imaginary part).

calculated in Klein’s approximation. In fact, the
discrepancy lies within 4%, which is not very sur-
prising, since a very-high-frequency localized
mode due to the U center has been employed in this
determination. The U-center mode is highly local-
ized in space, and is practically independent of the
two remaining symmetry motions of the neighboring
host ions. This result helps us a lot in future cal-
culations concerning the U-center localized modes,
as one can safely ignore the contributions of the
symmetry motions of the neighboring ions in the F,,
irreducible representation and get rid of very cum-
bersome matrices of large dimensions. But a large
discrepancy is observed between this value of the
force constant and that obtained in Benedek and
Nardelli’s approximation. This is due to the fact
that the decrease in the force constant is only about
67.5% and consequently the H™ ion is not completely
decoupled from the host lattice. Similarly, our val-
ue is totally different from that obtained in the

LATTICE DYNAMICS OF CsI CONTAINING IMPURITY IONS
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framework of Hardy’s deformation dipole model,

where the force constant is defined only for the case
of a low-lying resonant mode. It is obvious that the
low-frequency resonance approximation is inapplic-
able to the case of a high-frequency localized mode.

V. CONCLUSIONS

A new self-consistent method for determining the
force constant for a crystal has been evolved by em-
ploying the two different forms of the resonance de-
nominator in the F,, irreducible representation.
This effective central force constant for the crystal
lattice has been introduced in the rigid-ion model of
lattice dynamics in the nearest-neighbor approxima-
tion. The force constant is determined in a self-,
consistent manner by using the results of a realistic
calculation of a resonance- or localized-mode fre-
quency and is applicable to all frequencies between
zero and infinity. The earlier effective force con-
stants introduced by Benedek and Nardelli and by
Klein are seen to be special cases of the present
one. The present value of the force constant, using
the frequency of the low-lying resonant mode due to
the positive impurity ion in the breathing shell
model, is in complete agreement with that obtained
in the deformation dipole model for host-lattice dy-
namics. The method can successfully be used for

950 ©

(10~265ec2)

0.5

9o 0

-1

FIG. 7. Green’s functions g and gfj (solid curve, real
part; dashed curve, imaginary part).
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TABLE II. Values of the nearest-neighbor effective
force constants for the two sublattices in pure CsI calcu-

lated in different approximations in units of 102 sec~2,
Lattice
site 'g'l‘ %"71 ¢oﬂ/M¢b rim,e f*/M*d
+ve -0.87 0.92 s 1.02 0.893
- ve -0.48 0.693 0.719 0.95 0.935

#Values using Eqgs. (5) and (6).

bValues in Klein’s approximation.

®Values using Eq. (8).

%Values obtained in the deformation dipole model (Ref.
15).

the determination of the effective force constant in
crystals by using an impurity as a probe. Although

B. K. AGRAWAL AND P. N. RAM 4

the present effective nearest-neighbor force con-
stant introduced in the framework of the defect
model is physically meaningful, a quantum-mechan-
ical calculation of the force constant similar to Wood
and Gilbert’s'® would improve the situation.
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