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The near infrared emission of MgO: ¹i~ at 77 and 5'K is reported. At helium temperature
the spectrum consists of one sharp zero-phonon line between the I'3~( T2~, t2~~) and I'5~( A2~,
t&~~eg2) states, and an accompanying vibrational sideband. On the assumption that the perturba-
tion giving rise to this sideband comes from an interaction of the impurity ion with its nearest
neighbors, the intensity of the band can be described in terms of a weighted sum of localized
Green's functions. A calculation of these functions is made based on a lattice-dynamical shell
model. By taking a semiempirical admixture of the various calculated Green's functions, a
good comparison with the one-phonon sideband is obtained. The agreement is shown to re-
main fair when using admixtures determined by considering a model where the Ni ion experi-
ences a varying electrostatic potential because of the motion of point-charge nearest neighbors.

I. INTRODUCTION

Several studies have been made on the vibronic
spectra of rare-earth ions and color centerse'~
in alkali halide lattices for which the lattice dy-
namics had been previously determined with the
help of neutron and x-ray diffraction data. A

knowledge of the lattice dynamics permits a com-
putation of the vibrational sideband distribution
which can be compared with the spectrum to test
the theoretical model. Until recently, no such
treatment has been presented for the case of 3d"-
3d" transitions, but these iron-group ions substi-
tute for Mg2'in the MgO lattice, giving, in several

~ 2+
cases (Ni, V~', Cr~', Mn4'), "interesting de-
tailed vibrational sidebands. Furthermore, '4 Peck-
ham has used a shell-model treatment of the lattice
dynamics of MgO to give fair agreement with neu-
tron data, ' "so that this system is an ideal one
for the above type of study.

In the case of the rare-earth ions, an electro-
static coupling model is used which considers the
perturbation giving rise to the sideband as coming
from the varying electric field of the phonons at
the impurity site. ' ' However, for the iron-group
ions, the 3d" electrons lie outermost on the ion and
overlap the surrounding ions (e.g. , see Ref. 16),
so that the perturbation giving rise to the phonon-
assisted transitions should depend largely on the
motion of the nearest neighbors.

Both this paper (I) and the following paper (II)'~
present calculations of vibronic transitions of
MgO: ¹i' made within this framework of nearest-
neighbor coupling interaction. In this paper, atten-
tion is restricted to one-phonon sidebands and the
I'3,( T2„ tm e,)- I; ( A2„ t&e, ) transition of the
Ni ' ion. The vibronic intensity is expressed in
terms of a weighted sum of odd-parity localized
Green's functions. These functions are determined
from a numerical calculation of the lattice-dynam-

ical shell model with allowance made for possible
mass and nearest-neighbor force-constant changes.
On substituting Nia' for Mg

' in MgO the mass
change is known precisely but some estimation or
guess at the force-constant changes have to be
made. In Secs. VI and VII, two different sideband
constructions are given and compared to the ob-
served vibronic spectrum. In Sec. VI, the admix-
ture of Green's functions is treated semiempirical-
ly in an attempt to give a best fit to experimental
data. In Sec. VII, a rather crude point-charge
model is adopted in an independent calculation of
these coupling parameters.

This study complements parallel work done by
Sangster and McCombie who have treated the case
of the vibronic band E - A~ of V ' in MgO and

F3,( Tz) - I",~( Az, ) of Ni ' in MgO. Comparisons
will be made here with their work.

II. SPECTRUM OF MgO:Ni2+

First, a synopsis of MgO:Ni ' spectrum, both
absorption and emission, is made with considera-
tion given to which bands come from single electron-
ic transitions.

Ralph and Townsend' have recently published the
absorption spectrum of MgO: Ni 'at 77 and 5'K.
This agrees (although in greater detail) with earlier
data by Pappala, rdo, Wood, and Linares and by
Low. Three strong absorption bands appear at
8500, 14500, and 25000 cm ' corresponding to the
spin-allowed transitions from the 'Aa, (t+e, ) ground
state to the 'T2, (t+e, ), 'T&(t3 e,'), and 'T&(t~e, )

states, respectively. A fourth and weaker band at
21 500 cm corresponds to the spin-forbidden tran-
sition to the 'T&(t&e~s) state. For each of the spin-
allowed transitions there are several close-lying
electronic levels, and each one gives rise to a vi-
bronic band. These overlap and cannot be sepa-
rated. This makes the absorption data of the spin-
allowed bands unsatisfactory for a detailed analysis
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of the vibronic structure. The spin-forbidden
transition is weak and only the predominant fea-
tures of the structure can be seen, but this will be
used in Paper II when discussing this transition.

The fluorescence of a Ni~'-doped MgO crystal has
been measured by the author under several differ-
ent excitation methods including (i) optical lamps—
high-pressure mercury arc, zenon arc, quartz-
iodine, and tungsten; (ii) a 50-gA, 20-kV electron
beam; and (iii) 15-mA, 55-kV white x rays. Sev-
eral emission bands are seen with identical struc-
ture but varying relative intensity, for the different
excitation mechanisms. By comparing the spec-
trum from numerous doped and undoped crystals it
was established that two of these bands are asso-
ciated with the Ni ' center-one in the green at
20000 cm ' and one in th near infrared at 8000
cm . The third band seen by Ralph and Townsend'0
at 13000 cm ' was not seen here —masked by very
strong emission from other impurity centers.

The infrared emission at 8000 cm ' has been re-
ported previously by Ralph and Townsend under
electron-beam excitation and is reported here un-
der optical excitation. (With the excitation meth-
ods available, the Quorescence was an order of
magnitude more intense using optical pumping than
by electron or x ray bom-bardment. ) Emission is
observed from two electronic levels located at
8178 arid 8002 cm ' corresponding to the excited
states T+( T«, t'«e, ) and I'«( T«, f«e~), respec-
tively. From each state there is a zero-phonon
line and an a,ssociated sideband but, by cooling to
helium temperature, where only the lower level is
populated, a band associated with a single electron-
ic transition is isolated. This band is predominant-
ly one phonon and is the focus of attention in the
present paper.

The second emission band at 21000 cm ' arises
from the ~T3, state —an isolated electronic level.
The emission, therefore, is associated with a sin-
gle electronic transition. It is broader than the
infrared band and clearly involves more than one-
phonon processes. It will be the subject of a de-
tailed study in Paper II where the whole treatment
of vibronic transition is extended to consider multi-
phonon processes.

III. EXPERIMENT DETAILS

The near-infrared emission spectrum of
MgO: Ni was recorded for a crystal clamped to a
copper finger of a helium Dewar. The crystal had been
grown from the melt in an electric-arc furnace
with a dopant level of 0. l-wt. % ¹iand had dimen-
sions 4&&10&10 mm. The fluorescence was stimu-
lated by using a 48-W incandescent tungsten lamp,
an f/1 condenser lens and filters. The emission
at right angles was analyzed by a Bausch and Lomb
0. 5-m monochromator with 600 line rulings/mm

grating blazed at 1 p. and detected by a PbS cell
using phase-sensitive techniques.

At room temperature the fluorescence extends
from 8500 to just beyond 7500 cm ' with a broad
peak at 7700 cm '. On cooling, the intensity drops
slightly and some structure appears. By liquid
nitrogen temperature, the band exhibits one strong
sharp peak at 8002 cm ' with several peaks on the
low-energy side. On the high-energy side there is
a weak sharp peak at 8178 cm ' which disappears if
the crystal is further cooled. At helium tempera-
ture the emission consists of one strong sharp line
then at 8009 cm ', which is narrower than the in-
strument can resolve (10 cm i) accompanied by a
sideband which has major peaks at 220, 390, and
555 cm ' and further minor peaks up to a distance
of 1000 cm ' from the initial sharp line.

The two sharp fluorescence lines at 8002 and
8178 cm at N2 temperature coincide with the sharp
lines in the absorption to the T«(t«e~) levels' and
arise from magnetic dipole pure electron transi-
tions between the two lower I'+, 1 + spin-orbit split
components of the T«(t«e ) state and the ground
state 1"«(A«, f«se, ).' (I' is used to denote irre-
ducible representation of direct products of spin-
orbit space. )

The emission at 77'K agrees with that observed
by Ralph and Townsend but at 5 'K differs in the
structure within 200 cm ~ of the zero-phonon line—
presumably due to different crystal preparation or
dopant concentration. The peaks, at 90 cm ' and
125 cm ', which are clearly seen at helium temper-
atures (Fig. 1) are considered to arise from Ni '
at noncubic sites, probably Ni~' pairs. As the tem-
perature is raised from 5 'K, these lines broaden
without any corresponding broadening in the 8009-
cm ' line or anywhere in the sideband. The rest
of the band is, thus, considered to arise solely from
the phonon-assisted T«( T+,, f+ e~) - I'«( A«, f«, 8 )
transition of the Ni ' ion at cubic sites.

IV. THEORY

It is assumed that when the ¹i2'ion replaces the
Mg

' ion that there may be a relaxation of the lat-
tice about the impurity-ion site. If the state is de-
generate, then this relaxation may lower the sym-
metry from O„by the Jahn-Teller effect. ' Inthe
case of Ni ', the ground state is an orbital singlet
and does not distort other than by an A& displace-
ment as confirmed by electron spin resonance
(ESR) measurements. 22 When in the excited state,
an orbital T, the system may be distorted but this
is assumed to be small enough that the O„point
group may be used to a good approximation.

The equilibrium configuration of the lattice for
the Ni ' ion in its ground and in its excited state
may differ and result in changes in the lattice vi-
brations between the two states, i.e. , in the
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FIG. l. Emission spectrum of
MgO: ¹i' at 5 and 77'K. The inten-
sity is uncorrected for relative sensi-
tivity but varies by less than 5% across
the spectral range.
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Green's-function calculation which follows, differ-
ent force constant changes should be used for the
two ¹i' states. Here these changes are assumed
to be small so that the same or average force con-
stant changes may be used. If the sideband mere
observed to be mirror images in absorption Rnd
emission, this would be a fair indication that the
lattice vibrations mere indeed unaltered between the
two states. Unfortunately, overlap of neighboring
transitions in absorption prevents such a compari-
son for the transition of present interest. For a
second ¹i~'transition, I'5~('7'z, ta,e~) - I"&( A@,f+e~),
where the distortions are suspected to be larger,
the vibronic bands in emission and absorption are
close to mirror images of one another' Rnd, thus
the assumption should be reasoriable for both tran-
sitions.

The zero-phonon line at 8009 cm ' is a permitted
magnetic dipole transition, but the associated side-
band is considered to arise from electric dipole
radiation induced by odd-parity vibrations about the
impurity site. The predominant features of the
sideband lie mithin the range of the vibrations of
the MgO lattice and, therefore, the problem of
linear electron lattice coupling is of principal in-
terest.

It is assumed that the coupling arises solely from
the interaction with nearest neighbors, so the in-
teraction ls expRnded ln R power series of the sym-
metry displacements

V(r, X) = V(r, 0)+Z Vp(r) X,'"„&,

where the electronic coupling functions are deriva-
tives of the electron potential evaluated at the
equilibrium configuration of the defect lattice:

r represents the electron coordinate, X the nucleus
coordinate (X=0 for equilibrium configuration of
defect lattice), and Xr"„' the symmetry displacement
coordinates of the central ion and six nearest neigh-
bors (called the complex). I" represents the irre-
ducible representation, and y the rom of that repre-
sentation according to which the displacement trans-
forms and (n) is used to distinguish between dis-
placements of the same symmetry.

Note that within the complex, the symmetry co-
ordinates X~~ are related to the noi mal coordinates
q(k, j) by a linear transformation

The total transition probability of going from one
electronic level e, symmetry I;, to a second level
f, symmetry l~, with the same parity, and general-
ly being degenerate, is given by the sum of the
trRQsltloQ probRbllltles of the compoQent transitions.
The pure electric dipole transitions axe forbidden
by parity, but in second-order perturbation the
probability per unit time S',.& of an electric dipole
transition is given by
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27f p &0'~ I P+ V I%', ) & O', I P+ Vl C, &

&~f fn E f 8
initial and fina) states e

(4)

where I' is the interaction with the photon field in
the dipole approximation. The 4's are total wave-
functions of the system; 4, is the excited state, @&
the ground state, and 4, the intermediate state.
E„E&,andE, are the energies of these states. The
summation over initial and final states includes the
contribution from the individual transitions between

the components of the degenerate levels.
The transition probability for a system initially

in the electronic excited state e, and zeroth har-
monic-oscillator state (i. e. , low-temperature
limit) making a transition to the ground electronic
state with the creation of one phonon is given by

2v ~ g Z &lxz(k, j)I'zy&l P IOX&(k, j)« I;y, ) &Ox&(k, j)«l', y, I VIOxo(k, f')I;y, )
yes f inal states at&zygo g, —g, + h(o (k, j)

( I Xl(kt j)Isyy I Vl 1XO(k j)Q' I''y' ) & 1XO(k j)« I' y) IP !OXO(k j)I',y, )

where the wavefunctions I kq ) have been written as
Inx„(k, j)I'~y„). n is thenumnerofphotons, X„(k,j)
is the harmonic-oscillator wave function for the lat-
tice with all the individual oscillators in their
zeroth occupational state except the (k, j) mode,
which is in occupational state h (here, either 1 or
0), and I'~y~ is the electronic wave function of the
state k, symmetry I'~, row y, (a~ is used in ad-
dition where there are more than the one possible

I

I

state of that symmetry). g & is the energy of the
electronic level, K~(k, j) the energy of the phonon,
and Sp the energy of the associated photon.

The crystal is cubic and hence the calculation
may be continued using only one component of the
dipole operator, say y. Then after substitution
from Eq. (1), the transition rate for photons with
angular frequency between p and v+ 4v observed in
solid angle AQ is

nQnvv e g g g &I'Iy~lyl «I', y&&Zr»&«I', y;lVr"„'ll', y, )(x, (k, j)l&r"„'lxz(k, j))
y y PV Ngr y] g, —g, +K(u(k, j)

&«I'&y; lyl I',y, &~r (~ayre Vr~ I«1'y &&XI(k~ j)~&ri ~xo(k~ j)& ~(g g I (k ) @ ) (6)

The dipole matrix elements ( I'~y& I y I « I', y, ) snd
& « I', y, I y I I;y, ) will only be nonzero if the states
I', have the opposite parity to I'z (and I;)which also
restricts the coupling function Vl-"y', symmetry F,
to be of odd parity. The odd-parity excited states

a& Fiy& lie well above the 3d" states of concern and,
therefore, it may be assumed that h~(k, j)«g, —g&
and Sar(k, j) «g, —g, for all k, j. The vibrational
and electronic parts in the expression for the tran-
sition rate can be further separated to give

b,QEvv e
W,.I= 8'(ar)n(u=, 2 Q 2 P,~"„PP,"P" &Xi(k, j)l&z"y lxo(k, j))

ysyj kg I'ynn'

(X,(k, j)IXr'"„'*lx,(k, j)&O(g~ —g, +h(u(k, j)+hv),
where

(I',y, Iyl«I';y; )(«I', y; I 0 r"„' I I;y, ) (I'~y~I Vr"„'la, I' y, )(«I';y, lyI I;y, )
y1 yn g g 8 -8e f

By substituting from Eq. (3) and using harmonic-
oscillator creation and annihilation operators, the
vibrational part gives

& & xs(» j ) I
& ry'

I xo(k~ j) & & xo(» j) I &r~
'*

I xx(k~ j) &

Q

W g(h(o —S(o(k, j))

=Z~,"„'(k,j)~r'~ '(k, j)~, , S((u —(o(k, j))
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where hem =8, —8& —Sv, the frequency shift from the
zero-phonon position. G„'"" &(u&) is the standard
Green's function of the localized space of the cen-
tral ion and nearest neighbors, for the pair of sym-
metry displacements I'yn, Fyn' and is independent
of the row y of the irreducible representation; Im
stands for "imaginary part. "

The one-phonon distribution can finally be written

gQ 3 3
W(v)= Z Z Z F ' "' F"~ "4» ImG "" '(&u)

T C 1nn' y getf
(IO)

i.e. , a superposition 'of the Green's functions asso-
ciated with the odd displacements of the complex,
weighted by the coupling parameter given in the
square bracket.

V. GREEN'S FUNCTIONS

As pointed out by Page and Dick, a Green's-
function treatment consistent with the lattice dy-
namics should include the shell-shell and core-

TABLE I. Shell model parameters.

Constant

Mg2+-0+ longitudinal
spring constant

Mg2'-0+ transverse
spring constant

0 -0" longitudinal
spring constant

0 -0 transverse
spring constant

0 shell-core
spring constant

Mg2 shell-core
spring constant

Total charge
on each ion

0 shell charge

Mg2 mass
02 mass

Cell constant

Value

32.43

—4. 26

A" —2.49

0.37

60. 0

F2 —2. 81

nf Mg 24. 32
mo 16.0

R 2, 106

Units

e'/2f&

a.m u,

Spring constant
in N/m

204

—26. 8

—15.6

2.3

377

shell as well as core-core functions. This would
greatly increase the number of separate functions
and hence the number of coupling parameters.
However, the functional form of the shell-shell and
core-shell Green's functions almost mirror the
corresponding core-core functions —essentially be-
cause of the strong shell-core force constants —and
thus their introduction merely adds to the complex-
ity without necessarily improving agreement. Any
better degree of fit could equally well be brought
about by variations of the parameters already pres-
ent. The calculations, therefore, are restricted
to the core-core Green's functions even though it
will introduce inaccuracies, hopefully small, when
considering the defect lattice.

The Green's function computations were made by
M. J. Sangster and are reported in some detail in
Ref. 8. The shell model employed was that of Peck-
ham. ' The parameters are shown in Table I and
the resultant dispersion curves in directions of
high symmetry are indicated in Fig. 2. The agree-
ment with neutron data is always within 13/&& although
in general it is significantly better. The dynamical
matrix was solved for 3142 points evenly distributed
in ~48 of the first Brillouin zone giving 125000 points
in the entire zone. The eigenfre&luencies &u(k, j) are
grouped into 600 equal frequency intervals between
0 and 702 cm '. Then for one row of each symme-
try displacement I'"', the value of Mr&"„&(k, j) is de-
termined by using the relationship

FIG. 2. Phonon dispersion relations along major sym-
metry directions in MgO. The solid line shows the shell
model predictions using the parameters given in Table I.
The open and shaded experimental points are those of
Peckham {Ref. 14) and Buckland and Saunderson (Ref.
15), respectively. The horizontal and vertical bars
through these points denote longitudinal and transverse
vibrations, respectively.

.~ &"„&(k,j) =X&"„& q(k, j) .

The product ~&"„&(k&j)~r&"„&(k,j)* gives the contrit&u-
tion to the Green's function Gr"" &(&o) from the mode
(k, j) and the total value of the function in a given
interval is obtained by summing over all the modes
within that interval and dividing by the midth of
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the interval and by twice the frequency. A histo-
gram is formed which is smoothed to give a con-
tinuous function

~z '(ls j )Ar '(k j )*
(u«(fc, g&(++au 2&(k~ j)

(12)
The real part of the Green's function can be ob-
tained by Kramer -Kronig relation

~m..Imp&~' & ~

ReG'""'((u) = —P '
d(u, . (13)

'tl' (d —40
0

0t-

0.6-

0.5-

04—3'

~N

03-

T2U

1/2

&(a)
lu

It

&(c)
lu

T2

FIG. 3. Odd-parity symmetry displacements of nearest
neighbors indicated for one row.

Re denotes "real part, "and P denotes "principal
part. " e,„ is the maximum frequency of the lattice.

In an XYS complex, there are four even-parity
displacements A~~, E, T&, and T2 and hence four
associated Green's functions. Also, there are
four odd-parity displacements, one T,„and three
T,„(Fig. 3) which result in seven associated
Green's functions, six related to T,„motions. The
effective number of the T,„functions will eventually
be greatly reduced (from six to three) by choosing
as one of the basis the translational motion of the
complex for which there will be no coupling within
the present scheme. However, all six must be re-
tained until the imperfect lattice problem is tackled.

When an impurity ion replaces the Mg
' ion there

will be in addition to the change of mass at the sites
changes in the force constants in its neighborhood.
If strongly localized, the changes will be predomi-
nantly in the force constant between central ion and
the nearest neighbors plus, perhaps, any change of
the shell-core spring constant within the central
ion. This latter change is discounted since the Ni'
ion does not have appreciable polarizability com-
pared to the oxygen ion. The model adopted then
allows for a change in mass, and in longitudinal

0.2-

100 200 500 400 500 600 t00 800

~ (cm')

FIG. 4. The imaginary parts of the T» Green's func-
tions. The solid curve gives the perfect-lattice Green's
function and the dashed curves give the functions where
changes ~ (in N/m) have been made in the transverse
force constant &. The vertical scale is in units of 10
sec per atomic mass unit.

and transverse force constants ~ and AB between
the central ion and the six nearest neighbors, re-
spectively.

The Green's function of the defect lattice is then
simply related to the perfect-lattice functions:

where G(&u) is the matrix of the perfect-lattice
Green's functions and G ™(~)the equivalent matrix
for the imperfect or defect lattice. aK(~) is the
matrix of the local disturbance.

Note that this equation also is not strictly con-
sistent in its treatment of the cores and shells of
the dynamical model in that it neglects the very
high frequency shell vibrations, which effect all
the Green's functions including core-core functions
in going from the perfect to defect lattice. !Term
(H„) ' of Born and Wagner' is neglected; see Ref.
23. ] This omission should not change the Green's
functions substantially.

For the Tz„motion there is simply the one Green's
function in the matrix and the associated element
AK= hB, the change in the transverse spring con-
stant. The T~„perfect-lattice Green's function is
shown by the solid curve in Fig. 4, and the imper-
fect lattice function for two different changes in the
B force constant by the dashed curves.

With the definition of T,„basis functions shown
in Fig. 3, the matrix of T,„Green's function is
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FIG. 5. T~„orthonormal symmetry adapted displace-
ment of central ion and nearest neighbors indicated for
one row.

O.I-

3
~0
E
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02-

Gg„((u)

I I I . I

~I~ l

400 600

~ (cm i)

G{AA)( )

G((o) = G "A'((u)

G(cA) (&)

G(AB)(~) G(Ac)(~)

G""( ) G""( )

Gtc t( I)

and the matrix of the local disturbance at the same
time is

-OI-

~A=-20',
i

200 400 600

~(cm i)

0

b K(&o) = 0 r2B —2b B
—/244 —248 2 +4484—44m)

FIG. 7. The imaginary part of the T~„Green's func-
tions. The solid curve gives the defect-lattice Green's
functions with mass change only (dashed curve in Fig. 6)
and the dashed curves represent these functions when
spring constant changes are made in addition (~=0).

The imperfect-lattice function can then be obtained
from Eg. (14). Functions defined in terms of an

alternative set of basis vectors as given in Fig. 5
can then be obtained by a linear transformation

06 I I I I I I

05-

04-

03-

Ni SUB

0.2-

OI-

—0
3

C3

E
I—I 03

G"

0.2-

O.I-

-O. I—

G(22) ( )4)

PERFECT

Ni SUBST

200 400 600

~(cm )

/2//6 6 —2//6 )
S = —2v 2/~21 2/2(21 —2/v 21

&2/v V 2/&V 1/~V

Vfith the new basis vectors all functions associated
with T,'~' will have zero-coupling coefficient in the
nearest-neighbor coupling scheme. Interest is,
therefore, concentrated in the three Green's func-
tions G'"'((u)I G '((o)I and G' "((o) [=G' '((o)] and
the equivalent functions in the defect lattice.

These perfect lattice functions are shown by solid
curves in Fig. 6, and those corresponding to a
mass change from Mg

' to Ni ' is given by the dashed
curve. In Fig. 7, this latter trace is repeated as
a solid curve End the dashed curves give examples
in which additional force constant changes have
been considered.

-0.2-

200 400
i

600
cu(cm }

VI. COMPARISON BETWEEN THE SIDEBAND AND GREEN'S
FUNCTIONS

FIG. 6. The imaginary part of the T~„Green's func-
tions. In each case the solid curve gives the perfect-lat-
ice Green's function and the dashed curve is obtained when
the mass of the Mg ion is replaced by that of the Ni ion
without any variations in the force constants 0.e. , mass
change only). The vertical scale is in units of 10 sec
per atomic mass unit.

In this section the Ni ' infrared band is compared
to an empirical admixture of the four odd-parity
Green's functions. A comparison of Fig. 7 and Fig.
1 shows that there is a similarity between the one-
phonon sideband and the G~,'J(&u) function in which
only mass change for the ¹i' ion has been made.
The likeness can be improved with slight admixtures
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of other Green's functions:

ii'(m)~ a [ImG" '(&u)+5 ImG' '(&u)+cimG' '(v)
~1m ~le ~ig

+d~ Im Gr ((u)], (18)

where the coefficients are related to the square
bracket@"fn': Eq. (10)

re "rf ~e rfW p+yz (1)~ Eyz (1&r = 8
r rr ' ltd 'iu"

e f

re rf re re
E~~(2)r I' ~~(@r =0 5

&

r rrf 'ig 'ig

8 f

pre ry pre r/+ 2da

Ye

with (." «2b. For the

I~( Tg~ fgeg) Fgg( A@p tgeg)

transition the calculation in Sec. VII gives e = 2b,
and the equality is assumed for the empirical pa-
rameters. The predominant peak positions are at
210 and 395 cm ' compared to the experimental
peaks at 220 and 390 cm ' and have the same inte-
grated intensities for admixture coefficients b = 0.25
and d = 0 as shown in Fig. 8. The agreement is
fair but by no means exact. The largest peak
matches the experimental one very well and although
there are no peaks completely resolved, on its
high-energy side there are clear shoulders corre-
sponding to the calculated maxima at 430 and 480
cm '. This can be understood if there is some
broadening of the features by anharmonic effects
or by contributions from more distant neighbors.
The peak pxedicted at 210 cm ' agrees well for
position but not so well for shape. At higher en-
ergies the peak at 550 cm ' is not seen at RQ in the
theoretical model and has not been reproduced by
calculations of two phonon peaks (see Paper II).
This discrepancy is probably due to an inaccuracy
of the lattice-dynamical model at high frequencies.
The LO branch cuts the zone boundary at 550 cm '
and not at 500 cm ' as given by the present model.
Had parameters been used which predict this fea-
ture more accurately, then the peak at 550 cm '
may weO be accounted for.

By allowing for smRQ force constant changes
M Rnd AB or changing the admixture parameters
of the Green's functions the agreement can be
changed, perhaps improved, but the significance
is doubtful. It is interesting in this context that
Sangster and Mccombie have obtained an alterna-
tive fit by allowing for force- constant changes

rather thRD admixture of Green s functions. . CleRx'-

ly, it would be desirable to determine independent-
ly one or both sets of parameters (i.e. , force con-
stant changes and/or Green's-function coupling
parameters). In Sec. VII the results of a calculation
of the latter are described.

1

i

I
I

I

a (Cm')

l000

FIG. 8. Comparison between experimental sideband
and calculated sideband. The following empirical admix-
ture of the T&„Green's functions is used: 1Gz&„()
+0.25G&12 (~) +0.0256&2'~ {(d). The peak at 550 cm 1 is
thought to be a one-phonon feature but the 800-cm peak
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is more likely to arise from a two-phonon process.

VII. COUPLING PARAMETERS

A theoretical determination of the admixtures of
Green's functions requires an evaluation of the
parameters E„I„„andfor this to be consistent with
our justification for assuming that the perturbation
arises predominantly from the motion of the Ni '
ion and its six nearest neighbors, a molecular
orbital treatment should be adopted. This has not
been attempted, but rather it is assumed that the
interaction is proportional to the change in electro-
static potential at the participating electron arising
from the relative motion of the central ion and
nearest neighbor ions considered as point charges.

In addition, to simplify the calculation, it was
assumed that the higher-energy odd-parity states
of the ¹

' ion lie sufficiently far above the d con-
figuration levels and sufficiently close together that
the energy denominator in (8) may be taken to be
the same for all terms, i.e. ,

q —8, =8& —8f =a8 for all j. (20)

For Ni ' in MgO the upper states lie within a region
of strong absorption by the lattice starting at
40000 cm ', and are not directly accessible to mea-
surement. However, in the free ion the lowest
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odd-parity state (d7p) is at 110000 cm ' and the
ionization limit lies at 310000 cm '. Assuming
the crystal field levels do not drastically alter these
then the conditions will be partially realized.

The summation in Eg. (6) is over all excited
states i (only odd electronic states contributing),
and therefore, because the energy denominator is
the same for each term, closure may be used:

I a51")y5 & (555r5y5 I
=1 .

1 5&6, 3410 5
r5

T2gf 2 2
+

2 3 g5

&15, Sv 35 5 15~V 5 r~"4va "4' ' P
(26)

where Ze is the electrostatic charge on„- each-:of the
nearest neighbors, each at distance A. The elec-
tron coordinate is r referred to the core position
as origin: 'JJ, is defined as

The electric dipole operator commutes with the
electrostatic perturbation V&„"', and hence:

m 4 '" ~i -~i
2~+1 2

(20)

&,'r,."'=(2/«)(&, ~~~yvr'"„'I r,y, & .
By making use of symmetry, the number of ma-

trix elements which need be evaluated can be great-
ly reduced. For example, considering the transi-
tion from a doubly degenerate F& level to a triply
degenerate 1„level, the coupling can be determined
by evaluating the following elements:

Z„;„'„=(2/«)(r5, t.
l
yVr", 'Ir~~), r~= I'5.~

v,",' = (2&2/v"3) v,"~~+&3 v,'",~,
V(5) (gV/gs) V(8&

(3o)

where P,' are spherical harmonies.
In the choice of T,„basis vectors used in the

Green's-function calculation (Fig. 5), the corre-
sponding perturbations are related to the above ones
by

~', „'„=(2/«)&r„t.lyv'"„'Ir 8&, ry=T, „~, r,„g
(24)

where the two I & or E~ functions are denoted by
8, e angular parts transforming as (Se —7 ) and

(x —y ), respectively, and the three I"„or r5,
functions are denoted by the $, 7I, and f angular
parts transforming as yz, zx, and xy, respectively.

The total coupling coefficient [bracketed term in
Eq. (10)] for the Green's function G~"" '(a&) is then
given by

To proceed further some form of the electrostatic
potential and suitable electronic wave functions must
be adopted. Details of these follow.

A. Vibrational Perturbation

Introducing the basis set in Fig. 5, the change
in potential energy at the 3d electron is given for
each vibration by 5

r3
V',",~=-2 4'JJ',—„,+(-2~6g', +2~iO'JJ', )~

3&15, 3&35 5 3~63 &-, r~
+

2 s 2' 5+ 2' 5+v

(e) 1,r 37'6, 37'10 ~5
r5

T1g3f 2 1 A3 2 3 2 3 g5

B. Electronic V4ve Functions

The electronic wave functions I r,y, ), I rqyq&»e
given in the standard form by crystal field theory
as the eigenstates of the Liehr and Ballhausen ener-
gy matrices [Ref. 26, E5i. (4)]. With the param-
eters F4= 100 cm ', I'z = 1400 em ', Dq = —830 cm,
and X = —325 cm which were parameters chosen
to predict the I' and I'4, levels at 8002 and 8178
cm ', ~0 the relevant eigenstates expressed as a
linear combination of strong field states are

I r, )=o.oaal r, ('A., f', e'))+o. loal r, ('T, f,'e')&

+ 0.002
I r5( I if55e5) ) + 0.026

I
r5(' T' f 55 ")&

+o.oo5lr5(5z;f,'e')
& + o. ooo lr, ('T, f,'e') &,

(s2)

I
rs&=o 965I r5(5TaPae5) &+o. 115I rs('&f55e') )

+O. Oaa
I r,('T,f,'e') &+O. flair, (5r,f,'e')

&

+0.010I 1' ('Ef e )), (33)

where, because the eigenstates are the same for
each row of the irreducible representation, the
label for the rom has not been included. Also, for
brevity the suffix g is dropped.

The strong field states can be expressed in terms
of the product wave functions of two-hole wave func-
tions, e.g. ,

9&15, 3&35, 157V 5
r'

+ 85+ ~ 95+ ~ S5 7 Zey (2V)
I r55 ('A, f55e') ) = —(i/~2 )(I 8'e ) +

I
9 '&)5, (34)
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lre('Tt.")&=,'t-(le &'& ~~l'~'&+tie'n'&+'~&l~'~ & l-e~ &+~&l~( &+tlen &+t~&l~~ &), (35)

I r,~('T,t,'e') &= (t/2412)

x [-.'Ie'g'&-(VS/2)l~'t'& ,'t-l e-'q'& .' tv-3-le q'&

'.-Ie-I -&+-(&3/2)l. s & .tl-e -~ &-(t~s/2)l& 0 &-41e'I &-4le ~'&j (36)

!

where + and —denote spin projection.

C. Coupling Parameters

Upon evaluation of the angular dependence, the
matrix elements (23) and (24) can be expressed in
terms of a product of the constant Ze /RAG and the
weighted sum of three radial integrals:

R, =&r'&/R'; R, =&~'&/R'; R, =&r')/R'. (SV)

Unfortunately, there is significant variation in the
values of these integrals depending from what type
of calculation they are taken, a~ e.g. , using analyt-
ical Slater functions or Hartree-Fock functions.
However, no attempt is made to calculate absolute
intensities and the relative coupling coefficients
depend only on the relative Rm/R, /R8 values, In
addition, it will be shown below that for the

transition the coupling parameters are insensitive
to the value of Ra.

The largest contribution to matrix elements (23)
and (24) should arise from the first of the strong-
field states in the eigenstates (32) and (33). Con-
sider the contribution from these terms only, i. e. ,
in the strong-field limit,

z-,'„- ' = (2/~8) &r, I('a, t6e')I yv,'„"'I r,e('T, t', e') &,

(38)
where

I

The spin dependence of the one-electron wave
functions can be dropped because the operators
have only orbital dependence. Note that is because
F~" is zero that the parameter for the cross
Green's function G'r',3„' (&u) is equal to 2b W. hen

using the eigenstates, both elements, i.e. , (23)
and (24), are nonzero and the cross-term para-
meter is no longer exactly 2b. However, (23) re-
mains small compared to (24), and the resultant
deviation from 2b is slight, as will be seen from
Table II.

Evaluation of the one-electron matrix elements
in (41) gives

4 15 ~2 10 v2 Ze
v6 7 vS ' 11 vS ' R&$ '

(42}

4 5 M7 10 ~V Ze
v6 14 v3 ' 22 v3 ' Rag

(43)

4 1 5 1 10 Ze
Me 2 V

4 211 ' R~S

Note that the coefficients of the Ra terms always
vanish. This result may be obtained from sym-
metry arguments in the full rotation group and is
not, therefore, a property restricted to the near-
est-neighbor treatment. It implies that the dipole

F„„„=(2/sg) &r,0('A, t&e') Iyv„'„"'I I',e('T, t,'e')),
(ss)

where

ry= T,„&, T~„t' .

TABLE II. Coupling parameters . . The numbers out-
side the brackets give the coupling coefficients using the
eigenstates given in Eqs. (32) and (33), and the numbers
in the brackets are the corresponding coefficients using
strong-field wave functions as in the calculation in the
text.

It can be seen by inspecting the spin components
[see Eqs. (34)-(36)] that the E~" ~s are all zero
and the F~"'~s have only a contribution from the
last line of (36): Notation

Ratio of
radial
integrals

R6. R4 ..R2 G (u)) G ' (cu)~1tt ~ig

a a c

GP )(cu)
fu

2b2

Coupling parameters relative
to the Gz '(e) parameter

G,, ()
a2d2

&,'r,'.=
g 6

(&e'I year',"'I I'&+ &e lyl'r'„"'
I
I &)

(40)

Set I

Set II

1 ~ 5:25

0:5:25

1 0.91
(o.85)

0.66
(o.62)

0.21
(o. 2o)

0. 12
(0.10)

0.08
(o.os)

0.04
(o.o4)

2 2= —,6 ~6 &
I

(41)
Empirical
parameters 0.25 0.025 0.0
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The I"&~( T2, t2& e3)-1"5 {~A2, t26 e ) vibronic spectrum is recorded in absorption and emis-
»on —under x-»y excitation —at crystal temperatures of 77 and 5'K. The spectrum involves
up to four phonon processes and a theoretical treatment of such a transition is presented. A
possible explanation of the band is suggested and, by using imperfect-lattice Green's func-
tions for the neax est-neighbor motion, it is constructed to give excellent agreement with ex-
periment. The transition is forced (electric dipole) by one of the T&„vibrations of the nearest-
neighbor complex. Additional E~ vibrations couple in the higher phonon processes which sug-
gest the presence of a Jahn- Teller distortion in the T2 excited state. However, it has not
been possible to establish the presence of such a Jahn-Te11er distortion from any other ex-
perimental data. A similar calculation is undertaken for the two-phonon band of the
I'3 ( T2, t2~, e~~)-F5~(SA2, t26 e~2) transition of ¹i2'in MgO. Again there is an indication of a
coupling to E~ vibrations in the two-phonon process.

I. INTRODUCTION

In Paper I the vibronic band associated with the
single electronic transition I',~( 7&, t& e')-1",

~
('Aa„ ta6, e~) of MgO: ¹i'is studied and good agree-
ment is obtained between the one-phonon structure
and that predicted by a Green s-func'tlon treatment
of the motion of the impurity ion and its six nearest
neighbors. In this paper the calculations are ex-
tended to consider higher-order phonon processes;
the main focus of attention being F&~( T@,, t+e~)-

l,~( &a„ t&~ em) vibronic transitions in MgO: Ni~.
In this case both states are well isolated from
other electronic levels and the vibronic band
associated with this single electronic transition
is seen very clearly in emission, weakly in ab-
sorption. A possible construction of the band is
proposed. It is constructed with localized Green's
functions using semiempirical parameters and
compared to the observed band. A similar treat-
ment for the two-phonon sideband of the F, I'«
is presented and a comparison made between the


