
PHYSICA L REVIEW B VOLUME 4, NUMBER 8 15 OCTOBER 1971
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The method of tight binding has been applied to calculate the energy band structure of the
lithium fluoride crystal. As initial approximations to the ultimate self-consistent-field (SCF)
calculations, two different overlapping atomic potentials were employed, one formed by a
superposition of the potential of the neutral Li and F atoms, and the other by that of Li' and
F . The resulting energy band gaps for these two potentials were 15.2 and 14.2 eV, respec-
tively. A minimal set of the ten Bloch sums of the SCF wave functions of the ls, 2s, and 2P
states of the free Li and F atoms, a set of 30 contracted-Gaussian Bloch sums, and a set of
50 single-Gaussian Bloch sums have been used as the basis functions, and our calculations
show that the minimal set is quite adequate for computing the energies of the valence band and
the lowest conduction band. A computational procedure for incorporating the Hartree-Fock-
Slater SCF scheme into the method of tight binding has been formulated and applied to carry
out the energy band calculations of LiF to self-consistency. The SCF band structure gives an
energy band gap of 10.9 eV in comparison with the experimental value of 13.6 eV. Our calcu-
lations place the top of the valence band 12.3 eV below the vacuum level, and the Li ls core
states 57 eV below the bottom of the conduction band, which may be compared with the ob-
served onset of photoemission at 12 eV and photoabsorption structure at 60 eV.

I. INTRODUCTION

In a few recent papers' it was shown that the
method of tight binding can be applied to calculate
energy band structure of the alkali metals and
group-IV crystals to a high degree of accuracy.
The introduction of the Gaussian-type atomic or-
bitals to this method has enabled us to express all
the matrix elements of the one-electron crystal
Hamiltonian in analytic form, and has greatly re-
duced the computational work required to obtain
the energy bands. It has also been pointed out that,
for the alkali metals, the use of linear combination
of atomic orbitals (LCAO) automatically generates
conduction-band wave functions at the 1 point which
exhibit the constant electron-density behavior of a
free particle, and hence the validity of the method
of tight binding is not limited to the "tightly bound"
electrons. The term "method of LCAO" is indeed
a more descriptive title than the "method bf tight
binding, " although we will continue to use these two
names in an interchangeable way.

It is natural to extend the application of the
method of tight binding to the alkali halide crystals.
In view of its success in the cases of lithium, sodi-
um, diamond, and silicon, this method may be ex-

pected to give very accurate band structure for
Lir. The electrons in the valence band of the al-
kali halide crystals are, to a considerable extent,
"bound" to their parent ions, and thus the method
of tight binding should be particularly useful for
analyzing the electron distribution in the crystals in
terms of the charge distribution of the constituent
ions.

In many works on energy band calculations, it is
customary to approximate the crystal potential as
the sum of the potential of the individual free atoms
situated at the appropriate sites of the crystal
lattice —sometimes called the overlapping-atomic-
potential (OAP) model. ' This approximation proves
to be a good one for element crystals, but in the
case of noncovalent binary-compound crystals, the
validity of this simple OAP model may be question-
able. Thus we shall adopt this OAP model only to
obtain an initial approximation to the self-consis-
tent-field (SCF) band structure (Sec. II), and then

carry out the solution to self-consistency by iter-
ation in Sec. III. A discussion of the crystal
charge distribution and comparison of the calcu-
lated band structure with the experimental observa-
tions will also be given. In this paper, our primary
interests are focused on the valence band and the
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lowest conduction band. The higher conduction
bands, particularly their relations to the atomic
d states of the constituent ions, will be investigated
in a subsequent work.

II. OVERLAPPING ATOMIC POTENTIAL

Under the OAP model we approximate the charge
density of the crystal by a superposition of the
spherically averaged charge densities of the in-
dividual fluorine and lithium units (g, and l', , re-
spectively) in the lattice, i.e. ,

p (r) =P „[g~(~ r —Q„~) y l'~ (~ r —Q —T ~)], (1)

where B„refers to the position vectors of the
fluorine atoms and 7 is a vector drawn from a
fluorine atom to one of its nearest-neighbor lithium
atoms. To calculate p~„, one can take g, and g~

either as the charge density of the neutral fluorine
(spherically averaged) and of the neutral lithium
atom, respectively, or as that of F and of Li',
respectively. The choice between such a "neutral-
atom model" and an "ionic model" is somewhat
arbitrary at this point, in view of the lack of a
quantitative knowledge of the electron distribution
in the crystal. Since the GAP is used here only as
a starting point for the SCF calculation, we can
adopt either one of the two above-mentioned models
as the initial approximation. Nevertheless, for the
purpose of comparison we have examined both the
neutral-atom and ionic models, and found only a
rather small difference between the band structures

I

where

The former can be obtained from g, and f~ in the
standard way, 6 and the latter is replaced by the
Slater approximation ——,

' (3p„„/v)'~~. Although it
is customary to further approximate the Slater ex-
change term as a superposition of the individual
atomic terms ——,'(3p„, /m)'~', this step will not be
taken in the present work. To facilitate the numer-
ical computation, we curve fit the Slater exchange
potential to a superposition of atomlike functions
centered about each of the lattice sites as

=p„[r),(~ r —R„~)+r(3(~ r —5„—T()], (3)

where the g's are chosen to have the form

(4)

with a, and c,&
being the adjustable parameters for

curve fitting. If we place the origin of the coordi-
nate system at one of the atomic sites, e. g. , a
fluorine atom, then the crystal potential, on ac-
count of its inversion symmetry, can be expanded
as a cosine series,

resulting from these two models.
The crystal potential is composed of contributions

from Coulomb interaction and from exchange as

V~„(K„)=4'„& '(- Z~+f [4'„'f,(r)+ K„q,(r)] r isn( Kr)dr} +4vK~Q 'cos(K„' T)
0

x(- ZL, +f" [4'„'l~(r)+K„q~(r)]r sin(K„r)dr}.
0

Here ZF and ZL, are the atomic numbers of fluo-
rine and lithium, respectively. For computating
the electron densities g, and g2, we used the SCF
wave functions of Li, F, and Li' tabulated by
Clementi, 7 and those of F given by Clementi and
McLean. ' %e have compared the wave functions
of Clementi and McLean for a free F ion with those
of an F ion in the ionic lattice of LiF, and found
rather little difference between them. Figure 1
shows the crystal charge densitites along the [100]
line of the lattice calculated by Eq. (1). The two
sets of charge densities calculated by using the
neutral-atom model and by using the ionic model
differ from each other by no more than a few per-
cent throughout the entire range of Fig. 1, and are
represented by the same curve (solid curve), as
their differences are too small to be displayed
clearly in this figure. The close resemblance

I

between these two sets of charge density is quite
remarkable considering the seemingly drastic dif-
ference in viewpoint between the ionic and neutral-
atom descriptions. The reason is that in the neu-
tral-atom picture the 2s wave function of Li over-
laps strongly with the F atoms, whereas the fluo-
rine 2s and 2p orbitals are less diffuse and overlap
to a much less extent with the neighboring atoms.
This is equivalent to a transfer of charge from the
Li to the F atoms, resulting in ionic properties
even under a neutral-atom model. '

A natural choice of the basis functions is the ten
Bloch sums of the 1s, 2s, 2p„, 2p, , 2p, SCF wave
functions of the neutral Li and F atoms, e. g. ,

yr (k f) —Q e&~'Rump (~r g )

bLi (k p) p &fk (%+V)yLl (p g ij)
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FIG. l. Electronic charge densi, ty of the Li.F crystal
along the [100] direction between a Li and a F site. The
charge densities calculated by the neutral-atom OAP and
by the ionic OAP are nearly the same, and are repre-
sented by the solid curve. The dashed curve gives the
charge densities obtained from the SCF crystal wave
functions. At distances larger than 0.3 units of the
abscissa scale, the SCF and OAP charge densi. ties are
too close to be distinguished in the graph.

The Gaussian-type SCF atomic wave functions have
been given by Huzinaga" and by Chancy et a/. To
illustrate the overlap of the valence orbitals of Li
with the F sites, we have plotted the Bloch sums
baL', be„and b f „for k = 0 along the [100] line of
the crystal in Fig. 2. Analogous to the idea of
charge transfer from the Li to the F atoms, one
observes that the Li Bloch sum gravitates toward
the F atoms, whereas the two F Bloch sums are
more localized around their parent sites.

To obtain the band structure we set up the 10 && 10
energy matrix of the crystal Hamiltonian based on
the neutral-atom model. The procedure for cal-
culating the matrix elements of the overlap, kinetic-
energy, and potential-energy terms has been de-
scribed in our previous papers ' and will not be
repeated here. Vfith this ten-function basis set one
should be able to get quite accurate energies for
the core states, the valence band, and the lowest
conduction band. However, the three highest roots
of the 10&10 secular equations which correspond
to the higher conduction band (l",5, Xq, X,', Lq, &3)
are expected to be less accurate because of the
limited size of the basis set. To provide more
variational freedom, we have replaced the five Li
atomic-orbital Bloeh sums by the Bloch sums of the
contracted Gaussians as was done in Eqs. (9) of
Ref. 2. In a similar manner we form three sets of
three-member contracted Gaussians for the s func-
tions of F. There are five Gaussian exponents in
the 2P atomic wave function of F' they are divided
into two sets of two-member contraction (with the
two highest exponents in one group and the two low-
est in the other) plus the remaining one-member

F
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FIG. 2. Values of the Bloch sums formed by the atomic
2s state of Li (dashed curve), by the 2s state of F (dotted
curve), and by the 2' state of F (solid curve), for k=0
along the I100] line of the crystal between a Li and F site.

Gaussian. The energies calculated by this basis
set of 30 contracted-Gaussian Bloch sums are shown
in Table I. '3 For the valence band and the lowest
conduction band, the lowering of the eigenvalues
due to the use of contracted Gaussians over the SCF
atomic orbitals are rather small, typically 0.005
a.u. On the other hand, the energy of the X,' state
of the higher conduction band decreased by 0.105
a.u. as one changed from the 10-basis set of Bloch
sums of SCF atomic orbitals to the contracted-
Gaussian Bloch sums. To further increase the
number of basis functions, we have adopted a set of
50 single-Gaussian Bloch sums: nine Is-F and five
2P-F Bloch sums with exponents listed in Ref. 11,
eight 1s-Li Bloeh sums with exponents of Ref. 11
except the smallest one, and six 2p-Li Bloch sums
with exponents of Ref. 2 except the smallest one.
The Bloch sums formed by the two omitted long-
range Gaussian overlap very strongly with the cor-
responding Bloeh sums of higher exponents already
included, and therefore offer very little additional
variational freedom. The energies derived from
this 50-basis set are given in Table I. Except for
the I 3, point in the higher conduction band, the en-
ergies computed by means of the single-Gaussian
set differ little from those by the contracted-Gaus-
sian basis. The energy band gap obtained by this
calculation is 15.2 eV compared with the experi-
mental value of 18.6 eV reported by Roessler and
Vyalker. "

%e have changed the crystal potential into the one
of the ionic model, and calculated the band structure
using the ten-basis functions defined in Egs. (7).
The band gap now becomes 14.2 eV and the energies
of some of the states of the valence band and the
lowest conduction band (relative to the top of the
valence band) are —0.0688, —0.0200, 0. 698,
—0. 531, -0.0052, and 0. 640 a.u. for X4„, X~„ X4„
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TABLE I. Energy bands of LiF calculated by using
the neutral-atom model OAP with a 30-basis set (con-
tracted Gaussians) and a 50-basis set (single Gaussians).

Energies (in a.u. )

p„„(r)=L„[p,(r —R„)+p, (r -R„-T)],
where

p, (r) =2 a,'„"(r)Y,„(ey), i= 1, 2 .

(9)

(10)

X4v

X5v

L2'„

L3'v

X4'c

Lic

Xgc

X5'

2c

Lsc

30x30
—0.927

—0.978

—0. 944

—0. 972

—0.931

—0.368

—0.200

—0.249

0. 241

—0.021

0.067

-0.132

0.114

50x50
—0.928

—0.979

-0.945

—0. 972

—0. 932

-0.369

—0. 205

—0. 269

0. 236

-0.029

0.050

—0.132

0. 060

L~» L3„, and L,c, respectively.

III. SELF-CONSISTENT-FIELD CALCULATION

The OAP potential is found to be far from
self-consistent, and thus an iterative technique
which is readily applicable to the tight-binding
scheme must be developed. In this procedure the
band structure is used to predict the electronic
charge density of the crystal in the usual manner,
l. e. )

p, (r)= —2Xfl(2v) ' f, 5 g„(k)~g«(k, r)~'dk,
ni

(8)
where N represents, symbolically, the number of
unit cells in the crystal, 0 is the volume of the
primitive unit cell, n labels the band index and i the
degeneracies (excluding spin) within the band for
each point k in the Brillouin zone, and g„(k) is unity
or zero depending on whether the band is occupied
or not. This integral' is evaluated by numerical
quadrature, and the summation over discrete points
in the Brillouin zone must be performed in such a
manner that the invariance of the total charge den-
sity under aQ operations of the space group is
preserved. The resultant p,~(r) is evaluated over
a tabular mesh of points which cover a fundamental
wedge of the unit cell with volume 0/48. The values
of p„,(r) at equivalent points outside this funda-
mental wedge can be directly obtained from one or
more of the 48 operations of the site group. This
tabular expression for charge density is then curve
fitted to the analytic form

Em

One may notice some similarity between Eqs. (9)
and (1). The functions f in Eq. (1) refer to the
charge densities (spherically averaged) of the con-
stituent atoms or ions of the crystal, whereas p,
and p~ are, in general, angular-dependent functions
and are designed to fit the crystal charge density,
which we obtained from Eq. (8), in accordance with
the form of Eq. (9). The requirement that p,~(r)
be invariant under all the operations of the space
group will be satisfied if p, (r) and p~(r) are required
to be invariant under their respective site groups.
This restriction leads to the /=1, 2, and 3 terms
in Eq. (10) being forbidden by symmetry, and the
first two nonvanishing terms in this expansion cor-
respond to l =0 and l =4. Direct evaluation of the
l = 4 term in LiF shows. this contribution to be ex-
tremely small; thus the expansion terms with l ~ 4
are neglected for this material. The neglection of
the nonzero values of / is not always justified; for
example, in the case of diamond where strong
tetrahedral bonds are formed, it is found necessary
to include both the l = 0 and l = 3 terms from Eq.
(10) in order to obtain an adequate representation
of the self-consistent charge density. ' It should
also be recognized that the inclusion of only / = 0
in Eq. (10) does not mean that the charge environ-
ment around each atom is taken to be spherical,
since p,~ is written as a superposition of p, and p2,
and the overlap of the contributions of the neigh-
boring atoms automatically produces a nonspherical
charge distribution around each atomic site.

From Eqs. (9) and (10), a Fourier expansion of
the electronic charge density may be performed
as

p, (r)=Z„p„,(K„)cos(R„r),

p„,(K„)= p, (K„)+e '"~'~
p, (K„),

p(K) =n 'f p(r)e '""'&tv

= —5 (-i)'Y, (K„) r a~+'j, (E„r)dr,
lm 0

(13)
where j, is the spherical Bessel function. If the
aIg(r) are chosen to be of the form

a"'(r)=Z n r'"' e ""'"
lm n Emn f

Eq. (13) reduces to

p)(K„)=—2 ( —i)' n, „,Y', (K„)
Eme
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x g(P„„-+2,f, y„,;E„),

y(p, , n, p; a) =- r "j„(ar)e "dr
0

2 &a-(&+&)(pm+ a2)(n-u ) /2 I,(

p (-I)' I(n+I)1'( p+I- n)

, 1(n- &+ I)1(p+t.+1)f!

x sm 2E+ p, -n tan ~ 16
p

The above expression is valid for p &0, p, +n & —1.
When p is equal to an integer less than or equal to
n, certain individual terms in the above sum
diverge. However, a limiting procedure can be
adopted to cancel the divergent terms. Once the
Foux'ier coefficients of the electronic charge den-
sity have been computed, the Coulomb contribution
to the one-electron potential is easily obtained via
Poisson's equation.

In a similar manner, the exchange contribution
to the crystal potential can be calculated by curve
fitting the exchange term as

--; [Sp.,„(r)/v]"'=Z„[f,(.—R.)+f.(.—It.—T)] .
(17)

Once this is done, the Fourier coefficients V,~(K„)
of the exchange potential are readily obtainable.
The necessary Fourier coefficients of the crystal
potential V„„(K„)are then given by

V, (K„)=-(4w/nZ'„)[Z, +Z„,e '""-p, (K„)

50 basis functions of single-Gaussian Bloch sums
described in Sec. II along with the same SCF crystal
potential used in column A to recalculate the band
structure. The resulting energies are shown in
column B of Table II. We have adopted the same
"zexo" reference point in the energy scale for
columns A and B. It is seen that an augmentation
of the basis set has only vexy small effects on the
enexgies of the valence band and of the lowest con-
duction band, and the ten-member set appears to
be quite adequate for our purpose. To improve
the k-point integration, we increase the number of
quadrature points from three to five by including
points midway along the 6 and A. lines of the Bril-
louin zone, and the SCF iteration is repeated by
using the ten-member basis set. The last column
of Table II gives the energies of this five-point
quadrature calculation. Again we have taken the
energy of the I'» state as the zero-energy point;
this zero reference is different from that used in
columns A and B. The close resemblance between
the entries in columns A and C indicates good con-
vergence of the valence band and the lowest conduc-
tion band with respect to the integration ovex' the
Brillouin zone.

Figure 3 shows the SCF band structure obtained
by the ten-member basis set and five-point quadra-
ture integration over the 0 space. The energy band
gap is 10.9 eV, which is considerably lower than
the values of 15.2 and 14.2 eV obtained in 8ec. II,
indicating the inadequacy of the GAP model fox' the
case of Lip. As illustrated in the preceding para-
graph, in spite of the very limited number of basis
functions employed in the calculations, the energy
bands shown in Fig. 3 are quite accurate within the

—p (K„)e '&' ]+ V, (K„) . (18)

This new potential which is constructed from the
band structure is then used in an itex'ative proce-
dure until self-consistency is achieved. In order
to speed up the convergence to self-consistency,
the potential used in each iteration is constructed
by averaging the predicted potential with those of
previous iterations.

In this SCF calculation we first use as the basis
functions the ten Bloch sums corresponding to the
1s, 2s, 2p functions of the neutral Li and F atoms
and a three-point integration scheme over the
Brillouin zone using points I", X, L, with a relative
weighting of 1:3:4. The results for the valence
band and the lowest conduction band ax'6 px'esented
in column A of Table II. Here we have set the en-
ergy of the top of the valence band as zero. The
calculations of the Pourier component for K„=0,
V „(0) of the crystal potential and the energy of
the valence band relative to the vacuum level will
be deferred to Sec. IV. We then used the set of

X4'„

0.000

—0.083

—0.028

-0.073

—0.007

0.408

0.604

0.522

Energies {in a.u. )~

B
—0.003

—O. 086

—0.031

—0.075

-0.009

0.402

O. 597

0.488

0.000

-O. 087

—0.029

-0.077

-0.007

0.395

0.594

0.508

The energies listed in columns A and 8 refer to the
same zero reference point, which differs from that used
for column C.

TABLE II. SCF energy bands of LiF calculated by aten-
basis set and three-point quadrature (column A), by a 50-
basis set vnth the same crystal potential as used in A

(column 8), by a ten-basis set and five-point quadrature
(column G).
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limit of the Hartree-Fock-Slater model. For the
higher condueti. on bands a larger basis set must be
used. Furthermore, the Bloch sums formed by the
d-type orbitals may also play an important role
for some of these higher states. Nevertheless,
augmentation of the basis set over the minimal ten
functions has very little effect on the wave functions
of the core states and of the valence band, aM thus
mould not appreciably alter the SCF crystal poten-
tiR1. To R very good Rppx'ox1mRtion, one can there-
fore obtain the higher conduction bands by using
the same crystal potential which produces the en-
ergy bands in Fig. 3. Investigat1ons of the higher
bands however Rx'6 beyond the scope of this pRpex'
and will be pux'sued more fully in R subsequent
mork.

The energy bands of LiF have been calculated
previously by Page and Hygh'5 Rnd by Kunz,
Miyakawa, and Oyama. '8 Neither of these two cal-
culations is of the SCF type. Page and Hygh em-
ployed a muffin-tin crystal potential which includes
nonspherical potential terms, and solved the one-
electron problem by the method of augmented plane
maves. They further adjusted the coefficient of
the Slater exchange potential to fit the experimental
band-gap data. In the work of Kunz, Miyakama,
and Oyama, the method of mixed basis was used in
conjunction mith an OAP-type potential; homever,
their scheme of construction of.the crystal potential
is quite different from ours. Our band structures
show the same general trends as those of Page and
Hygh, '~ but differ even qualitatively from the re-
sults of Kunm, Miyakawa, and Oyama. In view of
vast difference in the method of approach Rnd eal-
eulations betmeen our work arid the work of Refs.
15 and 16, no detailed comparison of these three
sets of results mill be made.

IV. DISCUSSION

The charge densities obtained from the SCF band

0
-02—

0'
Ltj L3
ld

L-0.6—

FIG. 3. Energy band structure of the LiF crystal
calculated 'by the SCF tight-binding method using ten
basis functions and a five-point quadrature for integra-
'tion over the k' space

structure are shown as the dotted curve in Fig. 1.
IQ comparing the SCF with the OAP charge den-
sities, we found the SCF values to be appreciably
higher in the vicinity around each F site (up to a
distance of about 30% of that to its nearest Li site).
These regloQs constitute only R snlRll frRct1on of
the total volume of the crystal. Outside these re-
gions, the charge densities computed by the SCF
wave functions become slightly lower than the OAP
counterparts, although the differences are too small
to be displayed in Fig. 1. The shift of the electron
clouds toward the F sites as suggested by the SCF
results can be understood at least qualitatively
from the contraction of electron charge distribution
toward the nucleus of an F ion when it is sur-
rounded by six positive eh'.rges as in the I iF crys-
tals.

As may be expected of an ionic crystal, the
charge density becomes very smaQ in certain re-
gions between the atomic sites. Furthermox 6, the

contraction of the negative charge of F '(due to
the use of the SCF crystal wave functions) discussed
in the preceding paragraph causes the charge clouds
to segregate more than what mould be anticipated
from the simple ionic model. This is contrary
to the ease of a covalent crystal like diamond, in
mhich the crystal mave functions give Rn erihance-
ment of the charge density around the midpoint
between tmo nearest-neighbox'ing carbon atoms over
the results of superposition of atomic charge dis-,
tx'lbut10Q. To 1QvestlgRte the chRx'ge d1stx'1butlon
in the LiF crystal more quantitatively, me have
calculated the amount of chax'ge enclosed in spheres
of different radii centered at a Li site. The re-
sults are shown in Fig. 4. We note that the curve
shows a plateau at the region corresponding to two
units of charge. This signifies that each Li nucleus
is indeed surrounded by two electrons; thus the
idea of regarding Li as a constituent of the I iF
crystal not only is qualitatively valid but also quan-
titatively reflects the actual charge distribution.
One may also note that the plateau of the solid curve
occurs at four-tenths of the distance to the nearest
F site which, according to Fig. 1, is also the re-
gion of minimum chax'ge density. For the purpose
of comparison, the amounts of electronic charge
of R single fx'ee Ll ion 1QSMe sphex'es of vRx'1ous
radii have been computed and shown as dots in Fig.
4 RloQg mith the solM cux ve. We see Qo pex'cept1M6
difference between the solid and the dotted curves
up to the distance of 0.4 abscissa units, indicating
that the charge distribution around the Li' in the
crystal is essentially the same as that of a free Li'
ion. Figure 4 also displays {the dashed curve) the
electronic chRx'ges 1nside vax'ious spheres arourid
a F site. At the plateau region of the solid curve,
the dRshed cux've gives R chRxge of 9.5 units. The
correspondmg values of electronic charge for R
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FIG. 4. Electronic charge distributions around a Li
and a F site. The amounts of electronic charge of a LiF
crystal enclosed in spheres of' various radii around a Li
site in the lattice are shown as the solid curve, and those
around a F site as the dashed curve. The corresponding
quantities of a free Li' ion and a F ion are given as the
accompanying dotted curves. The ordinate scale for the
Li curves is labeled in the right and that for the F curves
in the left of the graph.

single free F ion arepresented as the accompanying
dotted curve. For the F ion in the LiF crystal,
we do see a clear, though small, departure of the
electron charge distribution from that of a free

Our calculation gives an energy band gap of
10.9 eV as compared to the experimental value of
13.6 eV determined by Roesslex and Walker. ' As
was shown in Sec. III, the value of the band gap
changes very little as we augment the basis set
from 10 to 50 Bloch sums. Furthermore, both the
I'» and I', states involved in the band gap are not
affected by the d orbitals. Thus the value of 10.9
eV should represent quite accurately the band gap
of LiF which one would obtain under the Hartree-
Fock-Slater scheme of the one-electron band
model. We feel, therefore, that the discrepancy
between the theoretical and measured band gap is
due to the experimental uncertainties, or the limi-

tation of the Hartree-Fock-Slater model, or both.
Photoabsorption structure of LiF at 60 eV and
above has been found in recent experiments. ~8~ '9

They were attributed to transitions from the Li core
states to the conduction-band states. Our calcula-
tions give the energy spacing between the Li 18
core and the bottom conduction band at the 1"point
as 57 eV. Absorption bands in the energy regions
«15, 17, and 21 eV have also been reported. ~3& ~& ~

It was suggested" that these bands may be asso-
ciated with transitions at I. and X, but no detailed
identification has been given. Voile our calculated
band structures indeed give the L3- I.„XS-X4, and
I.3- La transitions in about the same energy ranges
as the three absorption bands cited above, detailed
comparison between theory and experiment concern-
ing these three bands will not be attempted in view
of the lack of certainty of the spectral identification.

With the SCF charge density it ls possible to
compute the Fourier component of the crystal po-
tential corresponding to K„=O, V„„(G), and thus
locate the valence band relative to the vacuum
level. The computation of V, (0) is particularly
facilitated by having the crystal charge density ex-
pressed in the form of Eq. (9). The Coulomb part
of V,~(0) can then be obtained from p, (r) and pz(r),
and the exchange part from f, (r) and fm(r) as defined
in Eq. (17). ' The value of V~(0) depends quite
sensitively on p, (r) and p~(r), and hence an extreme-
ly careful curve fitting of the SCF crystal charge
density by Eq. (9) must be performed. This gives
the vacuum level at 12.3 eV above the top of the
valence band, which is consistent with the experi-
mental photoemission data showing an onset at
12 eV for LiF. If, instead of the SCF charge
density, we use the GAP approximation to calculate
V,(0), we would obtain the energy of I'»„relative
to the vacuum level as —24. S and —17.4 eV for
the neutral-atom and ionic models, respectively.
Thus for the case of LiF, the energy bands relative
to the vacuum level depend more sensitively on the
detailed charge distribution than do the spacings
between the bands.
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.Small divalent cation impurities such as Co, Mg, Mn, ¹i,etc., in alkali halide crystals give
two dielectric relaxation peaks, as they are, associated with the nearest-neighbor (nn) and the
next-nearest-neighbor (nnn) vacancies. NaCl: Ni" crystals give peaks at frequencies (in Hz)
of (3.69+0.37) x].0~ e ' + ' ~~and {2.84y0. 28) x10"e-&""'"'&'~ The jump frequencies
cop (Sop = 4)g + (02), cps, and cu4 are expressed in terms of the positions of the two peaks and the
ratio of the heights of the two peaks. ~&, (d2, co3, and co4 are the field-free jump frequencies
of the cation vacancy defined by (i) co&, nn nn; (ii) co2, nn impurity; {iii) co3, nnn nn; and
(iv) cu2, nn nnn. At 80'C, the values of jump frequencies wp, co3, and v4 were found to be
(1.54+0.17) x10,(1.19+0.18) x103, and (1.20+0.20) x10~Hz, respectively. It is seen that
(dp &(d3 co4 and that co3 and ~4 are almost equal in magnitude. From the latter fact it is con-
cluded that the concentration of nn and nnn vacancies is almost equal. The relative values of
4)p G)3 and ~4 are consistent with the earlier results of anelastic relaxation measurements.

I. INTRODUCTION

Divalent metallic impurities in alkali halide crys-
tals form dipoles with oppositely charged vacan-
cies. ' These dipoles tend to orient along the ex-
ternally applied electric field, giving rise to relax-
ational losses. Several authors have observed
dielectric-loss peaks due to such dipoles.

For small impurity cations such as Co, '9 Mn, '
and Mg, two dielectric-loss peaks have been ob-
served. Dreyfus suggested that in such cases the
cation vacancy can occupy both the nearest-neigh-
bor (nn) and next-nearest-neighbor (nnn) positions
relative to the impurity, and that tan5 can be ex-
pressed as a sum of contributions from two Debye
peaks. The exact expression for tan6 is~

16''e'N, Ptan6 =
3 (2+ &O4/&os) ek T(X~ —X4)

2(&u&+ (d4+ W4)- Q(1+ ~4/&4} Xq(1+ ~4/&4) —2(&Oq+ &2+ ~4)
Q/(d+ (0/Xg X,/&u+ &d/X,

Here N; is the impurity concentration per unit
volume, P is the degree of association, a is the
lattice constant, and & is the frequency of the ap-
plied field. &„&, &3, and {d4 are the field-free
jump frequencies of the cation vacancy, defined as
follows: (i) 4d&, nn nn; (ii) &o4, nn-impurity;
(iii) &o4, nnn-nn; and (iv) (o4, nn-nnn. The two
relaxation times v; and 72 are given by

(y, ) '= X, = (o, +(o,+2(o, + ~4

+ [(&i+ ~4 —2&@4+ &d4) + 44' co t
U4

(T4) = Xp —(dg+ (da+ 2(d4+ (d4

—H~s+ ~2 —24%+ ~4) + 4&4 &4]

(2)


