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Using our theory of correlation effects in quantum crystals, which was originally developed
to calculate the properties of solid helium, we obtain the ground-state energy and pressure of
solid hydrogen for molar volumes in the range 24-10 cm . The results are applied to a de-
termination of the effect of zero-point motion on the intermolecular interaction and on the A,-
transition temperature. The crystal field is also discussed.

I. INTRODUCTION

Correlation effects in crystals of small atomic or
molecular mass have been extensively studied' in
recent years. The large zero-point motions of the
atoms in a "quantum crystal, " such as helium, lead
to instability of the calculated phonon spectrum~ if
not treated properly. This difficulty was overcome
by Nosanow, who took the short-range correlations
into account, ' and a self-consistent scheme for
computing the phonon spectrum has been given. It
appears that a good understanding of quantum crys-
tals has been achieved.

Despite the fact that solid hydrogen H~ has a
smaller molecular mass than solid He, short-range
correlations are not expected to be more important
in the former material; the reason is the deeper
attractive well in the intermolecular potential which
causes a H2 molecule to be more effectively local-
ized than a He atom. Thus, one does not expect
any particularly novel behavior of solid hydrogen.
The present study is motivated in part by the interest
in solid H~ at extremely high pressures, -10 atm,
where it is thought that molecular hydrogen should

undergo a transition to a metallic phase' '" and may
even become superconducting. ' The astrophysical
implications, needless to say, are very interest-
ing. " A reasonable conclusion concerning these
speculations requires, however, accurate equations

of state which have also been calculated by Krum-
hansl and Wu" and Trubitsyn. '4

Also, solid hydrogen has been subjected to in-
tensive experimental investigation recently. Cer-
tain types of experiments, for example, Raman
scattering" and magnetic resonance, '6 are conducted
with great precision. It was pointed out by Harris'7
and by Noolandi and Van Kranendonk' that in order
to achieve meaningful comparison of theory with

these experiments, the effect of the zero-point mo-
tion on the various intermolecular interactions
must be included. Because of the generally satis-
factory agreement with experiment we have obtained
in calculating the static properties of crystalline
helium, we believe it is worthwhile to use the same
formalism to calculate various properties of solid
molecular hydrogen.

As pointed out in Ref. 8, our numerical results
depend quite strongly on the intermolecular poten-
tials used in the numerical calculations. For both
He and H&, there are a number of different but

equally acceptable potentials available for use.
These are generally determined at least in part
phenomenologically by fitting experimental data in

the gaseous phase and cannot be taken too seriously
in calculations at high pressure in the solid phase. '3

We believe that our formalism should work even
better in H2 than in He and that comparison of our
calculated ground-state energy and pressure with
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existing data'9 may have a bearing on the reliabil-
ity of the various potentials, especially the hard
cores thereof.

In Sec. II, the formalism is briefly reviewed.
Numerical results for the ground-state energy and
pressure as functions of molar volume are pre-
sented in Sec. III, and in Sec. IV these results are
used to investigate how the quadrupol'e-quadrupole,
dispersive, valence, and dipole-dipole interactions
are modulated by the zero-point motion. The ef-
fects on the X-transition temperature and the crys-
tal field are also considered.

II. FORMALISM

in the frequency representation. The single-par-
ticle wave function P„(1)obeys the equation

[-VP/2m +u, (1)] Pg, (1)= e p Q, ,(1), (2)

We briefly review the theory of Bef. 8 in the
T = 0 limit. The single-particle Green's function
for H2 localized at position R& is given by20

A (1,1';~) =&p$, (1)0 $, (1')/(~, —e, )

where

u, (1)= uo+ (n /2m) (rs - R& ) =-uo+ Vi (1) (3)

in the harmonic approximation. ; m is the molecular
mass and u&„=in(2 v+1) T+ p for fermions and

i m 2 v T+ p. for bosons. Here, v is an integer; T,
the temperature; and p. , the chemical potential.
The force constant 0. is determined from a self-
consistency condition [Eq. (7) below] which relates
the single-particle self-energy and the two-particle
Green's function 6,&

(12;1'2). The particles are
approximated as moving in a static self-consistent
field in which case all multiple-particle Green's
functions have the same pole as g, in Eq. (1) when
viewed as functions of co„. Consequently, the two-
particle Green's function for particles localized
around sites i and j has the form

G~g (12»12»~) = Pro (1) /go (2) )t'&y (I» 2)/(~ v ~o )»

where the summation over P in Eq. (1) is omitted
because we are interested only in the T= 0 limit.
This means that p = 0 in what follows so we drop
this subscript.

The correlation function y, & (1, 2) is found in
Ref. & to obey the equation

f-&q /2m -Vo /2m+ V(1, 2)+Z p'fppp (3) [V(1,3))t,» (1,3)

+ V(2, 3) X,(2, 3)]d'rp+ 6, (1, 2)]P,(1)yq(2)y, , (1, 2) = yp Q) (1)Qq(2) y, ) (1, 2), (4)

where the summation is over positions A Wi, j and
V is the interatomic potential, V (1, 3)= v(r„rp) .
The choice of Xo in Eq. (4) determines the asymp-
totic behavior of X,~ (1, 2) for large separation of
r, and rp. The function b, &(1,2) is given by

60(I, 2) =Z„ fP p (3)(V (1, 3) [y) p (2, 3) - 1])f)p (I, 3)

+ V (2, 3)[)f, (1, 3) - 1])t, (2, 3))d'r, . (5)

Equations (4) and (5) are derived by writing down
the equation of motion for the two-particle Green's
function and approximating the three-particle

Green's function as

»f»f (1)Q)~ (2) Q
op(3) )t)~ (1, 2) y~p(2, 3)y,„(1,3)((o„-ep) ' .

The normalization condition on )t&& (1, 2) is

fy„(1,2) P', (1)Q ~ (2)d'r, d'r, = 1.

The self-consistency condition for u, (1) is

(8)

u ( (1)Qo) (1)= Py' JV (1, 2) Q ) (1)P ) (2) )fu (1,2)d rp,
(7)

where the sum on j excludes the term j=i; this re-
lation may be substituted into Eq. (4) with the result

1- &, /2m- &p /2m+u, (1)~u~ (2)+ V(1, 2)- [IQ&p(2) V(1, 2) y, & (1, 2)dorp

+fp', (1) V(1, 2) y &, ( 1, 2)d' &]+rb s (1, 2)]»t», (1)»t», (2) g „(1,2) = xp g, (1)»t»~ (2) g, ~ (1,2) . (8)

Equations (2), (5), (7), and (8) form the basis of
the theory used in Bef. 8 to calculate the static
properties of solid helium. Given any choice of
up and n, Eq. (8) can be solved for y, &

which is
then used in Eq. (7) to find new up and n. The pro-
cedure is repeated until a and uo are determined

1

self-consistently. The ground-state energy per
particle is finally given by

Ep —,'up+ 9n /8m. -— (9)

Because of the complexity of Eq. (5), we use the
simple approximation
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TABLE I. Calculated values of n g vs molar volume
(cm /mole).

2641

V(cm /mole)

23
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17.5
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15.1
14.0
13.0
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11.0
10.15
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behavior.
Finally, we note that the equilibrium (P= 0) molar

volume depends on the choice of potential. The ex-
perimental volume' is 22. 65 cm' which is quite
close to the minimum of curve E6.

In Fig. 3 we show the calculated pressure vs
molar volume. The labels are as in Fig. 2 and the
points are Stewart's data. The fit of theory and
experiment is quite good down to V= 14 cm'/mole,
but a systematic deviation appears at smaller vol-
umes. It is not clear whether this is due to inac-
curacies in the hard-core part of the potential or
not but this must be considered a possibility, es-
pecially if one is interested in continuing the cal-
culation down to volumes such that P approaches
10 atm. It does not seem useful to continue the
present calculations down to this point since they
already show considerable deviation from experi-
ment at 2x10 atm.

The nearest-neighbor correlation function y(r) is
plottedin Fig. 4 for molar volumes of 10 and 23cm.
The peaks in these functions are considerably less
pronounced than in the corresponding ones for
heliuma and the correlation functions y (r) for shells
beyond the first are very nearly constant for r
larger than the repulsive core of the intermolecular
interaction.

IV. APPLICATIONS

The nonlocality and short-range correlations of
the molecules in solid hydrogen affect the proper-
ties of this material in certain ways. We discuss
here three ayplications of the results of Sec. III.
(i) We consider how the various interactionsa' be-
tween molecules are modulated by the quantum
crystal effects as functions of molar volume. (ii)
The effect on the molar volume dependence of the
X-transition temperature T~ is calculated. (iii)
The effect on the crystal field is considered.

TABLE III. Modulating factors f for several molar
volumes (cm /mole) for third nearest neighbors.

f2y
f4'
f2'
f4'
f2tdd

f4'

22. 6

5. 15
4. 80
1, 06
l. 00
1.00
0. 94

20. 0

3.31
3.14
1.04
1.00
1.00
0. 95

18.75

2. 76
2. 64
1.04
1.00
1.00
0. 96

17.5

2. 36
2. 27
1.04
1.00
1.00
0. 96

15.02

1,84
1.79
1.02
l. 00
1.00
0. 97

A. Intermolecular Interactions

cos 8 = (r&2' RtJV'(I r121 IR~~ I»

r»=r, —rz, and R,&-It& —R&. In our formalism
these averages are given by

fP, (1)P& (2) y&& (1, 2) V„(
~
r, ~ ~)P„(cos e)d r, d r~

(12)

the subscript k refers to the individual interaction
(radial part). We next define the modulating func-
tions f„„:

There are a number of interactions between mol-
ecules in solid H2, These include (a) the valence
interaction V„-e " ', where p «a, p =- a/13 at the
P= 0 equilibrium molar volume; (b) the dispersive
interaction V~ - 1/x8; (c) the quadrupole-quadrupole
interaction Vuu-I/r'; and (d) the dipole-dipole in-
teraction V«-1/~'. Here only the radial dependence
of each interaction is given explicitly. We wish to
find averages over the zero-point motion of these
interactions including the angular parts. These
can always be broken down into averages of the
radial functions listed above multiplied by Legendre
polynomials'7 P„(cos 8), where

TABLE II. Various modulating factors f for several
molar volumes (cm /mole) for nearest neighbors.

(13)

22. 6

fp„2.98

f2v 2 75
f4'
fpg l. 30
f2& 1.21
f4' 1.02

fp@@ 1.19
f2@@ l. 10

f4' 0. 93

fpw l. 05

f2~ 0. 98

f4~ 0. 83

20. 0

2. 61
2. 43
2. 02
l. 27
l. 19
1.02
1 ~ 17
1.09
0. 94
1.04
0. 98
0.85

18.75

2. 08
1.97
l.74
1.22
1.15
1.02
l. 14
1.08
0. 96
1.03
0. 98
0.88

17.5

1.89
1.80
1.60
1.19
1.14
1.02
1.12
1.07
0. 97
1.03
0. 99
0.89

15.02

l. 59
1.53
1.41
1.15
1.11
1.02
l. 09
1.06
0. 97
1.02
0. 99
0. 91

which are equal to unity in the classical limit; de-
viations from unity provide a measure of the im-
portance of quantum crystal effects.

Table II lists all of the modulating factors which
appear in the averages of the four interactions when
sites i and j are nearest neighbors. These are
given at several molar volumes. Because the inter-
actions are short ranged, nearest neighbors are
usually a11 that will be important. Also, y, &- 1 is
a good approximation for more widely separated
molecules. In Table III we give all important f„„
for the third shell (8,&

= 1.633a). Note that for de-
creasing volume, all f- 1, reflecting the increased
localization of the particles.
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FIG. 5. HIelative value of T& vs molar volume (cm3/
mole}. The straight line is a V ~~3 power lave; the dashed
line is experimental, taken from Ref. 27. Curve 1 is
calculated using onlf the QQ interaction' curve 2 is found
using all of the interactions in Eq. (14}.

B. Temperature of X Transition

We are interested in the volume dependence of
T~ as a test of the effect of zero-point motion on
the interaction of two orthohydrogen (o-H2) mole-
cules. Insofar as the dependence of T& on p-H2
concentration and related subjects is concerned, we
refer the reader to existing literature.

The interaction between two o-Hz molecules ' is
proportional to H, (x)P4(cos Bgg),

H(~)=—,~ +4~3« -~le
25 4r 25r

where r is the intermolecular distance. The first
term in H, (r) is the quadrupole-quadrupole inter-
action (QQ), equal to+2. 8xl0 '8 erg when r =so
= 3. 75 A. The second term is the valence inter-
action which is = 0. 14xl0 ' erg at r =ro. The last
term is the dispersive interaction = 0.0'7x10 '
erg at r=ra. It should be mentioned that the va-
lence and dispersive forces are not accurately
known.

Because we are interested only in the volume
dependence of the various interactions, no attempt
is made to compute T~ from H, (r). It is obvious,
however, that no matter what theory one uses,
T~=cH, (a), where c is volume independent but is
different for different theories. If one includes
zero-point motion, T~= [cH, (a)], ~

In order to achieve a meaningful comparison
with experimental data and to detect the quantum
crystal effects, we have matched the theory to the
experimental value at the largest molar volume.
The results are illustrated in Fig. 5. The experi-
mental data (dashed curve) deviate from a V '~'

power by about 10% at V= 15 cm' relative to 22. 5

cm3, according to the empirical formula of Ref. 27.
In the figure, curve 1 is obtained by using the QQ
interaction only, whereas curve 2 is obtained by
taking all terms in H, (r). The straight line is the
V ~ law. Although our calculation of quantum
crystal effects may be subject to corrections be-
cause of numerical approximations, 8 it does not
seem likely that these will be substantial. Thus
T~(V) is a good test of the magnitude of the valence
interaction in Eq. (14) since e "' is extremely sen-
sitive to the molar volume. As a matter of fact,
if the magnitude of this interaction is reduced by a
factor of 2, then curve 2 very nearly coiricides with.
the experimental curve. In view of the uncertainty
in the experimental data, we have made no attempt
to obtain a fit by adjusting the parameters of the
interaction.

C. Crystal Field

It is often suggested in the literature~s that the
crystal field observed in experiments29 may be
caused by zero-point motion which destroys the
symmetry of the hcp structure; consequently, when
P2 (cos g&&), which appears in the interaction Hamil-
tonian

H, = [-1.4e ~" "0)I'+0 9(r yr)8]

x Pz(cos g&&)(3Z, -l)x10 'serg

is averaged over the nearest and next-nearest
neighbors, the result may not be zero. Harris'7
has pointed out that a correlation function which
depends only on intermolecular separation y, &(l, 2)- y, & (r,a) can be used to average an interaction
over the zero-point motion without altering the
angular dependence of the interaction. As a result
quantum crystal effects do not give rise to a crys-
tal field from the first two shells in the approxi-
mation we use here. The modulating function for
the valence force in the distant (n «3) shell is
large, but the short range makes its contribution
negligible. The dispersive paxt is practically un-
affected by the zero-point motion. The sum of H,
over all shells is

H, =2. 7xl0' Kx(SJ,'-2).
This gives a crystal splitting of -8m'K in agree-
ment with experimental measurement, '0 but the
sign is in disagreement with the latest data. " We
should mention that many factors including a very
small crystal distortion may contribute to the crys-
tal field.

ACKNOWLEDGMENTS

The authors wish to thank Professor J. Korringa,
Professor J. R. Gaines, and Dr. J. H. Constable
for useful discussions. They also acknowledge the
use of The Ohio State University Computer Center's
IBM 350/75.



C. EBNER AND C. C. SUNG

References 2-8 include the earliest and most recent
papers on quantum crystal theory. The list is represen-
tative, not all inclusive.

F. %. de%'ette and B. R. A. Nijboer, Phys. Letters
18, 19 (1965).

3L. H. Nosanow, Phys. Rev. 146, 20 (1966).
T. R. Koehler, N. S. Gillis, and N. R. %'erthamer,

Phys. Rev. 165, 951 {1968).
5H. Horner, Phys. Rev. A 1, 1722 (1970).
B. Sarkissian, thesis (Duke University, 1969) {unpub-

lished).
R. A. Guyer and L. I. Zane, Phys. Rev. 188, 445

1969).
SC. Ebnerand C. C. Sung, Phys. Bev. A 4, 269 (1971).

This paper forms the theoretical basis for the work pre-
sented here.

C. Ebner and C. C. Sung, Solid State Commun. 8,
1903 {1970).

E. %'igner and H. B. Huntington, J. Chem. Phys. 3,
764 (1935).

R. Klonlg, J. deBoel, and J. Kolringa, Physlca 12,
245 (1946); %'. B. Hubbard, Astrophys. J. 161, 3264
(1970).

N. W. Ashcroft, Phys. Rev. Letters 21, 1748 (1968).
J. A. Krumhansl and S. Y. Wu, Phys. Letters 28A,

263 {1968).
"V. P. Trubitsyn, Fix. Tverd. Vera 7, 3363 {1965);

8, 862 (1966) ISov. Phys. Solid State 7, 2708 (1966); 8,
688 (1966)].

W. N. Hardy, I. F. Silvera, and J. P. McFague,
Phys. Rev. Letters 22, 297 {1969).

W. N. Hardy aad J. R. Gaiaes, Phys. Rev. Letters
17, 1278 (1966); A. B. Harris, L. I. Amstutz, H. Meyer,
and S. M. Meyers, Phys. Rev. 175, 603 (1968).

A. B. Harris, Int. J. Quantum Chem. 25, 347 (1968);
Phys. Rev. B 1, 188 (1970).

8J. Noolandi and J. Van Kranendonk, Can. J. Phys.
48, 489 (1970).

&9J. W. Stewart, J. Phys. Chem. Solids 1, 146 (1956).
20We use units 8=1=&&. The Green's function notation

follows the convention of L. P. Kadanoff and G. A. Baym
[QQcstltÃ StctisticQE Mechctlscs (Benjamin, New York,
1962)].

21F. Iwamoto and H. Namaizawa, Progr. Theoret. Phys.
Suppl. (Kyoto) 37/36, 234 (1966); Progr. Theoret. Phys.
(Kyoto} 45, 682 (1971).

R. A. Guyer, Solid State Commun. 7, 315 (1969); in
Solid State Physics, edited by F. Seitz, D. Turnbull, and
H. Ehrenreich (Academic, New York, 1969), Vol. 23,
p. 413.

See, e, g. , J. O. Hirschfelder, C. F. Curtis, and
R. B. Bird, Molecglm Theory of Gases and Liquids
(Wiley, New York, 1954), pp. 33 and 1092.

4I. B. Srivastava and A. K. Barua, Indian J. Phys.
35, 320 (1961).

25For a detailed discussion of the different interactions
see T. Nakamura, Progr. Theoret. Phys. (Kyoto) 14, 135
(1955); also Ref. 23.

6K. Tomita, Proc. Phys. Soc. (London) A68, 214
(1955); J. C. Reich and R. D. Etters, Phys. Rev. 155,
CSV (1967).

G, Ahlers and %'. A. Orttung, Phys. Rev, 133, A1642
(1964).

BJ. Van Kranendonk and V. F. Sears, Can. J. Phys.
44, 313 (1966).

J. H. Constable (private communication).
H. %'. N. Hardy and J. R. Gaines, Phys. Rev. Let-

ters 19, 1417 (1967).
J. R. Gaines and J. H. Constable, Solid State Com-

mun. 9, 155 (1971}.


