
J. E. SHELBY

ues of D,/DI (see Table IV).
If one now considers the case of He and He

diffusion, Eg. (12) can be solved for QQ —Q4 (the
subscriptsi=3 for He and j=4 for He are used)
to yield

Q —Q =2RT 1—
1.155 (14)

(15)

Thus, unless DQ/D4= 1.155 at all temperatures (which
has been shown experimentally not to be the case),
there must be a difference in the activation energy
for the diffusion of these two helium isotopes. In
addition, unless the variations in DQ/D4 with tem-
perature exactly offset the 2BT term, the value of
Qe —Q& will be temperature dependent and an Ar-
rhenius plot of ln (DQ/D4) vs 1/& will be curved
Similarly, Eq. (13) can be solved for DQQ/DQ4 to
yield

DQQ/DQ4=2(1 155)-DQ/ 4

w111cil shows 'thRt DQQ/DQ4 Rlso VR1'les Rs R function
of DQ/D4 (wh1ch, of cou1'se, i't must if 'QQ —Q4 val-
ies). Unfortunately, the scatter in the data of the
present study, coupled with the small variations
expected in QQ —Q4 and DQ3/DQ4 prevents such a
detailed analysis of the results. However, the data
have been analyzed by a linear least-mean-squares
technique, which effectively averages the slope and
intercept values. Thus, the experimental values
for Q(He') —Q(He ) and DQ(He )/Do(He ) as shown
in Eqs. (4) and (5) can be compared with the mean
values of QQ —Q4 and DQ/QDQ4as calculated from
Egs. (14) and (15), respectively. These values are
given in Table V. In view of the various approxima-
tions made and the accuracy of the experimental
data, there appears to be excellent agreement be-
tween the theoretical and experimental values.
These results strongly support the validity of the
quantum corrections proposed by Leclaire.
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Commission under Contract No. AT-(29-1)-789.
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Alan J. Bennett and L. M. Both
t"ene~gl Elegt~jg Cogpogute Beseech and Development, Schenectady, +@gal poyh 12301

(Received 4 June 1971)

The electronic structure and optical behavior of materials of the amorphous series SiO„
with 0 ~x &2 are calculated using a quantum chemical cluster approach. These materials
are both compositionally and structurally disordered, and exhibit energy gaps ranging from
-1 eV for Si to - 9 eV for Si02. Each composition, i.e. , value of z, is represented here by
a number of topologically distinct clusters each containing 8 silicon atoms and 8& oxygen at-
oms. Each silicon is tetrahedrally coordinated with y oxygens and 4-y silicons with 0 ~y «4
and ('y) = 2g. We saturate peripheral bonds by a generalization of the periodic boundary con-
ditions appropriate for a regular array. A simple molecular-orbital scheme, the extended
Huckel theory„ is applied to obtain electronic energy levels for each cluster. Using the in-
direct constant-matrix-element approximation and taking a weighted avexage over the various
(configurations, we obtain the imaginary part of the dielectric constant for a given composition
x. The calculated results are in rather good semiquantitative agreement with the experimen-
tal results of Philipp, including the variation of the energy gap with composition and the gen-
eral shape of the &2-vs-frequency curves.

I. INTRODUCTION

Silicon and oxygen may be combined to form
amorphous materials of composition SiO„with x
varying from 0 to 2. The optical properties of

amorphous Si, SiO, SiOq. s, and SiO~ 3 have been
studied by many investigators. Recently, Philipp'
reported systematic measurements of the absorption
coefficient and reflectance of SiO, SiO„&,, and
SiO~. These materials exhibit a wide spectrum of
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bRnd gRp8 ranging from 1 fol' amorphous slllcon to
-9 eV for amorphous silicon dioxide. This charac-
teristic is, in part, responsible for their use in
multilayer filters for modifying the reflectance of
dielectrics and metals.

X-ray diffraction measurements have indicated
that silicon exhibits tetrahedral coordination in the
amorphous state, and that amorphous6 SiO2 consists
of a random network of Si atoms tetrahedrally coor-
dinated with oxygen atoms, each of which links two
Si atoms. For intermediate compositions, e.g. ,
SiO, there is some difference of opinion as to the
interpretation of the various x-ray results. ' The
samples used may possibly not have the same struc-
ture. Some investigators have held SiQ to be a
mixture of SiO& and Si, i.e. , a two-phase system.
The x-ray results can also be interpreted on the
basis of a random network model in which each sili-
con is tetrahedrally coordinated with y silicons and
4-y oxygens, with y ranging from 0 to 4. Each
oxygen connects two si, lieons. This model was used
by Philipp in interpreting his optical x'esults which
were not in accoxd with a two-phase model. Philipp
concluded that the optical phenomena couM be quali-
tatively accounted for by the presence of groupings
of Sl—Q Rnd Sl—Sl bonds ~ In pRx'tlculR1

y the stRtl8-
tically determined relative number of Si-(0,) and
Si-(Si4) tetrahedra in each alloy was correlated with
its optical properties.

In recent years, a variety of calculations of the
electronic properties of random alloys have been
performed. Most are based on the single-site ap-
proximation in which the true medium surrounding
a given atom is represented by an effective one.
The simplest such approach, the virtual crystal ap-
proximation in which all the atoms of the material
are represented by the same average propex'ties,
have been used to study the GeSi„system. ' Velicky,
IGrkpatrick, and Ehrenreich~ have noted, however,
that the approach ma. y not predict physically present
band gaps. The average matrix approximation in-
troduced by Beeby and Edwards" has been shown, '3
on the other hand, to introduce spurious band gaps.
The coherent potential approximation, due to
Soven, '~' is a considerable improvement on the
previous approximations. It has so far been applied
only to very simple models and it is not immediately
clear how it can be applied to the present system.

Gubanov' has described a second genera, l ap-
proach to the calculation of alloy properties. A
selected cluster of atoms is prescribed, with an
average being taken over all the atoms external to
that cluster. A second average is then taken over
the configuration of the selected group of atoms.
This technique is justified by the observation that
electronic properties of amorphous semiconductors
and insulators are determined by their short-range
order. ~~'7 Abarenkov et al. ,

8 have used a some-

what similar approach to calculate the energy gap
in SiQ2 and GeQ2. The cluster used contained one
silicon (germanium) atom and four oxygen atoms
with only certain directed orbitals on each oxygen
being included in the calculation.

This paper presents a calculation based on this
second general approach. We apply quantum chemi-
cal methods to a cluster of Si and 0 atoms arranged
in a network as in Philipp'8 analysis. This quantum
chemical cluster approach has been used previously
ln st dies of chemlsorptlon, ""and of defects ln
SiO3 and diamond. For a material of composi-
tion SiQ„, we include in our cluster 8 Si and Sg Q
atoms. %'e consider a variety of configurations and
then average the final results for optical properties
over the configurations. Since cohesive energies
of the configurations are not calculated with suffi-
cient reliability, no Boltzmann factors are used in
the averaging. The various configurations are dis-
tinguished by the number of neapiest- and next-near-
est-neighbor oxygen atoms in the network. Qxygen
and silicon positions for each configuration are de-
termined from a set of rules based on the lattice
parameters of crystalline silicon and P-erystobal-
lite, the SiQ& crystal most similar to the presumed
structure of amorphous SiQ2. @* '

By assuming a prescribed set of fixed positions
for the oxygen atoms, our calculations ignore much
of the structural disorder associated with shifts of
lattice constant and bond angle in an amorphous
sample. Compositional disorder is emphasized.
Experimental studies of amorphous vs cx ystalline
elemental semiconductors~ and semiconducting
GeSi alloys indicate that the disorder tends to
smooth out the electronic density of states and re-
duce the band gap by tenths of an eV. These changes
are much smaller than the expex'imentally observed
differences between the optical characteristics of
the different SiQ„materials.

As described below, the boundary atoms in each
configuration are intereonneeted in order to elimi-
nate dangling bonds. Such dangling bonds may,
however, actually be present in amorphous mate-
rials due to the presence of voids, etc.

The electronic energy levels associated with a
given cluster axe calculated using a very simple
molecular-orbital approximation, the extended
Huckel theory popularized by Hoffman. The tech-
nique is not R self-consistent one Rnd, as a result,
only semiquantitative results may be expected for
the materials with high oxygen content. Better, but
more computer- time-consuming, molecular-orbital
schemes~ have been developed and could eventually
be applied to the alloy problem.

The imaginary part of the interband dielectric
constant &2 is calculated in the indix'eet constant-
matrix-element approximation. That is, the lack
of long-range order is assumed to eliminate k con-
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FIG. 1. Eight-atom silicon cluster (shaded circles)
enmeshed in a periodic array (open circles). Primed
sites (e.g. , 7') are equivalent to unprimed sites (e.g. ,7).

servation, and the momentum matrix element is
taken to be a constant. This assumption has been
shown adequate to account for the optical properties
of a variety of amorphous materials.

Section II A describes the determination of the
various lattice configurations and their connectivity.
The extended Huckel theory is briefly discussed in
Sec. IIB. Section III contains our results and a
comparison with Philipp's data. Some conclusions
are presented in Sec. IV.

atomic orbitals (LCAO) energy-band calculation
carried out at a finite number of k values in the
Brillouin zone.

The situation can be visualized more easily by
using a two-dimensional model —a cluster of six
atoms considered as part of a hexagonal net. This
is shown in Fig. 2(a) in which we show how the
cluster is repeated periodically. Figure 2(b) shows
the cluster together with the outside bonds which
must be saturated.

We now consider SiO~, which is represented by a
simplified version of the 8-crystoballite structure.
This structure can be obtained ' from the diamond
lattice of silicon by simply inserting oxygens mid-
way between all silicon nearest-neighbor pairs,
i.e. , by replacing all Si-Si bonds with oxygen
bridges. This includes in Fig. 1 the nine outside
bonds (1—6', 1—7 ', etc. ) as well as the seven
bonds. In order to accommodate the oxygens we
must expand the lattice so that the Si-Si distance
changes from 2. 36 to 3. 1 A. The two-dimensional
version of this process is shown in Fig. 2(c).

II. METHOD

A. Lattice Configurations

We now wish to construct clusters of silicon and

oxygen to represent the compounds intermediate be-
tween silicon and SiO&. We shall work with clusters
of 8 silicons and n oxygens where n ranges from 0
to 16. We begin with pure silicon for which we
adopt a crystalline model, i.e. , the diamond lattice
with nearest neighbor distance of 2. 36 A. This ig-
nores the density changes in going from the crystal-
line to amorphous phase. For this case, we use
the cluster of eight silicons shown in Fig. 1, and
assume it to be part of a periodic array in order to
eliminate the dangling bonds at the edge of the clus-
ter. This is indicated in Fig. 1, and we note that
the appropriate unit cell for this case is that for the
simple cubic lattice. In the calculation we require
the wa'm function to be periodic over this unit cell.
Thus for''Fig-. 1, we assume that the amplitude of
an orbital on atom 7

' is equal to the amplitude of
the orbital on 7, and so forth. Thus the bond con-
necting 7 and 1 in the figure effectively connects 7
and 1, and this amounts to tying up the bonds around
the outside of the cluster. These outside bonds cor-
respond to additional matrix elements in the Hamil-
tonian matrix described below. The procedure is
described in more detail in our SiO2 paper. ' The
calculation is equivalent to a linear combination of

(b) (c)

6

(e)

FIG. 2. Two-dimensional six-silicon illustrational
cluster (large solid circles): (a) enmeshed in periodic
array; (b) showing outside bonds to be saturated; (c)
with oxygens (small solid circles) inserted at all possible
sites; (d) with crosses marking sites for insertion of
three oxygens; (e) after insertion of the three oxygens
(small solid circles) and expansion of the required Si-Si
separations; (f) showing the three-oxygen-atom example
embedded in larger system.
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For the intermediate case SisO„, it seems rea-
sonable to suppose the silicon positions tobe topolog-
ically equivalent to both the limiting cases of Si
and SiO~. Thus we shall consider the silicon struc-
ture of Fig. 1, or the two-dimensional example of
Figs. 2(a) and 2(b), and we now wish to replace n
of the silicon bonds by oxygen bridges and to in-
crease the corresponding Si-Si separations. There
are a variety of ways to choose which bonds to
change, and this will be discussed further below.
Having chosen a given configuration, however,
imagine first marking the bonds in the cluster to be
changed as in Fig. 2(d), and then increasing the
corresponding Si-Si distances without changing any
directions. This is illustrated in Fig. 2(e), for our
two-dimensional example. We can tie up the outside
bonds in this case in the same manner as described
above, even though the configuration produced for
the cluster can no longer be continued periodically.
The cluster is, in fact, periodic in a warped hyper-
space.

To characterize this procedure more precisely
for the two-. or three-dimensional case, and to show
how to calculate all nearest-neighbor Si-Si overlaps
in this model, let us define the vector matrix D&&

(i,j = 1 —8) as follows. For pure silicon, if i and

j are nearest-neighbor silicons in the cluster, then

D&&
= R& —R&, i.e. , D defines the vector distance

between them. If i and j are nearest neighbors,
i.e. , if z is a neighbor of a displaced version of j
in the periodic continuation, then D&&

= R&. —R&. sim-
ilarly for i and j. Otherwise we take D&& to be
zero. We see that D,&

is well defined for all i and

j in the cluster and furthermore that all nearest-
neighbor overlaps including outside bonds as well
as inside ones can be calculated using 0&&.

Now, for SisO„, suppose x&& is 1 unless i and j
are connected by an oxygen bridge in which case
x&& =d, where d is the ratio of the Si-Si distance in
SiO& to that in Si. Then for Si80„we define the vec-

ftor matrix D,&.=x,&D,&. By the use of D,&, we can
calculate all overlaps between neighboring silicons
and between these and the intervening oxygen if it
is there. Thus our procedure is determinate for
first neighbors. It is also determinate for second
neighbors. Thus we can define a second-neighbor
distance between i and k in the cluster through j.
We have

~r

Dykey=

M gy Dgk

assuming ij and jk are neighbor pairs. This vector
distance can be used to calculate overlaps between
i and k. Note the dependence on j. 8 we are to in-
clude second-neighbor overlaps we must add up the
overlays for equivalent atoms inside and outside the
cluster. Thus for atoms 1 and 4 in Fig. 2(a) we
need overlaps between 1 and 4, 1 and 4 ', and 1 and

4 . These are characterized by the index j, which
in this case has values 3, 5, and 6. In the three-
dimensional crystal each second-neighbor pair has
four overlaps, one inside and three outside.

This procedure breaks down, however, if we try
to go to third neighbors. For example, in Fig.
2(a) the distance between 1 and 5 via the paths 1, 2,
4, 5 and 1, 6 ", 2", 5 are the same and there is no
preferred choice of the two paths. When oxygens
are added in selected intermediate sites, the two
paths are no longer necessarily equivalent, and so
the distance is not well defined.

We should emphasize here that the relatively
simple scheme we have developed works only for a
sufficiently small cluster. For a larger cluster,
we would certainly have to bend and twist the bonds.
For our particular choice of cluster, we have a
well-defined way of calculating first- and second-
neighbor silicon-silicon Hamiltonian matrix ele-
ments, given a configuration of bonds and bridges.
As noted below, the oxygen wave functions are con-
tracted relative to those of silicon and so only near-
est-neighbor Si-0 overlaps are needed.

It is interesting to compare our scheme with one
of Gubanov's' proposals. He equated the modulus
of the wave function on an atom external to his
cluster to one, and let the phase be determined by
a factor e'"' &, with k an arbitrary wave vector and
R, the position vector of the external atom. He en-
visioned averaging over external atom positions.
An analogous boundary condition for our work might
be $8.=$6e' '' 8 "~' ' etc. If we were to average the
final results (density of states) over a suitable range
of k, such a boundary condition would lead to exact
results in the crystalline case.

Consider now the choice of positions for the n
oxygens of the SisO„cluster. We shall assume that
the oxygens are to be distributed at random among
the available sites. For our finite cluster we would
ideally wish to calculate the level structure for all
possible configurations and perform a suitab1e aver-
age. Let us now explore the feasibility of this
scheme.

For a given value of n there are ('„') ways of
choosing n of the 16 possible bonds to be converted
to bridges. However, because of the symmetry of
the cluster, not all of these ways are indepeyglent. ,

Thus for n = 1 all 16 possible sites for the'oxygen
are equivalent. For the general case we can deter-
mine how many configurations are equivalent to a
given configuration C by considering the group of G
symmetry operations which take our set of 16 sites
into themselves. We emphasize that we are consid-
ering the cluster as periodically extended. Then
clearly all 48 operations of the cubic point group
will take the lattice into itself and permute the 16
sites. In addition we have the fact that our unit cell
contains four primitive unit cells of the diamond
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lattice, so that there are four translations. Alto-
gether there are 4&48= 192 space-group operations
which permute the 16 sites into an equivalent set
of 16.

However, if we are considering a given configu-
ration, some of the above operations may not change
the configuration at all. These form a group of
order G, . Then the number of different configura-
tions equivalent to c is N, = G/G, . For our example
of n = 1, we see from Fig. 1 (putting the oxygenbetween
silicons 4 and 5) that the oxygen position is un-
changed if we perform the six operations of the tri-
angle group with or without an inversion through the
oxygen. We therefore have |",=12, so that N,
= 192/12= 16, as we have already discovered.

The analysis of the configurations into sets of
equivalerit configurations rapidly becomes tedious.
For n = 4, there are 1820 configurations and for n
= 8, 128VO configurations. To simplify the calcu-
lations, we note that configurations can also be
classified by the number of first-, second-, and
third-neighbor Q-O pairs. Each O-O pair falls into
one of these categories, as an inspection of Fig. 1
indicates. Two configurations with different neigh-
bor distributions are surely distinct (i. e. , not
equivalent) although the converse is not true. The
classification by neighbor distribution can be readily
accomplished by computer. We then are able to
make the more complete breakdown by inspection
for m= 4. We found 20 distinct configurations with
weights from 6 to 192, and of these 15 accounted
for 95/0 of the total.

It may be argued that two configurations with the
same number of first-, second-, and third-neighbor
O-O pairs may well have extremely similar energy
spectra even though they are not precisely equiva-
lent. One might therefore consider only choosing
one of a given neighbor distribution to represent
the lot. A comparison of this method with a more
complete analysis showed very similar results for
n= 4 (see the Results section). We have therefore
used the neighbor distribution grouping for the rest
of the calculation in order to minimize computation
time.

There are two possible physical interpretations
which may be assigned to our model cluster. The
chosen-, .atoms may be considered to be a finite rep-
resentxNom;:of the entire amorphous sample which
actually contains - 10 atoms. In the crystalline
case, analogous calculations yield energy values
and wave functions at selected points in the conven-
tional Brillouin zone. Alternatively, the cluster
may represent a much smaller microregion in the
sample. This latter interpretation should, in fact,
require an examination of flucutations in the number
of oxygen atoms contained in the cluster when con-
sidering a given SiO„material. We shall not, in
fact, pursue this here.

B. Extended Hiickel Theory

The extended Huckel theory is a semiempirical
LCAO-molecular-orbital scheme, which has been
used extensively in quantum chemistry. Some at-
tempts have been made to derive its formulas
from the full Hartree-Fock equations. It has, at
any rate, proven quite useful in semiquantitative
calculations, ' although as noted in the Introduction,
its weaknesses are well known. '

The wave functions are taken as linear combina-
tions of all the valence orbitals j A, ) centered on the
various atoms of the system, i.e. ,

v& =~~~~I ~)
with

~A) =e ~"r"" I', (8, y),
where the parameters Z, and n„are either taken
from atomic data or empirically determined. The
Schrodinger equation, written in this nonorthogonal
representation, leads to the determinent

ia-ES[=O,
where

I~ is the valence-state ionization potential, ~& ' K is
an empirically determined constant generally taken
equal to 1.75, and (A. l o ) is an overlap integral be-
tween atomic orbitals.

The IA) on a silicon atom are taken to be one 3s,
three 3p and five 3d atomic orbitals with g, ~ &= 3,
I, ~ ~= —13.53, —V. BV, and —2. 06 eV, respectively,
and Z, ~ „=1.84, 1.63, and 1.63, respectively. The
d orbitals are thought to be of considerable impor-
tance in the cohesion of silicates. ' Z, and Z~= Z&

were determined by fitting the known band struc-
ture at the I and X points in the Brillouin zone of
crystalline silicon as well as possible while holding
the other parameters at their conventional atomic
values.

The I A ) on an oxygen atom are taken to be one 2s
and three 2p atomic orbitals with g, ~= 2, I, ~
= —32. 38, and —15.85, respectively, and Z, ~= 2.2V.
These are all atomic values. " The orbital expo-
nents Z, ~ are large relative to those of silicon and
account for a rapid decrease of the overlaps involv-
ing oxygen orbitals with internuclear distance. This
permits us to include only nearest-neighbor oxygen
interactions.

We include in H and S overlaps within the cluster
and also overlaps around the edge (Si-Si, Si-Si-si,
Si-O, Si-0-Si) as outlined in Sec. IIA. It is inter-
esting to attempt to justify this in terms of the in-
terpretation of our cluster as being a part of a
larger structure. In the Schrodinger equation, let
o

' be outside the cluster and A. , cr inside. Then we
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FIG. 3. Energy levels at I" andX points of silicon
BrHloQin zone according to (a) present model, Q) Bassani
and Yoshimine OP% calculations, and (Ic) Cohen-
Bergstresser pseudopotential calculation.

accuracy in our calculated silicon band structure
could be improved with either an intensive search
for parameters which allow agreement with experi-
ment or a more sophisticated molecular-orbital
scheme. ~'38 Qur aim here, however, is to illus-
trate the general approach with the simplest pos-
sible model.

We have carried out the calculation of the elec-
tronic energy levels a,nd wave functions for clusters
with 0, 1, 2, 4, 8, 12, 14, 15, and 16 oxygens. In
Figs. 4(a)-4(e) are shown histograms of the density
of states for the clusters with 0, 4, 8, 12, and 16
oxygens. Ta,ble I gives some details about the actu-
al configurations used in the calculations. The
density-of-states histograms are normalized to unit
volume. To accomplish this requires calculating
the volumes for clusters of composition intermediate
between Si and SiQ2. We have estimated these by
calculating the volume for hypotheti. cal substances
with Si-Si distances scaled linearly between that
for Si and SiQ~. This gives for the volume of SisQ„
relative to Sla

%'6 can truncate these equations by equating the
amplitudes C, . outside the cluster [e.g. , 2 in Fig.
2(f)] with amplitudes on selected sites inside the
cluster [e.g. , 2in Fig. 2(f)]. This example adds
the term (II62 -$63.) to the secular determinant in
'tile 62 posltioll. Similarly (IIgge —8~i) ls added lllto
the 26 position. This is a way of generalizing the
periodic boundary conditions. In order for the re-
sulting matrix to be Hermitian, however, these
matrix elements should be equal. This implies a
rather specia, l arrangement of the surrounding
atoms as illustrated in Fig. 2(f) where the Si atom
6 is in the same position relative to 2 as is 6 to
2, Rnd similarly for the other surrounding atoms.
This arrangement would automatically be the case
for a truly periodic structure.

HI. RESULTS

The eigenenergies and eigenfunetions obtained
from the calculation on the pure silicon lattice ean
be shown, by the application of group theory, to
correspond to 0 states at the I' and X points in the
conventional. Brillouin zone. Figure 3 shows the
energy levels near the Fermi energy for those
points. The corresponding results of the Bassani-
Yoshimine QP%' Rnd the Gohen-Bergstresser
pseudopotential parametrizations are shown in
Figs. 3(b) and 3(c), respectively. The most serious
qualitative discrepancy between oUr models Rnd the
others is the inversjon of the X& and I'z5 levels which
is responsible for the predicted direct band gap .

being smaller than the indirect band gap. As has
been noted previously, the valence band is relatively
insensitive to the parametrization used. The in-

& =Q(l —fg x)2. 36+ f'6x&& 3.l]/2. 36j' .
In the ease of Sis the results are extremely spikey

because we have used a regular structure and only
a few points in the Brillouin zone. This is less so
for Si03, and for intermediate cases, the statistical

gig t h ff t. I it p t g
these results let us begin with SiQ&. There is a
very narrow peak in the density of states in the
valence band. It is primarily composed of oxygen
p levels. As px eviously noted, the present method
probably overestimates the ionicity and hence the
concentration of this bond on the oxygen sites.

Upon removing an oxygen and contracting the bond
we have found that a level appears in the energy
gap. This level is occupied for electrical neutrali-
ty. It corresponds to a Si-Si bond, most simply
thought of as a bonding combination of tetrahedral
hybrid orbita, ls on adjacent silicone. As more oxy-
gen vacancies are formed, the Si-Si bonds begin to
interact, and the gap level spreads out into a band
which is essentially the silicon valence band. This
can be seen in Figs. 4(b)-4(d). The calculated Si02
conduction band is composed primarily of si(hoon-. .

.P
and d levels. %'hen oxygen atoms are removed, this
band also broadens so that the band edge moves
down somewhat. The net result is an energy gap
which decreases as we go toward silicon.

Looking at the system from the silicon end, the
Rddition of oxygen results in the occurrence of Rn
oxygen p band in the valence band of silicon, and in
the opening up of the energy gap. In Fig. 5 the en-
ergy gap obtained in the present calculation is com-
pared with gaps obtained by Philipp. We shall dis~™
cuss this further below in connection with an alter-
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native method of calculating the gap. We note here
that the agreement is quite reasonable.

To compare our work more directly with the ex-
perimental results of Philipp, we calculate E2, the
imaginary. ,part of the dielectric constant. This is
given for an insulator by

2

e,((u) =, , 2 i p„i '5(e, —a„-(o),m~ cv

where c and v refer to conduction and valence bands,
P„, is a momentum matrix element, V is the nor-
mali. zation volume, and the remaining symbols have
their usual meanings. Recently some success has
been obtained for amorphous materials, by taking
the momentum matrix element to be a constant and

ignoring the k conservation which would occur for
a regular solid. Adopting the spirit of this "indi-
rect-constant-matrix-element" approximation, we
take

A
&2=

mrna
( + ~(~e '~ ~))co hg .

(u ~ c,o

Here 4 is a finite-width 5-function and A is a con-
stant. We are thus counting the number of possible
transitions within a given energy range, for a given
composition, and averaging over configurations.
That two factors of V are needed is clear from di-
mensional arguments, since the number of conduc-
tion and valence band states each increases with V.
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TABLE I. Oxygen configurations used in the calcula-

tions, classified by O-O neighbor distribution. For the
cases Si80~2 and Si80~4, the configurations used are ob-
tained from those for Si&04 and Si802, respectively, by
interchanging oxygen bridges and si-Sl bonds.

No.
of

configs.

Si802

:7-
a. $-
4Ct
CO

4'-

I
'

l
'

I
'

I
'

I
' }

'
I

' C~)

0

4

3

~ 0 I

14, 24, 38, 57
14, 24, 56, 38
28, 34, 45, 56
24, 34, 38, 56
26, 34, 45, 58
26, 34, 45, 57
36, 34, 45, 57

24, 34, 45, 57
24, 34, 45, 58

8 08
12
14

8 16
9 10
9 12
9 14

10 9
10 10
10 13;
10 12
10 13
10 14
11 10
11 12
12
12 9
12 10
12 ll
12 12
13 10
14 8
14 9
14 10
16 8

6
24
48
12

192
384
576
192
384
768
720

1344
384
768

1536
24

384
720

1536
504

1344

576
384

~ ~ 0

18, 17, 27, 28, 14, 36, 34, 56
17,27, 28, 16,34, 45, 38, 57
18,28, 16, 14, 24, 36, 37, 57
18, 17,27, 28, 14, 36, 34, 45
17, 27, 28, 14, 34, 45, 56, 37
18,27, 28, 36, 34, 56, 37, 58
18,27, 16, 14,45, 56, 38, 57
18, 17, 14, 24, 26, 36, 56, 58
17, 27, 28, 14, 24, 36, 57, 58
18, 27, 28, 24, 36, 34, 56, 38
18, 17, 28, 24, 34, 45, 37, 57

e 0 ~

17,27, 28, 24, 26, 34, 56, 37
18, 27, 28, 14,24, 45, 37, 58
18, 17, 28, 16,36, 45, 38, 58
18, 28, 24, 36, 56, 38, 37, 58
18, 17, 28, 16,26, 36, 56, 57

e 1 ~

18, 28, 16, 14,24, 26, 36, 38
17, 27, 28, 24, 26, 36, 37, 57

Code number showers oxygen positions in terms of
neighboring silicons. Thus 14 corresponds to the oxygen
bebveen Si(1) and Si(4) as labeled in Fig. 1.

%e can interpret one V as the normalization volume
and the second in terms of an effective range for the
averaged momentum xnatrix element.

I i I i I i l i ) i. I i I

'b t e 6 8 e a w ii'

NUMBER OF OXYGKIIIS

FIG. 5. Energy gap as a function of the number of
oxygens: crosses, as obtained in Philipp's experiments;
solid circles, as calculated from ~2., open circles, as
calculated from averaged electron density of states.

The xesults for &z in arbitra, ry units are given in
Figs. 6(a)-6(i) for various oxygen concentrations
Note that Figs. 6(a)-6(c) are plotted on a scale dif-
ferent from that used for the other curves. The
histograms are the result of averaging over ensem-
bles of configurations for each concentration as de-
scribed above. Fox the case of four oxygens we
have compared the result of averaging over aQ pos-
sible configurations (dashed histogram) with that of
classifying configurations by oxygen neighbor dis-
tx'ibutions. Clearly there is very little difference
between the curves. In particular, they resemble
each other much more than they do the figures
characteristic of other compositions. This justifies
our use of the neighbor classification for other com-
positions.

Figures 6(a), 6(e), 6(f), and 6(i) can be compared
with the experimental results of Philipp, which are
given in Fig. V. There is a good deal of similarity
between the two sets of curves. In particular, the
xelative magnitudes of &2 for the four materials and
many major structural features are in good itualita-
tive agreement with experiment. Fox SiQ& the theo-
retical histogram has peaks in it which correspond
to transitions from the narrow oxygen p bond to
structure in the Si p-d eonduetion band, and which
resemble peaks in the experimental result although
the rather crude appx'oximations used here preclude
making definite identifications. The persistence. ,of-

this structure in the SiQ„Q 5 calculation qs-well as
in the experimental results is also noteworthy. For
the SiQ case a douhle-humped structure is seen in
both theoxy and experiment. The lowex peak is due
to transitions from the Si valence band to the con-
duction band, while the uppex one is due to transi-
tions from the oxygen p band to the conduction band.
In general, it therefore appears that our relatively
simple approximation is quite useful.

The results for &3 furnish us with values of the
enexgy gap which are shown by solid cix.cles in Fig.
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FIG. 6. Imaginary part of the dielectric constant ~2

In arbitrary units fol the clusters (a) 8189 (b) Sl809 (c)
Si802, (d) Si804, (e) Si808, (f} Si80~2, (g) Si80~4, (h) Si80fs
and (i) Si80(6. Note the scale change in Figs. (a)-(c}.
The dotted linea in (d} shower the results obtained using all
distinct configurations.
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5. We pote that these results for the energy gap
differ a little from those obtained from the electron-
ic density of states. The reason is that the present
result for the energy gap is the smallest level dif-
ference between valence and conduction band states
in any given cluster in our ensemble, while the en-
ergy gap from the average density of states gives
the difference in energy between the lowest conduc-

- tion-band state and the highest valence-band state
in the entire ensemble. The latter is understand-
ably smaller. We can argue that the present method
is a more valid one of obtaining the gap and &z, but
the difference is not very great, and either result
appears to give good agreement with the experi-
mental values. At any rate, the differences are
probably less than the uncertainty brought about by
the use of a finite cluster etc.

IV. CONCLUSIONS

Our treatment of the SiO„system is clearly in-
adequate in many respects. The extended Huckel

I 2 3 4 5 6 7 6 9 IO II 12 13 14 15 16 I? 16 19

a~(ev)

FIG. 7. Measured imaginary part of the dielectric
constant &2 according to Philipp: dashed line, Si; solid
line, SiO; dash-dot line, SiO ~.5, dotted line, Si02. Note
change of scale for Si.

theory itself is crude, and, without any provision
for charge consistency, is known to overestimate
the ionicity. We expect in fact that the wave func-
tions are not terribly good, which incidentally is a
good reason for using the indirect-constant-matrix-
element approximation. We have used an oversim-
plified model of the Si-0-Si bridges; it is known
that the angle is usually somewhat different from
180'. We have not made our material really amor-
phous as we have maintained the topology of the
diamond and/or P-crystobolite lattice. We have
also omitted a consideration of defects, such as
nonbridging oxygens and dangling Si bonds.

A further omission which is probably quite im-
portant is the matter of exciton absorption which in
many insulators dominates the fundamental absorp-
tion edge. We expect that such an exciton would
consist of a hole rather well localized on an oxygen
and an electron mainly occupying the neighboring
silicons. It is conceivable that the first large peak
in the absorption edge, which is in fact lower in
energy than our theoretical fundamental edge, cor-
responds to an exciton state. The possibility is
certainly worth further investigation.

In spite of the above inadequacies, the fact that
the results account for the main features of the op-
tical absorption of compounds intermediate between
Si and SiO2 suggests that we have included the fun-
damental physics of the system in our treatment.
Our results lend added weight to Philipp's model of
a random network for this system.

In future work we hope to deepen our understand-
ing of the electronic states of these systems by
analytic treatments as well as to extend the cluster
calculations.
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Effect of Pressure on the Static Dielectric Constant of KTa03
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- The static dielectric constant & of KTa03 has been measQred fro& 4 to 300 K and at pressQres

Qp to 26kbar. The tempera, ture T& at which q 'deviates from a Curje-Weiss law, attributed to
quantum effects, is found to increase with increasing pressure with a slope d 1nTl/dP= 3%/kbar.
At zero pressure, T~ ls 53 K. The pressure dependences of the Curie constant and Curie tem-
perature were obtained also. The Curie constant decreases at the rate of 0.9%/kbar, and the
Curie temperature decreases at the rate of 4.8 K/kbar. The reason for the increase of 1'&

with pressQle ls discussed.

INTRODUCTION

It has long been known that ferroelectrics with
very lour Cuxie temperatuxes shoe& deviations from
the Curie-%'eiss law for their dielectric response
at temperatures much greater than the Cuxie tem-
perature. '~ As the tempexature of a paraelectric
sample is lowered, a temperature (defined as Tl)
is reached below which the static dielectric con-
stRnt & changes less rapidly than px'edicted by ~

=&/(& —&e). At temperatures much less than 2'„
& becomes tempexa, ture independent. A more pre-
cise definition of T& vgill be used later, but it is,
in effect„ the temperature at which the Curie-%cise
law fails. SrTiara and ETRE are examples of
materials vrhich exhibit this behavior. They both
have a To belovr 35 K, and start deviating from the
Curie-%cise law at a tempera, ture of about 50 K.
This behavior is usually attributed to quantum
effects. Slater treated an ion in an. anharmonic
potential mell classically in ordex' to derive the

ionic polarizability of a ferroelectric crystal in its
paraelectxic phase. In 1952, J. H. Barrett ex-
tended this theox'y by cax'rying out a. quantum-me-
chRllicR1 t'1'eR'tnlellt of the lonlc polarlzahllltjj. IB
his theory, the invest quantum level for the ion
has an energy equal to kT&, so tha, t for tempera-

- tux'es less than Tl all ions are in their los&est en-
ergy states and further reduction in the tempera-
ture causes no change in the dielectric. response.
Barrett derived the relation

~ =a/[-,' r, cot (r,/2r) —r,j,
and this seems to fit experiments quite mell, if

Tg~ RHd + Rx'e tx'eated as empirically determined
constants. Bax'rett was not successful in deter-
mining these constants from first principles.

Pressure experiments have been made on many
ferroelectrics in ox'der to fin(I tbe volume depen-
dence of To and the Curie constant 8, effects which
are noir fairly vrell undex'stood. 5 However, ap-
parently no study of the volume dependence of Tj


