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By considering a model in which charge is transported via phonon-induced tunneling of
electrons between localized states which are randomly distributed in energy and position,
Mott has obtained an electrical conductivity of the form cr~exp[-(X& /pokT) ]. Here T is
the temperature of the system, po is the density of states at the Fermi level, X is a dimen-
sionless constant, and & is the distance for exponential decay of the wave functions. We

rederive these results, relating X to the critical density of a certain dimensionless perco-
lation problem, and we estimate A, to be approximately 16. The applicability of the model to
experimental observations on amorphous Ge, Si, and C is discussed.

I. INTRODUCTION

The dc conductivity of amorphous germanium, in
the temperature range 60 K& T & 300 'K, has been
found to be consistent with the law

e(T) ~ exp[- (To /T)' I '],
where T, =-7&&107 K. Similar temperature depen-
dences have been found in amorphous silicon and

carbon, '~ ~& 7 and in vanadium oxide (VQ). 8 A tem-
perature dependence of this general form has been
predicted by Mott. ' ' His ideas are based on a
model in which charge is transported by the
thermally assisted hopping of electrons between
states localized near randomly distributed "traps"—
potential fluctuations that can bind electrons. The

temperature To in (1.1) is given by Mott as

(1.2)

where ~ is the coefficient of exponential decay of
the localized states, po is the density of states at
the Fermi level, and A. is a dimensionless constant.
Mott's derivation of Eq. (1.1) seems to us to be
somewhat unsatisfactory from a statistical point
of view. In this paper we present what we feel is
a more systematic derivation of the T ' law,
starting from Mott's model. Qur analysis is rather
different from Mott's, however, and seems to us
to uncover some important aspects of an extremely
interesting problem in statistical physics. In ad-
dition, we express the constant A. in terms of the
critical density for a certain dimensionless percola-



HOPPING CONDUC TIVITY IN DISORDE RE D S YS TE MS 2613

tion problem, and we estimate A. to be approximately
16.

It should be remarked at the outset that there is
no way at present of directly measuring the param-
eters a and po which enter the theory, and there
may be reason for questioning the applicability of
the specific model to amorphous Ge, Si, and C in
the temperature range measured. Nonetheless we
believe that consideration of this simple model will
be helpful for the understanding of dc conductivity
in a variety of disordered systems.

The main sections of this paper, Secs. II-IV,
deal with localized electronic states, the one-
quantum mechanism for hopping from one such state
to another, and a method for estimating the con-
ductivity of a system composed of a random array
of such states. A critical discussion of the possible
applicability of the simple model to real amorphous
systems is given in Sec. V. Further comments on
the significance of our percolation approach to the
evaluation of the conductivity, and on the relation
to other calculations, are given in Sec. VI.

Appendix A contains details of an approximate
evaluation of the critical density of the percolation
problem necessary for the calculation of the coef-
ficient X in Eq. (1.2).

An important step in our evaluation of the con-
ductivity is the reduction of the hopping model to
an equivalent random resistance network, in a
manner similar to the work of Miller and Abra-
hams ' on a hopping model for impurity states in
a crystalline semiconductor. Our evaluation of the
resistance of the network is very different from the
estimate of these authors, however, as explained
in Sec. VI.

The evaluation of the resistivity in our model is
restricted to dc conduction and to the limit of weak
fields. "

II. LOCALIZED STATES

Following Mott, we consider a highly disordered
semiconductor containing an appreciable density,
say, 10' -10 cm, of localized electronic states
within a mobility gap of midth of order 1 eV. -We

assume that the positions of these states, i.e. , the
trapping sites, are randomly distributed, and that
their energies are also random on a scale at least
of the order of kT. That is, the density of states
p(E) will be assumed to be a constant, roughly
10 -10 cm ' yer eV, within the region of interest.

The terms "localized state" and "mobility gap"
deserve further discussion because they are basic
to all of our analysis. What we mish to consider
is a situation in which the electronic wave functions
for states near the Fermi level do not extend
throughout the system but are each localized near
some trapping site or some cluster of defects. It is
well known that, given such localization, the dc con-

ductivity will vanish at zero temperature, as does
the o given inEg. (1.1). If the electronic states are
not localized, the residual resistivity will be finite.
In an amorphous semiconductor, the density of
states may be finite at the energies where there
are gaps in the spectrum of the ordered material;
but, within the gaps, there may exist energy in-
tervals containing only localized states. Such an
interval is called a mobility gap. The idea that
the localization of the wave functions may change
abruptly at certain energies, i.e. , at the edges of
a mobility gap, is originally due to Anderson' and
has been developed recently by Mott'4 and
others. "

It is possible to formulate a simple criterion
for localization in a way which will be useful in our
later discussion of transport properties. Consider
a pair of traps such that, when in isolation from
one another, their two relevant electronic energy
levels differ by 4E; and let these traps be separated
by a finite distance R. As long as &E is large
enough, there will be no appreciable coupling be-
tween the electronic states on each of the traps,
and the wave functions will remain localized at each
of the sites. If, however, &E is smaller than the
overlap energy (the off-diagonal matrix element of
a 2& 2 Hamiltonian in a representation in which the
wave functions are localized on the separate sites),
then the energy eigenstates must be delocalized.
For example, if &E= 0, the two correct wave func-
tions will be exactly symmetric and antisymmetric
under exchange of the sites. The condition for de-
localization can be written mathematically in the
form

(2. 1)

where U is an energy of the order of the binding
energy of a trap, say, 0.3 eV, and u ' is a length
which describes the spatial extent of the wave func-
tion localized at a single site.

Consider now a large volume containing a finite
density of such sites distributed randomly in posi-
tion and energy, and imagine drawing a line —a
bond —between any pair of sites which satisfies con-
dition (2. 1). If the electronic eigenstates for the
whole system are localized, then these bonds will
be rare, and will occur only in isolated clusters.
On the other hand, if the bonds form a network
which spans the whole system, the wave functions
will be delocalized. More mathematically speaking,
the eigenstates remain localized as long as the
number of bonds per site is less than the critical
percolation density. Note, however, that the per-
colation problem me pose here is not quite a
standard one. '

It is easiest for our purposes to characterize the
solution of this percolation problem by specifying
a number g which is the average number of bonds
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per site at the critical percolation density. That
is, the wave functions will remain localized if the
average trapping site is "on speaking terms" [ac-
cording to condition (2. 1))with fewer than q neigh-
boring sites. Presumably g is a number of order
2 or 3. The important point is that g is purely
geometrical in origin, and does not depend upon the
physical parameters p0, n, or U. Thus, the con-
dition for localization is

16wpo U/n' &q, (2. 2)

In the following, we shall consider only systems
in which the electronic states at the Fermi level
are all localized, and conduction takes place via
direct hopping of electrons from one trapping site
to another. ' " Because the trays are randomly
distributed in energy (a requirement for localiza-
tion according to the argument of Sec. II), the con-
duction process requires the assistance of the
thermal fluctuations of the lattice to ensure energy
conservation. At finite temperatures there will
also occur an indirect conduction mechanism in-
volving thermal excitation of band electrons across
the mobility gap. We sh@ll assume that the tem-
perature is sufficiently low, and that the tunneling
rates and density of localized states are high
enough that the direct hopping process is the domi-
nant one.

Let us denote the intrinsic transition rate for an
electron hopping from a site i to an empty site j by

y)~ = y(R (q, E; Eq), — (3. 1)

where R,&
is the distance between the sites and E,

and E& are the respective electronic energy levels.
The average transition rate from site i to site j
is then

F„=&,(1 —,) y„&, (3.2)

where the n& are the occupation numbers and the
angular brackets denote an average over time.
Throughout this work we shall neglect electron-
electron interactions except to say that not more
than one electron can occupy a single site. Then

y&& is independent of the occupation numbers and

may be removed from the brackets. Furthermore,
in thermal equilibrium, the occupation numbers
for different sites are statistically independent, so
that (n, n, ) = (n) ) (n, ), and

where the left-hand side of (2. 2) is just po jd E
x jd(bE), integrated over the region where I bE I

& Ue ". In this way we obtain a rough upper bound
on the density of states, p0, for which our hopping
model might be applicable.

III. HOPPING MECHANISM

where the energy E; is measured from the Fermi
level. [Equation (3.3) applies even in the case
where the localized states on each site have a
degeneracy g (as from a spin degeneracy), pro-
vided one includes an entropy term kT 1ng in the
definition of the Fermi level. ] Finally, from de-
tailed balance, I',

&
must be symmetric in i and j,

and thus

y y p (@& 8&) /kT

We next must predict a more detailed form for
y;;. Because we are considering a tunneling pro-
cess, we know that the dominant dependence of
y&~ on R&z must be exponential" ":

-2@R]~ (3.6)

where n ' is the same length which was introduced
in Eq. (2. 1).

The energy dependence of y&& is less obvious than
the R dependence; and, in fact, a number of differ-
ent kinds of behavior seem possible. The simplest
situation occurs when kT is small compared to

I E; —Ez I, and the energy difference I E& —EJ I is of
the order of the Debye energy or smaller. It is
then a good approximation to write

o, ]~- g8 ]0

2eR]g for E& &E&,

where y0 is some constant which depends on the
electron-phonon coupling strength, the phonon den-
sity of states, and other properties of the material,
but which depends only weakly on the energies E&
and E& or on R&& relative to the exponential factors
which we have shown explicitly. We shall refer to
Eq. (3.6) as the "quantum-limit" hopping formula.
The hopping rate (3.6) may also be valid for energy
differences (E, -E&l large compared to the Debye
energy provided that the matrix elements for multi-
phonon emission yrocesses do not decrease too
rapidly with increasing IE& -E& l relative to the de-
tailed balance factor exp[- (E& E&)/kT] which-
makes the energy absorption process difficult.

Combining Eqs. (3.2), (3.3), and (3.6), and as-
suming kT small compared to all the energies which
appear, we find that the value of I"&& in thermal
equilibrium can be written in the relatively simple
form

I'l) =- yoe~[ —2~v -(IE;I + IE~ I+ I«-Exl)/2kT] .
(3.7)

IV. CONDUCTIVITY

A. Formulation as a Resistance Network

1
1+exp(E,/kT) ' (3.3)

In the presence of a weak external electric field
$, the intrinsic transition rates y;~ will be changed
to
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r»»(&) =~(R»» E» -E»+&@ 'R»») -=y»»+6&»» . (4 1)

Also, the occupation numbers will be changed by
amounts (60,), which we may express as changes
6p,

&
in the chemical potentials at the various sites.

That is, we may mrite

We shall assume, even in the current carrying
state, that there are no correlations betmeen the
occupation numbers at different sites; i.e. , we ap-
proximate (»»»n») = &»»») (n»). We can then write the
average net flow from site j to site j in the form

(6»», )
»&~)((& -n, )))

e
G»»-——I'»» (R»»& E», E») (4.4)

may be interpreted as a conductance between the
tmo sites. For a given field 8, the quantities
5p, , are, in principle, determined by the require-
ment of current conservation; i.e. , the total cur-
rent entering each site g, must be ze10. In the fol-
lowing analysis we shall not have to compute the
FLU. , explicitly.

It is useful to think of this model as a real net-
work consisting of randomly distributed points
(trapping sites) linked to one another by conduc-
tanees G„. In general, any site on the network
mill be connected by an appreciably large conduc-
tance only to its close neighbors in the four-di-
mensional position-energy space. Moreover, the
strongest connections wiB occur for pairs of sites
whose energies are near the Fermi level. Sites
which lie far from the Fermi level willbe effectively
disconnected from the network.

=
&
—I';;. (eh ' R»»+6)L»; —6»»»). ,

(4. 3)

where we have used Eq. (S.4) (detailed balance) to
evaluate the terms involving 6y,z. The factor in
parentheses in the final version of (4. 3) is the total
potential difference between sites j and j. Thus,
the quantity

ductances in the network, and R is some charac-
teristic length scale for the network. %e assert
that for a network such as the one me are consider-
ing, where the values of the individual resistances
vary over many orders of magnitude, the correct
choice for G is the critical percolation conduc-
tance G„defined as the largest value of the con-
ductance such that the subset of resistors with

G;& & G, still contains a connected network which
spans the entire system. Although we do not know
hom to calculate the remaining factor R ' with any
great accuracy, this latter factor mill be a relative-
ly slowly varying function of the parameters of the
network, and the dominant variation of 0 will be
contained in G, . For the particular network under
consideration here, we shall find that the critical
conductance G, has the exponential dependence given
in Eq. (1.1), while the prefactor R ' probably
varies as some power of T/To.

The reasoning behind our estimate of the con-
ductivity is as folloms. The resistance network can
be considered as composed of three parts:

(i) A set of isolated "regions" of high conduc-
tivity, each region consisting of a group of sites
linked together by eonduetanees with G;;» G, .

(ii) A relatively small number of resistors with

G&& of order G„which connect together a subset
of the high conductance clusters to foxm an. infinite
netmork which spans the system. In the following,
we shall refer to the set of resistors in categories
(i) and (ii) as forming the "critical subnetwork. "

(iii) The remaining resistors with G»» «G, . It
is clear that the conductances of order G, determine
the resistance of the network. The conductances in
category (i) could all be set equal to infinity with-
out greatly affecting the total conductivity —the con-
ductivity would still be finite because the current
has to pass through conduetances of order G, to
get from one end of the system to the other. On
the other hand, the resistances with G&& «G,
make a negligible contribution to the conductivity
because they are effectively shorted out by the
critica1. subnetmork of resistors with G&& & G,.

C. Estimate of the Critical Conductance

%'e nom turn to the evaluation of the critical per-
colation conductance G, for the network under con-
sideration. Using Eqs. (4.4) and (S.V), we may
write the condition G&& &G, as

B. Reduction to a Percolation Problem

The over-all electrical conductivity of any con-
nected resistance network can be written in the
form

I'~ =kTG~/e— (4. 7)
o=G/R, (4. 6)

where G is some characteristic value of the con-
Let us further rewrite (4.6) in the dimensionless
for m
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Rq~ IEgl + IEgl + lE) -Egl
+ &1,

Rmax 2Emax

where

(4.8)

(4. S)

aTo= 4v, n'/p, .
We believe this estimate of the conductivity of our
resistance network to be asymptotically exact in
the sense that

E = uTh(year, ) . (4. 10)

Any link with R;; &R will violate the inequality
(4. 6) or (4.8) regardless of the values of E, and

E~. Similarly, any site with l E, l &E will violate
the inequality for any choice of E&, no matter how
small the value of l r, —r&l, and thus will be dis-
connected from the critical subnetwork. The total
number of sites per unit volume with lE& l & E,„
is

n= 2ppE ax (4. 11)

These n sites are still randomly distributed in
space, while the dimensionless variable E,/E, „
is randomly distributed between —1 and 1.

In constructing the critical subnetwork, we con-
sider there to be a bond between two sites i and j
if and only if the inequality (4. 8) is satisfied, and
we must choose 1", so that the set of bonds included
is just large enough to ensure that at least some
part of the network spans the entire space. Clear-
ly, this criterion will have the form

3
nRmm = vc ~ (4. 12)

'3'GATV~ = fj (4. 13)

The coefficient —,v in Eq. (4. 13) is simply the
average volume of a sphere of radius (1 —

I E&l /
E,„), when I E& ~ is uniformly distributed between
0 and E,„. Thus Eq. (4.13) gives v, =2. 86, if we
guess q= 3. In the Appendix we present a more
sophisticated analysis of the percolation problem
which leads to the estimate

4 (4. 14)

We also point out that, in principle, the number
v, can be calculated as accurately as desired by a
Monte Carlo calculation similar to those that have
been used by a number of authors to study percola-
tion problems on various two- and three-dimen-
sional lattices.

It is now a simple matter to relate I', to v, .
Combining Eqs. (4.S)-(4.12), we see that

In(yo/r, ) = (4v, n'/pokT)'~' . (4. 15)

From this we obtain the form o oo exp[- (To/T) ']
for the conductivity with

where v, is a dimensionless constant of order unity.
For example, if one estimates v, by requiring that
the expected number of bonds attached to a site i
with energy E; =0 be equal to some given number

g of order unity, then we have

as (T/To) -0.
Note that, if u is in the range 10 -10 cm ' and

po is of order 10", Eq. (4. 16) gives a To of order
10' 'K. Note also the similarity between this ex-
pression for Tp and the localization condition, Eq.
(2. 2). If we eliminate n'/vapo from these relations,
and approximate v, =- g, we obtain a simple lower
bound for Tp involving only the quantity U, an en-
ergy which should be independent of the distribution
of the trapping sites. That is,

To &200U/k . (4. 18)

Equation (4. 18) is a consistency requirement for
the theory in the sense that, if the inequality were
violated, the assumption of localized electronic
states could not have been valid. In our case, if
U:-1 eV, the right-hand side of (4. 18) is of order
10 K, and the inequality is satisfied.

V. APPLICABILITY TO REAL SYSTEMS

A number of the assumptions used in constructing
the model of the previous sections must be questioned
before the model can be applied to the experimental
observations in amorphous materials. These as-
sumptions are: the neglect of correlations between
the energies of neighboring sites; the neglect of in-
teraction between electrons on different sites; the
neglect of the variation of the density of states with
energy; and the assumption of the "quantum limit"
for the hopping rate, Eq. (3.6). The last two of
these seem to pose the most serious problems for
the validity of the Mott hopping model. In particu-
lar, if the maximum distance from the Fermi en-
ergy, E „, is evaluated according to (4. 10), we
find E,„=kT Tp = 0, 17 eV for Ge at 60 K and
E,„=- 0.57 eV for Ge at 300'K. Since the energy
gap in crystalline Ge is equal to 0.8 eV, one would
not expect the density of states to be constant over
so large a range. There might also be an apprecia-
ble energy dependence of n, the inverse length
which occurs in the overlap integral.

If the second derivative of the density of states
with respect to energy is positive, then lno might
have a positive curvature when plotted against
T ' 4. Qn the other hand, the values of E are
sufficiently large that the quantum hopping rate
(3.6) is probably not valid. For example, if E;
-E& is positive and of order 0. 2 eV, the matrix
element for the emission of a sufficient number of
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phonons to remove the necessary energy may be
quite small, perhaps small compared to
exp[- (E, -E&)/kT]. If so, the equilibrium transi-
tion rates I'&& will fall off more rapidly than
exp(- IE& E&I /-kT) as E, and E& move away from
each other. This effect would tend to give lno a
negative curvature when plotted against T-'~ 4.

It would, of course, seem very surprising for the
above effects to cancel and give a conductivity such
that lno is perfectly linear in T ' . lt is not
clear, however, to what extent the experimental
data might be fitted by formulas other than Eq.
(1.1). It would also be interesting to follow the
conductivity experimentally down to lower tem-
peratures where the assumptions behind the Mott
model would be more likely a priori to be valid.

Two further possibilities concerning the hopping
mechanismdeserve mention. First, we note that the
difficulty in(3. 6) arising from the large value of E „
might be overcome if each trapping site consisted,
not of a single electronic energy level, but of a
number of such levels, still well localized at the
site, but spread over a range of energies of order
E,„. Then the thermal fluctuations of the system
might establish equilibrium at each trap separately;
and our simple hopping formula (3.6) would be
valid with E& and E& referring to, say, the ground-
state energies at two sites.

A second, almost completely opposite, possibility
involves a classical picture of the thermal fluctua-
tions. At high enough temperatures, the vibrational
modes might be highly excited, and multiple phonon
processes could be important. In this picture, the
energy of a trap should be visualized as fluctuating
very slowly (on an electric time scale), with tran-
sitions occurring between one trap and another
when these fluctuations happen to make the energies
of the two traps coincide. The frequency of such
coincidences turns out to have the form exp[- (E&

E&) /CkT], -where C is a constant; and the re-
sulting conductivity is lno~ T ' 7. We see no rea-
son to believe, however, that this mechanism is
operative in the materials under consideration
here.

Let us now consider the effects of the Coulomb
interaction between electrons, restricting our-
selves initially to a discussion of these effects
within a Hartree or Hartree-Foek approximation.
In this approximation, the energy of each site i
is modified by the potential due to the time-averaged
occupation number (n&) of the other sites j. Let
us assume that the potentials in thermal equilibrium
have already been included in the definition of the
site energies E;, so that we need only consider the
effects of the changes in site potentials when the
electric field is applied. W'e are thus led to re-
pla. ce Eg. (4.3) for the net current between two
sites by

where

(5. 2)

e is the background dielectric constant, and 5p. ,
is defined by (4. 2) as before, The values of the
5p,

&
are determined by the equations of current

conservation, which have exactly the same form
as the equations which determined 5 p. , when the
Coulomb potential was neglected. Thus the sub-
stitution of (5.1) for (4. 3) makes no difference
whatsoever in the current flow, and the only effect
of the Coulomb interaction in the Hartree or
Hartree-Fock approximation is to affect the sta-
tistical distribution and correlations of the energy
levels E& in the thermal equilibrium state.

It has been suggested by a number of authors '
that the energy levels in amorphous materials are
influenced by relatively large random electric
fields, arising presumably from the Coulomb po-
tentials due to charged impurities, broken bonds,
etc. ; or, in other words, from atoms in the
material whose normal valence requirements are
not locally satisfied. These random fields will
then produce fluctuations in the potential with a
characteristic wavelength related to the screening
radius, which may be of the order of 50 A or
larger. This length scale may be large compared
to the average distance between localized states
and it would then be incorrect to neglect the cor-
relation between the energies of adjacent sites.
In the limit where the spatial scale of the fluctua-
tions is large, the effects of the random potential
may be described as a local variation of the Fermi
level relative to the mobility edge of the material.
There will then be regions of higher conductivity
where the Fermi level is close to a mobility edge,
surrounded by regions of lower conductivity, where
the Fermi level is deep in the gap, and the local
density of states is presumably small. If the
regions of high conductivity are sufficiently far
apart so that direct tunneling between these regions
is not possible, then the conductivity of the system
is determined by the distribution of the local con-
ductivities. Once again, in the limit of widely
varying conductivities, we have a percolation prob-
lem to solve. The conductivity of the system will
just be given by the critical conductivity o„defined
as the largest conductivity such that the volume of
space with local conductivity o(r ) greater than o,
still includes a connected volume which spans the
entire system. Roughly, the conductivity will be
given by the requirement that the volume of space
with o(r) greater than o, be equal to one-quarter
of the total volume~' (see Appendix). If the



mechanism for conductivity in the eritica. l regions
wllel 8 (j(r ) = (T, ls pl opel ly described by'. Mott s'

model of hopping bebveen locabzed states, then
the total conductivity of the system will still have
the temperature dependence of Eq. (1.I). The
quantity po entering Eq. (l. 2) for To would not now
be interpreted as the density of states at the Fermi
energy for the system as a whole, but rather as
the local density of trap sites per unit voluxne and
energy at the Fexmi level in the regions with
o=a, . If p(r) is the local density of states at point
r, then po would be roughly determined by the
condition p(r ) & p, for one-quarter of the volume
of the sample.

Let us xemaxk, also, that if states ean be ehax-
acterized as valencelike or conductionlike, with a
very slow rate of interconversion between the tvro

kinds of states, then the total conductivity o must
be calculated separately for the two kinds of states,
and the results added together at the end (usually
0118 ol' 'tile othel' would dominate). This wollld 18Rd

to a lower conductivity than one would estimate
with both kinds of states included in p(r ).

One final effect of the electx'on-electron Coulomb
lntelRctloQ must be mentioned~ This ls the lowex'-

ing of the energy of an occupied electronic level,
relative to the unoccupied levels, due to the in-
duced polRx'lzRtlon of the x'6IQRlnlng electx'ons by
the electron on the occupied state. To the extent
that the polarization cannot easily I'earrange itself
as the electron hops from an occupied site to an
UDoccupled site, the polRx'lzRtlon self-enex'gy 4
will serve as a barrier to the conduction process.
If we make the most severe possible assumption,
that the electronic polarization cannot rearrange
itself at all, then the electrical conductivity would

be reduced by a factor e" ~ . %6 may estimate
the polarization self-energy of an occupied state
as the Coulomb potential at the origin arising from
the screening charge distribution induced by the
electx'OQ, cRlculRted 1D the Thomas-Fex'Inl Rppx"ox-

imation. This 18Rds to the 1'esult

For Ge, with & = 16, this gives ~ =- 0.093 e7 fox

po= j.G eV cm, or 4=- 0.93 8V for po=I0
The factors 8 %'ould be negligible compared
with exp[- (To/T) ~ ] for temperatures higher than

1 ol' ~0 K, I'espectlvely.

A nuxnber of features of the calculation i.n Sec.
IV deserve note.

In the first place, we point out that the form of
the conductivity cannot be deduced by dimensional
analysis alone. Dimensional analysis requires .

that the conductivity of the resistance network de-
scribed by Eqs. (S.7) Rlld (4.4) 11Rve 'tile generRI
fol m

but dimensi. onal arguments sa,'y nothing about the
specific fox'm of the dimensionless function Il.

%'8 also remark that the percolation analyst. s we
have used to obtain the conductivity of the random
I'eslstance network ls esseQtlR1, fox' col'x'ect undex'-

standing of the problem, Rnd that incox'rect results
ean be obtained for the conductivity if this feature
is overlooked. An incorrect evaluation of the con-
ductivity is obtained, fox' example, if one ignores
the requirement of current conservation, and
neglects the changes in the chemical potential
6p; in Eq. (4.3). In this approximation one would

say that the current flowing from i to j is simply
(e I'1&/kT) 7 R,&. If one then computes the average
current density in the network, one finds fox the
network conductivity the incorrect result

whexe V is the volume of the system. For the ran-
dom nehvork considered in See. IV, this would
give

a gx'oss overestimate of tjle conductivity Rt lo%'

ternperatux'es. This overestimate, of course, re-
sulte from the exaggerated contribution of the re-
sistors with atypically high eonductanee.

In their analysis of a hopping model similar in
many respects to the model considex'ed in the
present papex, Miller and Abrahains assuined
that a random network is effectively equivalent to
a set of independent conducting paths, each path
carrying electrons from one end of the system to
the other via transitions between near-neighbor
trappi, ng sites. In this pictux'e, the conduetances
linking the sites are connected in series;- and, thus,
the conductivity of the system ls detex'Inlned by the
mean resistance between a site and its first or
second Q8Rx'est neighbor, BecRuse the Mlllel'-
Abrahams mean resistance calculation is dominated
by very laxge resistors, that in fact are bypassed
by the eritl. cal resistance subnetwork, this analysis
leads to a, much lower estimate of the conductivity
of the system than the correct percolation analysis
px'oduces.

To make a direct comparison of the two ap-
proaches» let us fix'st cogsider R Inodel which ls
somewhat simplex' than the one discussed in See.
IV. We discuss a model in which there is a density
n= (4mB&/3) of trapping sites, all of which have
energies sufficiently close to the Fermi surface



(6.6)

If the conduetanee of the link of length 8„is
Goexp(-2nR„), then the average resistance of such
links is

( e ".~„(R„)dR„
&n Co g,av

I"
'"-'exp(2 R~u- ')d

(6.6)

where u = R/R~. As usual, we consider only the
case of a very dilute distribution of traps (we still
insist on localized wave functions), so that
nR~» 1. The integral in (6.6) is then sharply
peaked at u = —,'aR&. Thus this analysis would lead
to the incorrect result

o = exp[- 2(-,'2nRo)' '], (6.7)

which is essentially Miller and Abrahams's Eq.
(111-29).

In the actual model considered by Miller and
Abrahams, the energy spread 4 of the impurity
states is large compared to AT but is small com-
pared to STER&. This leads to a temperature de-
pendence 8 ~ which will be present equally well
in the Miller-Abrahams analysis and in the perco-
lation analysis of that model. (Note that, under
these conditions, e" ' is a more slosoly varying
function of temperature than exp[- (n /pokT) ~), .

if we set po=n/h. }
The application of the Miller-Abrahams analysis

to the model of the present paper, in which the
density of states is taken to be constant, and the
energy dependence of the hopping is important, is
somewhat ambiguous. If one estimates the re-
sistivity of the network as the mean value of the
first or second smallest resistance connected to a
site at the Fermi energy, then one finds

Ina ~ —(n'/p, nT)'~' .
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so that the energy dependence of I',
&

can be
neglected. In this model, the percolation analysis
equivalent to (4.9)—(4. 12) gives simply

(6.4)

The Miller-Abrahams point of view requires a
more compbcated calculation. Let A„be the dis-
tance between any given site and its nth nearest
neighbor. The probability distribution for 8„is
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APPENDIX: APPROXIMATE SOLUTION OF THE
PERCOLATION PROBLEM

=0 if p( it(i & 1 (As)

We shall assume there to be a bond between two
sites i and j if and only if their associated spheres
intersect. [This is correct for e, e& &0, but some-
what underestimates the number of bonds for
E, && &0. Qn the other hand, if we had chosen a
sphere of radius

R, =(-.' ——.'i e, i)R.„, (A4)

we would have overestimated the number of bonds
regardless of the signs of e, and a~. ] The average
volume of the spheres in (A&) is

V= 34vR' J—
' '

(-,' —i~i)'d~/ j de = ravR'

(A6)

[If we had used (A4), the volume V would have been
twice as large. ]

We now estimate the eritieal percolation density
for this problem to be

(A6)

which means that slightly less than one-quarter of
the volume should be filled by the spheres. (Filled
volume = 1 —e '~ = 0. 22. ) We base this estimate
on the calculated critical site-occupation probabili-
ties for various three-dimensional lattices

p, = 0.195 for fee, hcp,

p~=0. 24 for bcc,

p~ =0.31 for sey

In this Appendix, we shall attempt to make a
more sophisticated estimate of the critical density
v~ for the dlmensionless percolation problem de-
fined in Sec. IV.

Le't fg Eg/Em~, and let pgg Rqy/Rmax lf &) and
e& have opposite signs, then the inequality (4.8) will
be satisfied, and there will be a bond between sites
i and j, if and only if

(Al)

If && and e& have the same sign, there will definitely
be a bond if (Al) is satisfied, but there may be a
bond between i and j even if (Al) is not satisfied.
There will certainly not be a bond, however, un-
less po satisfies

(A2)

I.et us associate with each site i a sphere of radius
8;, centered at r&, with

(-,' —ia, i) if i~, i
(-,'
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p, = 0.43 for diamond structux e.

nV &
~g

=0.1818 . (AV)

For spheres of variable size, the corresponding

Ne feel that the close-packed lattices should be
IQore representative of a randoxQ ax*x'ay of sphel es
than the more open structures. Our estimate (A6)
is slightly larger than the general estimate for the
critical filled volume of 0. 15 given by Scher and
Zallen. " For a random distribution of spheres of
equal volume V, one can establish a rigorous
lower bound to the critical density of

rigorous lower bound is somewhat weaker.
Combining (A6) with (4. 12) and (A5) leads to the

estimate v, =-4 quoted in (4. 14). The estimated un-
certainty in this result is of order 50/g.

~ofe gdded is proof. The authors have received
a preprint from M. Pollak, '~ in which a number of
the ideas of the present paper have been indepen-
dently dex ived. In particular, Pollak also deduces
Mott's form for the conductivity from considerations
in which the percolation aspects of the problem play
a central role. Another rederivation of the 'E '
law has been given. by Brenig, Vfolfe, and Dohler. "
Their derivation seems to be quite different from
the present one, however.
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