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The effect of a Coulomb interaction between charged traps in an amorphous semiconductor
is investigated within the premises of the Mott-Cohen-Fritzsche-Ovshinsky model.
The grand partition function is expressed as a functional integral over a set of Gaussian ran-
dom fieMs. The free energy is expxessed as a sum of the mean-field result plus fluctuations
about themeanfieM. It is shown that for the system under consideration, the mean field is
just the Hartree self-consistent field and that at T =0 K it represents the exact ground state.
It is shown that the fluctuations about the mean field represent correlations in the system.
Approximate expressions for the mean occupation number and the renormalized energies of
the charges are obtained as well as the renormalized single-particle density of states. The
excitation spectrum of single quasiparticles, within any given band, is shown to have a quasi-
gap. It is shown that the effect of a Coulomb interaction between the charged txaps is to xe-
duce the density of states at the Fexmi eriergy by a factor of 2 below its value in the absence
of interactions.

I. INTRODUCTION

The discovery of novel phenomena in amorphous
semiconductors has prompted considerable theo-
retical interest in these materials. The theoretical
attempts are aimed towards the understanding of
the electronic structure and transport in disordered
systems, in particular in covalent amorphous
semiconducting alloys. There exists, as yet, no
rigorous theory of the electronic structure in dis-
ordered systems. There has emerged, ho~ever,
a basic band model (which was synthesized by
Mott' out of earlier work) which illustrates the
universal features of the electronic structure of
disordered materials. This basic band model has
been further elaborated and clarified, in the con-
text of amorphous semiconductors, by Cohen,
Fritzsche, and Ovshinsky (we will refer to it as
the Mott-CFO model). The basic features of their
model are displayed in Fig. 1 via a sketch of the
density of states. For our purpose it is necessary
to briefly reviem some of the essential assumptions
underlying the model. They postulate that in an
amorphous semiconductor there exist bands of
extended states, that these bands have tails of

localized states, and that in sufficiently disordered
materials (such as alloys or bad films) these tails
overlap in the forbidden gap. They further assume
that every localized state has a mell-defined parent-
age, i. e. , it is always possible to assign a valence
or conduction character to a localized state in the
gap. The overlapping of the tails and the fact that
there is a finite density of localized states at the
Fermi energy has many interesting consequences.
Since valence states are electrically neutral when
occupied and conduction states electrically neutral
when empty, there results a random distribution
of localized charged traps throughout the material,
positive trapped holes (corresponding to the empty
valence-band tail above the Fermi energy E~) and
negative trapped electrons (corresponding to the
occupied conduction-band tail below E„). The over-
all electrical neutrality of the material is guaran-
teed through a proper choice of EJ;. One believes
that there may be as many as 10' of these localized
states (per cm~eV) at E~ One anticipate. s that such
a distribution of localized charges will have a sig-
nificant effect on carrier kinetics. One would like
to know, for example, what the effect would be of
these localized charges on the carrier concentra-
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tion, on the mobility edge and the extent of renor-
malization of the tail in the density of states, etc.
In this paper we investigate the effect of interac-
tion between the charged localized state in the re-
gion of tail overlap. This, we feel, is a necessary
first step before one can ask the general question
as to what is the effect of these charged localized
states on the carrier kinetics.

In Sec. II we define the model within which we
shall be working and clarify it. The question of
configurational averaging of the free energy of
these locahzed charges is discussed. This point
assumes pRx'tlculRx' lmpoltRnce since we ax'e deRl-
ing mith a random system.

In See. III we introduce the method of functional
integrals or the method of Gaussian random fields
and formulate the problem of evaluating the grand
partition function in these terms.

In Sec. Ig we evaluate the free energy in the
mean-field approximation. We linearize the formal
expression for the free energy with respect to the
mean field and then evaluate its configurational
average. In performing the configurational aver-
age we use Mayer'8 graph theory and restrict our-
selves to the so-called "ring diagrams. "

In See. V we obtain an approximate expression
for the renormalized energy of the quasiparticles
and their mean occupation numbers. We then
demonstrate that the mean field is just the gen-
eralized Hartree self-consistent field, and that,
for the particular problem under consideration,
the mean-field approximation represents the exact
ground state at T=0'K. As a final result of the
section we show that the single-quasiparticle ex-
citation energy exhibits an energy gap.

In Sec. VI we discuss the fluctuations about the
mean field. We obtain explicit results for the
lowest-order fluctuations. We then prove that the
higher-order fluctuations yield a contribution to
the free energy which is higher order in (kT) and

(e) than the leading term {which comes from fluc-
tuations of 0[(c' —Co)']}.

In Sec. VII me discuss some of the consequences
of Secs. IV and V to the electronic structure and
transport in amorphous semiconductors.

II. MODEL

We shall now turn to the question of specifying
the model with which we mill be working and clari-
fying the notation. Lately there have been consid-
erable theoretical attempts tomards understanding
the nature of localized states in a disordered sol-
id. While considerable insight has been gained in
this regard, no definitive picture as to the precise
nature of localized states has emerged. For the
purpose of the present calculation me will assuage
that the states under consideration are localized
over distances of the order of several atomic sep-

E

FIG. 1. Plot of the density of states intheMott-CFO
model for a covalent amorphous semiconducting alloy.
E„and E~ are the mobility edges. The shaded area cor-
responds to localized states.

arations. To be more precise, we mill investigate
a situation in which a set of localized states (of
both valence and conduction character) are dis-
persed at random throughout the amorphous semi-
conductor. We shaQ further assume that these
state8 Rx'e 8lngly occupied. Thl8 18 OIle of the Rs-
sumptions of the Mott-CFO model, but is not nec-
essarily correct. We shall adopt the following
notation for the specification of the system. We
are given a (specific) set of lattice sites, corre-
sponding to the centers of localized states in the
energy gap. These include two species of sites:
valence sites and conduction sites. We shall label
the set of sites {A), where

R& is the coordinate of the center of the localized
state, b; the species or band index (U for valence
and c for conduction state), E; the energy of a
noninteracting quasiparticle at the site R&, and 0
the spin index. Let N be the number of localized
states in the gap, consisting of N„valence sites
and N, conduction sites, i.e. ,

N = J 'g„(E)dE+ Jz 'g, (E)dE .
Here g, (E) is the single-quasiparticle density of
states in energy and E„and E, are the mobility
edges in the Mott-CFO model (Fig. 1). As was
remarked earlier one of the assumptions of the
Mott-CFQ model is that a localized state always
has a well-defined valence or conduction-band
character. As such, an unoccupied valence site
carries a positive charge, and an occupied conduc-
tion site has a negative charge. We shall refer to
these as quasiholes in the valence band and quasi-
eleetrons in the conduction band. We shall assume
for the potential energy of interaction between
these chax ged localized states, 'V», the following
form:

&m =

elan

p wa esca /&0,

with

Vgg = 1/Rg~, R~ &Ra

= 1/R0, R~ &Ro .
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Here, &p is the phenomenological dielectric constant
of the amorphous semiconductor, Rp is the mean
separation between charges, and q& is the charge
characteristic of the site A(q"„=+ 1, qz= —1). We
can therefore write for the total energy of such a
random assemblage of interacting charged localized
states

E ({n}) + ~AnA+ 2+ ~AqAe I AB eqB +s (2. 1)
A kj

where n&= 0, 1 is the occupation number of quasi-
holes in the valence band and quasielectrons in the
conduction band; e„=q„(p —E„)is the energy of
the quasiparticle measured from the chemical po-
tential p, and we have defined an effective charge
e=e/»O' . In Eq. (2. 1), and in what follows, the
summation over the (composite) index A runs over
the entire set of localized states. Finally, in order
to be able to use some mathematical identities
we shall set the diagonal terms V» in the interac-
tion energy equal to zero.

We now turn to the question of evaluating the
free energy of these charges. Since we have
chosen the occupation-number formalism we must
work in the grand canonical ensemble. In this
representation the central quantity is the grand
partition function Z given by

Z T -g (H- P, N)

where B is the Hamiltonian of the system, p, the
chemical potential, N the total number of particles,
and P= 1/kT. Since we are dealing with a "frozen
system" the trace in the above expression is to be
taken only over the "internal degrees of freedom. "
In our present case this refers to summing over
all configurations n&= 0, 1 except those which cor-
respond to double occupancy of a site, i.e. , we
forbid all configurations of the type n„= 1 and

n;, = 1. Since we have already expressed the quasi-
particle energies with respect to the chemical
potential p, , we have for the partition function

Z({R},{~})

g q e -»&()») )

{n}
I

p~ A=Z eqq —qZ „Eqq„qq„qv„qq n ){n} A AB

(2. 2)
The prime over the summation refers to the ne-
glect of double occupancy of sites. The free ener-
gy is given by —OTlnZ. Clearly, the above ex-
pression yields the partition function for a "spe-
cific" configuration ({R},{e})of the charges. Be-
fore obtaining the thermodynamic free energy one
should, at some stage, perform an average over
all configurations {R}and {e}.Since we are dealing

with a random sample there is no correlation be-
tween the occupation numbers and the specific
spatial configuration or the configuration of single-
particle energies. Consequently we must calculate
the free energy for a specific configuration and
then average this over all configurations, i. e. ,
we must calculate (-kTlnZ({R},{e}))as opposed
to —kT ln(Z({R},{e})),. To follow the latter pre-
scription would imply the neglect of fluctuations
in the system and could lead to qualitatively dif-
ferent results. To summarize then, since we
are dealing with a random frozen sample, i.e. ,
a specific nonequilibrium distribution of the posi-
tion and energies of the charges, one must calcu-
late the free energy for each configuration and
then perform an average over all configurations.
As will be seen later this is precisely the point
that leads to difficulties in performing the config-
urational average.

III. METHOD OF GAUSSIAN RANDOM FIELDS

The problem of evaluating the free energy of a
system of particles with long-range interactions
is encountered in many places, e. g. , in electrolyte
theory, plasma physics, etc. Systems with long-
range forces cannot be handled in the same
straightforward manner as systems with short-
range forces. It is to be recalled that a simple
calculation of the virial coefficients leads to a
divergent series4; this is the classical analog of
the divergence of the thermodynamic perturbation
theory in the calculation of the quantum-mechanical
partition function. 5 In certain classical problems
ingenious methods have been devised to manipulate
the divergent series to yield a finite answer, and
these have been generalized in a natural fashion to
quantum statistical mechanics. These methods,
however, are increasingly difficult to work with
if one wants to do better than the first approxima-
tion. In this paper we shall employ the method
of functional integrals to evaluate the partition
function. While it is true that the use of this tech-
nique (which is closely related to Feynman's path-
integral technique) has not yielded any new results
in problems where it has been employed, it has
the advantage that the mathematics of it least ob-
scures the physics. For the purpose of the present
calculation we shall introduce the formalism
through a well-known identity in the theory of
quadratic forms.

For a set of n (real or complex) variables x»
and for any real symmetric positive-definite ma-
trix A

x exp —— aA~~ r+ & a&n
1 -1

Al
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where lA I is the determinant of A and A is the
matrix inverse of A. This identity may be proved
by transforming to variables in which A is diag-
onal. ' Let

p((p}) -=(p )
""

lhl
"* *p(- -', & p~.', p) .

kl

(3.2)

It is easy to see that P„({(t)})—0 and JP„({(t)})g(dp(
= l. P„(Q}})is therefore a multivariate probability
distribution. In fact, it can be readily shomn that

(4))J ((& =o (4& 4&)& ((&=&&& (3.3)

where ()»&o& denotes an average with respect to
the distribution P({Q}). Thus {(I)}constitutes a set
of Gaussian random variables with mean zero
and dispersion given by the matrix A. Going back
to (3. 1) we may write

Partition Function

p ~
exp ——~ +AC'Ae~AB e~B&B

2 AB

where

P~ A (
eXP ~ A, ~AB B I ~e ~A ANA

AB

(3 8)

I -=ilPaxp ——Z P V P)
P

AB
(3.8)

We now turn to the question of evaluating the parti-
tion function. What me shall do is to cast the long-
range part of + [E(I. (2. 2)] as an integral over a
space of Gaussian random variables through the
use of the identity (S. 1). That is, we shall write

exp

(3. 4)
and e'= &('(- 1)e. Substituting (3. 5) into (2. 2) we

get

Z=lJlilPexp ——ZP„V„P Z'exp —llZ(e„+e'V„P„)a„)
2 AB {n} A.

(3.7)

In (S. 7) the prime over g („& means that we sum
over all configurations nA=O, 1 except those that
correspond to double occupancy of sites, i. e. ,
for any given site index i the allowed configura-

tions are n &,= 0, n;, = 0; x„=0, m;, = 1; n. „=1,
n;, = 0; but we exclude the configuration n;, = 1,
»„=1. This sum over {»}can be readily per-
formed, and this yields

X((ie},(e}} tJlilPaxp ——Z=P;'V, ,'P, axp Zla((+Pe""''&'"))P

i
(3.8)

exp ln l+2e ~"~" '~~&' (S. 9)

We mill soon see that the Gaussian random vari-
able &t); will have the physical interpretation of a
Coulomb field at the site i. It may be recalled
that the expression inside the angular brackets in
E(I. (3. 9) is just the partition function for a sys-
tem of "noninteracting" fermions, each in an ex-
ternal field. We have therefore succeeded in re-
ducing the problem of interacting particles to one
of noninteracting particles but with each particle j.n-
teracting with an external fieM; we then average
this result over all possible configurations of the
external fields. It should be noted that the ex-
ternal fields, which are Gaussian random fields,
are determined entirely by the interaction matrix
V. It must be emphasized, however, that the
simplification achieved through such a decoupling
procedure is offset to some extent by the fact that

we now have to evaluate a rather complex func-
tional integral, viz. , E(l. (S. 8).

IV. MEAN-FIELD APPROXIMATION'

Z -=L, J'aye '""'. (4. 1)

Comparison with E(l. (S. 8) shows that

Since E(l. (3.9) expresses the partition function

as an average over all (t} of Z({P})there must, be
a particular set {(t) }which will dominate this aver-
age. We shall now proceed to determine the set
of dominant fields-which we call the "mean field. "
For example, if me mere dealing with the Ising
model the mean field will turn out to be just the
Weiss molecular field. Let us first define a func-
tional 8[{/}]through the relation
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(4. 2)

The dominant field Q is obtained by solving the
equation

(&B/5 P ) ~
~o = 0 . (4. 3)

We can thus "factor" the partition function into a
product of the xnean-field result times the fluctua-
tions about the mean field, viz. ,

+mf +fluet s (4 4)

where Z, =exp(-B[Q&0}]). In Sec. V we shall
evaluate the fluctuations of O[($ —Q )3]. Let us
now return to the question of evaluating the mean
fields. From Eq. (4. 2) it follows that

F.,=- ~r Ins. ,= erB[Q'}]. (4. 8)

Substituting (4. I) into {4.2) we obtain, after some
algebra,

F f= —ATE(ln(l+2e '""'«')
qf 4l 0st{e+qk 4'i) ' (4. 9)

Litem'ized theory. Vfe shall now proceed to ob-
tain a more explicit expression for the thermody-
namic free energy using a linearized version of
the above theory. Expanding the two texms in
(4. 9) in powers of Q and keeping only the linear
term we obtain for the free energy

E &([f})=—kTZ;ln(1+ 2e '&)

+ —.'g, e q, y', s, (~,)+ O[gP)sj (4. 10)

[the terms of O[($ )'] in the expansion of the two

=0= P Z V„'qf;+Pe'q„no(e„+e'q„Q ),
(4. 5)

where

no(e) = 1/(1+ 2e~') (4. 6)

is the mean occupation number of charges in the
noninteractlng system' this differs from the usual
Fermi function because we have forbidden double
occupancy. The above equation yields a solution
for the mean field at the site i

$0&= —e'Z„V,„q no(e„+e'q $0) . (4. 'I)

This says that the mean field at any given site is the
sum of bare Coulomb potentials due to dressed
particles at all other sites. The expression (4. V)

is exact and should, in principle, be solved self-
consistently. Indeed, we shall show, towards the
end of Sec. V, that the mean field is just the gen-
eralized self- consistent Hartree field.

We can now write down a formal expression for
the free energy in the mean-field approximation,
E f. We have

terms in (4. 9) cancel). We shall soon see that the
second term in (4. 10), upon averaging, will be of
O[e x], v being the inverse screening length. The
terms higher order in Q involve the higher deriv-
atives of the Fermi function and, upon averaging,
will be proportional to the (higher) derivatives of
the density of states at the chemical potential. If
we define the typical width of the tail of density
of states, 4, through

d Ing (E)
dE

y ~&m

Let us define a diagonal matrix Jj by

a,g,-s ' o(')}
8g

(4. 11)

Inverting the above equation we obtain for Q&

Po, =-e'g„(v '+ A), '„q„no(e ) . (4. 12)

We now define the "screened Coulomb potential"
V" through

Vsc —
V

-=(V '+ A) '

= V (I+A V) (4. 13)

Here I is the unit matrix and e = (1+A V) is the
"dielectric matrix. " It is clear, from the defini-
tion of A(~) [Eq. (4. 11)], that e is just the Hartree
dielectric function. Substituting (4. 12) into (4. 10)
we may write the second term as

Fz=
2 ~&0(~~)«e I'll eq~&0(&g)

kj
(4. 14)

This is just the electrostatic energy of bare par-
ticles interacting via a shielded potential.

To summarize what we have done up to this
point, we have derived formal expressions for the
free energy and the mean field and in addition oh-

* tained explicit expressions for these within the

then the correction due to the higher-order terms
will be small if 4 &e~z. Therefore the linearization
of the free energy in the mean field is valid in the
limit of (a) low concentration of charges and (b)
wide tails for the density of localized states in the

gap. The first term is just the free energy of a
system of noninteracting fermions I"0 and we shall
call the second term, in anticipation, the Hartree
term I'H. Before proceeding further we need an,

expression for the mean field in this linear theory.
Let us go back to Eg. (4. 5),

Q ~ V '~ Q, + e'q„no(e + e'q Q ) = 0 .
Linearizing this with respect to Q„we get



framework of a linear theory, viz. , linear in the
mean fields. Allthis has been done for a specific
configuration ({R};{E})of localized states. As we
discussed in Sec. II, me must nom average the free
encl gy ovel" Rll conf lgulRtlons.

We define the configurational average of a quan-
tity 6 as

&6) f=-66 ({R},{E})d{R}d{E}, (4. 15)

1
=

(„)
~ ~P;(E;),

where 6'({R}',{E})is the probability of finding the
configuration ({R},{E})from among all configura-
tions. As a first approximation me shaH assume
that there is no correlation between the positions
of the guasiparticles and their energies. %6 shall
further assume that the charges are distributed
randomly throughout the sample. This is a fairly
good assumption for tmo reasons; To begin with
we are primarily interested in glassy (or disor-
dered) solids; and second, in the kinds of samples
me Rx'6 envisRglngy . Vlz.

~
R dilute coDcentx'Rtlon

of charges, the separation between the charges
mill be large compared to both the mean separa. —

tion between the charges and the spatial extent of
the localized states. Under these circumstances
there mill be negligible correlations between the
positions and energies of the charges. This means
that me can write

where Q is the volume of the sample.
The probability p(E, ) that a quasiparticle will

have an energy E; is just the frequency of occur-
rence of energy levels in a macroscopic sample,
viz. , the density of states in energy:

P;(E;)=P(E;)=g(«)l J, 'g(E;)dEI .
We shall nom evaluate the configurational average
of the mean-fieM energy [(Eq. (4. 10)l. In what f»-
loms, me shall xestrict ourselves to the case of
symmetrical bands. This means that N„=N, = ~
and further g„(tl)=g, (u) =- &g"'(tl). Here we have
defined g"'(tl).as the total density of states at the
chemlcRl potential.

The Rvex'Rglllg of tile fix'st 'tel'III iII Eq. (4. 10}
is straightforward and yields

(Fo({R},{6}))= —2hT f~ 'ln(1+ 2e ")g(E,}dE, .
(4. 17)

The averaging of the second term, Eq. (4. 14}, is
more complicated. We have

(no(e;)q; ev', I eq;n (eI))

= - ~ (no(e,.)q,.e[V(1+A V)-I],, eq, n, (e,)}.
(4. 18)

The difficulty arises on account of the fact that
the "dielectric matrix, " 6 = [1+A(e) V(R, R')], is
explicitly configuration dependent. The procedux e
me adopt is the following: We shall formally ex-
pand the inverse dielectric function in powers of

A V and average term by term, i.e. , me sha11 write

2f

(Ee) = —Z (no(&;)q; [V- VA V+ VA VA V ~ ~ ];;q;no(e;)) .

Upon' averaging me mould discover that each term
in the expansion diverges. This is, of course,
the %'6G-knomD divergeDce associated with the
long-range nature of the Coulomb force. It is,
'tllel'efol'6 hopeless to tl'y to obtRlll R II16Rlllllgful

result from a finite number of terms. It is, how-
ever, natural to make a pal'tiat summation of the
most divergent contribution to all orders in V and
see if this yields a finite answer. It may be re-
caGed that this mas precisely the procedure that
Mayer developed in the context of electrolyte theo-
ry. ' To be more specific me shall, foGoming
Mayer, represent the various tex'ms of the expan-
sion (4. 19) by'gI'aPhs. One represents each charge
by a dot and each factor V&; by a line between dots
i and j. With each dot (or vertex) will be associ-
ated either the function no(e) or A(e). We then
have a one-to-one correspondence between a term
in (4. 19) and its graph. Consider, for example,

tile flftll 'tel'In ill (4. 19), viz. ,

2e Z( no( e)IqIV;IAI VII, AqV„, A, V, A V~„q„no(e„)) .
In Fig. 2 me have drawn the graphs that corre-
spond to the various terms in the above expression.
We shall define the ~ing diagrams (or simple
cycles) as the least connected irreducible graphs
ln Rny ordel. The fll st fem ling dlagramS Rre
represented in Fig. 3. The remainder of the cal-
culation proceeds in complete analogy with the
corresponding steps ln e~ectroly~e t~eo~y and me

shall therefore omit the details of the calculation.
The lirie of argument is as folloms: One argues
that in any given order "for weak charges and

small particle density, the most important contri-
bution comes from the ring diagrams. " In fact,
one can show that the fact that each one of the ring dia-
grams diverges in a system with Coulomb forces is the

basis for the possibility that in R partial summa-
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q, n (i)=
i 0

q. n A
I 0

fl 0

(c)

(e)

=q. n (j)
0

q. n A
J 0

q. n, (J)

(b)

q., n h.

q. n h,
J 0

n

recognize this, of course, as just the inverse
Thomas-Fermi screening length. To summarize
then, we have evaluated the configurational aver-
age of the free energy in the mean-field approxi-
mation by summing the contribution due to all
ring diagrams, and we find

(F, ;ri ngs):——2kT f ln(1+2e p'&)g(E, )dE,

—e K f np(E;)g(E;)dE; . (4. 24)

In Appendix A we shall estimate the contributions
of some of the other diagrams in Fig. 2 and show
that either they are vanishingly small or of higher
order in the electronic charge (we have seen that
the ring diagrams give a contribution of ate ]).

V. MEAN OCCUPATION NUMBER AND ENERGY GAP

We shall now find an expression for the mean
occupation number of charges n, at a given site
/. We recall that

FIG. 2. Some of the graphs that correspond to the
term 2(et) g ~no(i)q&(VAVAVAVAV)g&qyao(e&) in the ex-
pansion {4.19) of Fz. It therefore follows from (4. 9) that'P

n, =no(e, +e'q, yp, )

(5. 1)

tion of these the singularities will cancel. In or-
der to do this, one arranges the series in a man-
ner first shown by Mayer and sums it. It can be
shown that the contribution due to ring diagrams
of all orders to the Hartree energy (4. 19) may be
written as

+ —Zno(e, + e'q, $p) (e'q; Qp)
~~l

~(e q& 0&) B
no(&&+e q. 0&) ~

~E' )

We recall that

(5. 2)

(E„;rings)= —N (np(e)) g(-1)"
~ q„(O, Q),

e g p „N (A))"
n~i

(4. 20)
where

q„(0, Q)= f„~ ~ fv;zv&o v„;d7".
The above series can be summed with the use of
Fourier-transform technique and we obtain

(E„; rings)=—2e N (np(e))( —K)

0 e)~ ~ p 0Q;= —e L g V„q~np(e;+e q, Qq) .
If we substitute this into (5. 1) we find that the last
two terms cancel, so that

n, =no(e, + e'q, yo, ), (5 3)

where np(x) is the Fermi function appropriate to
this problem, Eq. (4. 6). We can now write for
the mean field at site l

(5. 4)

= —e'» f "n'p(E)g(E)dE, (4. 21) Let us define V„ the self-consistent potential en-
ergy at the site l, through

where z, defined as the "inverse screening length, "
is given by

$ ~ aPV)=~)e q, q~V, )n) . (5. 5)

(4. 23)

(We have written the result in terms of the total
density of states at the chemical potential. ) We

~' -=4wPr'/Q) (A(e) ) (4. 22)

and we have substituted for (no(e)) . We recall
that A(e) = —e Bno(e)/BeAt T= 0, 'K, —Bnp(e)/Be
is a 5-function at the chemical potential, so that
we can write (4. 22) as

K (T = 0)= (4' /Q)g '
()t) .

This, now, has a clear-cut physical interpretatiori,

fl (~) = 4(~) A - — -4 Q: = '& n — ——0 0 0 0

FIG. 3. Bing diagrams that arise in the expansion
(4. 19). These are the most singular graphs in each order.
They correspond to a charge interacting vrith its own po-
larization cloud,
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&n~)= no(&i+ &e'qi A~&) (5 6)

Such a procedure implies that we have set &(Po)"&
=&/"&", that is, we have assumed that the distribu-
tloll of f illvRx'lolls collflglll'R'tlolls ls sharplypeRked.
Actually the fluctuations about this value can be
appreciable but we shall ignore them. " The ques-
tion then reduces to evaluating &e'q& $, &», . We
can do this explicitly only for the case of the lin-
earized self-consistent field [Eq. (4. 12)j. Since
this is almost identical to the averaging of the
Hartree term in the free energy we shall simply
give the result one obtains upon summing the ring
diagrams. We get

&8'q( III( )» = —8 Kno(6() .
. : NgQ'»~ a

Substituting this into (5. 8) we get

(5.9)

&n (& =no [cg —8 Iso(c()j. (5. 10)

At this point one can perhaps make an ansatz about
an improved and a more symmetrical form for
&n& & by setting no(e, ) no(E, ) in the argument of the
right-hand side of the above equation, where
E, -=e, -corno(e, ) is the renormalized energy of the
charge at site l, i.e. , one writes

viz. , V& is the total electrostatic energy at site l
due to all other sites. In fact, it is just the Har-
tree self-consistent potential energy. We can re-
write the mean occupation number at site I [Eq.
(5.3)j as

n, =no(e, + V, ) .
This form shows that for this problem the mean
field is just the Hartree self-consistent field. As
can be readily seen from Eqs. (5.4) and (5. 6),
the above expression represents the mean occupa-
tion number of charges at site / for a specific
configuration of the positions and energies of the
other charges. Therefore, to get a thermodynam-
ically meaningful quantity we must average this
over all spatial configurations and over the ener-
gies of all other charges. Let us, therefore, de-
fine the average mean occupation number &n, & as

&nr &-=&no(&~+ e'qi 4i)&", , (5. I)

where & &»,, signifies the fact that we average over
all variables (R}and (e}except e, . In principle
one should expand no(e, +e'q, p, ) in powers of Qo,

and average term by term. Since this is very dif-
ficult to do we shall, instead, write

0 ~ ~ 0Eo—-Q 6) ( n+~ n( q( 8V(yeqgnj .
if

(5. 11)

The statement thRt Ep ls the gxound stRte lmplles
that

E*, —Eo= (e)+Z;q, eV„eq)n))(n, —n, ) &0

for all l. (5. 12)

Now, we hRve

&F„; rings) = —e a J 'noo(E, )g(E, )dE, .

At T=O'K, no(E",), for example, is a unit step
function that is zero for E,"&p and unity for E;"&p. ,
and therefore so is no(E,"). Hence

Jno(Ef)g(Ef) dE".

is just the number of quasiholes in the valence
band in the "noninteracting system. " Since the
system as a whole is electrically neutral we may.
rewrite &E„&as ——,

'
cow ¹~hwhere Noh is the total num-

ber of charges in the noninteracting system. This is
simply the number of unoccupied valence states
plus the number of occupied conduction states
(or in the quasiparticle language introduced in
Sec. II, the number of occupied localized states).
Since we have already shown that if a localized
state is occupied then its energy-is lowered due to
interactions, it follows that the effect of interac-
tions is to lower the energy of the ground state of
the noninteracting system by an amount &e ~ fox
every localized state of the system that is occupied
(the factor of ~ corrects for the double counting of
the contribution of a charge to the total electro-
static energy)

Let us now ask the question of how the mean-
field result (or equivalently the Hartree approxi-
mation) relates to the exact ground state at T= 0 'K.
Since our Hamiltonian is diagonal in the occupation
number representation it follows that there is a
configuration (n,}corresponding to the ground
state. Qnee this is known„ the energy of a single-
quasiparticle excitation can be determined exactly.
This allows us to test the supposed ground state
for consistency. For the ground state, n; -=n0i=0

or 1. Consider all single excited states of energy
E) 1Q which only one sg differs from sg. Vile CRQ

write for the ground-state energy

&n~&=no[~&-e ~no(Er)j . (5. 10') 0 lfn', =1.

The above expression fox E, says that if a localized
state is occupied, i. e. , a&&0, then its energy is
reduced (on the average) by an amount e a. We
can Qow go back and interpret the Hartree term
in the free energy. We saw that

Therefore, we have

0 ~ 0g, -n, =+ 1 lf ni= 0

= —]. ifn0, =1.
This means that (E,*-Eo) &0 for ail I if

(5. 13)
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n, =0 when &&+a ~qq&qq~~qnq &0,0 tA1 2 0

0n )= ]. when &)+e m gq)q; ~rgn; «, (5. 14)

But this is precisely the set of equations satisfied
ill tile mean-field (ox' HRx't1'88) Rpproxxmatton R't

T=O'K:

II t=lllaf f, +8'Etl, l?,Vga,);0
(5. 15)

&gx&= &(e1+ e'&&vie;Vvs';)&~. , (5. 16)

This can be mritten. as
M 3 r 3~

($1&= lllxl e1+ e ~ |I1ggV(ygp ey+ e ~ gyg1Vyysy [
T 0 j

This can be remritten to read

(61&= Iim &si+e'~1 4'1 &",T"0
(5; 17)

[see Etl. (5.4)). We have already performed this
average in the context of our discussion of the
mean occupation number [Eq. (5. 9)]. We there-
fore get

(8, &
= lim [e, —earns(s, )]. (5. 16)

Pwo

This equation has a very interesting interpreta-
tion. It says that, at T= 0 'K, if a localized state
/ is not occupied [i.e. , e, &0 and hence ns(e, )= 0]

where f is the appropriate Fermi function [in our
case the function Ns given by Eg. (4. 6)]. We thus
see that for the particular problem under consid-
eration the Hartree approximation gives the exact
ground state at T= 0 'K. This means that the cor-
relation energy must be zero at T= 0 'K. This is
in contrast to the case of a system with dynamics
(an electron gas, for example) where one has a
finite correlation energy at absolute zero. In the
formalism employed in the present work, correla-
tions are expressed in terms of fluctuations about
the mean field. We shall see in Sec. VI that the
free energy due to fluctuations does, indeed, -go to
zero as T 0, in accord with the observation made
above. It mould be interesting to show, indepen-
dently, that the fluctuations about the mean field
do, in fact, correspond to correlations in the sys-
tem. In Appendix 8 me shall derive the lomest-
order correlation energy using the generalized
self-consistent field theory'3 and show that it is
identical to the 1owest-order fluctuation term.

Finally let us address ourselves to the discus-
sion of single-quasiparticle excitations. Let us
define I, I as the excitation enexgy of a quasipar-
ticle at site I, where 8,= (E*, —Eo)/(n, —n, ). It
follows from Etl. (5. 12) that

8,= (e, +e Zqq, q;V1 gng) .
Clearly, this is explicitly dependent on the specific
configuration ((B},(e}). Hence we must average
this over all configurations except &, , i.e. ,

. FIG. 4. We have plotted the average excitation energy
of a single ttuastpartiole at site I, &S1), vs the single-
particle energy of that site. It shows that there is a gap
in the excitation spectrom corresponding to removing a
charge from its correlation hole.

then the excitation energy of a single quasiparticle
at that site is simply the single-particle energy
of that site c&. Homever, if the site / were oc-
cupied [e, & 0 and hence no(s, ) = 1] then the excita-
tion energy is given by

(5. 19)

This is not a surprising result. It says that ori-
ginally if a site mas not occupied then it does not
polarize the medium in its immediate vicinity and
hence 5, = e, . If the site mere occupied, however,
then it creates a polarization cloud surrounding
it and with which it interacts. The effect of this,
as mas already mentioned, is to lomer the energy
of that site. So that in order to excite a quasi-
particle at that site me have to remove it from its
"correlation hole. " These features are illustrated
in Fig. 4 where we have plotted (h, & vs a, . It
clearly shows that there is a gap of approximate
value e & in the excitation spectrum of single quasi-
particles. In Sec. VII me shall return to this point
and discuss the consequences of this for hopping
conduction.

VI. FLUCTUATIONS

Let us nom turn to the question of evaluating the
fluctuations about the mean field. We sam earlier
that the partition function can be factored into a
product of the mean-field result times the fluctua-
tions about the mean fieM. It follows from Eq.
(4. 4) that

where B[[P}]is given by Eti. (4. 2) and g&}=-
Q& —P }.

We have
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6 B/6P;6/~= P [V,', —e no"'(e;+e'q; P;)], (6. 2)

where

(p)( )
— +0( )

go X
~ p

Let us define a matrix

A -=diag{- e'no("(e+ e'qy)] .

We can now rewrite (6. 1) as

(6. 3)

Z~luct 5 exp —2, V + A,&;+0 " 5 exp
2

V,; (6 4)

(6. 6)

Therefore the contribution to the free-energy due
to lowest-order fluctuations is

If we ignore terms of O(P ) the above integral can
be readily performed and we get

Z(,„„=(det[I + A V]) "' .

comes from the ring diagrams. These may be
summed to yield

( Tr ln(I+ A V); rings) = —(0/6(() (('. (6 9)

Once again (( is the inverse screening length given
by E(I. (4. 22). We have, finally,

+f g qg ~~ lnZf yg(. g (Ff(«( rings)= —kT(Q/12(()K (6. 10)

= a k T ln
~

I+ A V
~

(6. 6)

(6 'I )

The way we perform the average is as follows.
We formally expand ln(I+ A V) in powers of A V,
viz.

y

(Tr ln (I+ A V) )= (Tr A V) —k (Tr (A V) (A V) ) + ~ ~ ~

(6 6)
We then cB,ssify the various terms in the above
expansion by graphs. We have illustrated in Fig.
5 the various diagrams that correspond to the fifth
term in the expansion. We argue, once again,
that the most singular contribution in any order

We observe that the dielectric function E that en-
ters E(I. (6. 6) describes the "redistribution" of
dressed particles. This is, of course, as it should
be since we are describing fluctuations "about"
the mean field.

Next we have to perform the configurational
average of ln l& t. As a first approximation we
shall, in describing the fluctuations, ignore the
local fields. That is, we shall replace A(e+ e'q&P)
by A(e) in (6.6). Also, we can write ln lAI
= TrlnA. We have, therefore,

(E„«,)= ~ k T (Tr In(1+ A V) ) .

It may be recalled that this is precisely the form
of the lowest-order contribution to the equation of
state of an ionic solution due to long-range forces.
There the relevant screening length is the Debye-
Huckel screening length. In our case, however,
(( is the inverse Thomas-Fermi screening length
and as such has a temperature-independent limit
as T-0, so that E&&„,&-0 as 7'-0, as anticipated.

Before closing this section we shall estimate
the orders of the higher-order fluctuations about
the mean field. We saw that

ZF=L) 6 jbexp — Z 0 Q

where B[{p]]is given by E(l. (4. 2) and 6~8/6&], 6$&
is given by E(I. (6. 2). Also, we have for the pth
variational derivative of the functional B[P]

pB wp p (p)=P(e q;) no

x(e;+e'q y )6 ~&~~ ~ ~ ~ &(~-i&~. (6. 12)

Let us introduce a set of new variables y
—= P/

(kT)'~ . In terms of these we can write (6. 11)as

&p-1)Z~= 5Xexp ——
X~ V '+A

&&y& exp — —e' kT p' 'qpnop ' i Xp 5xexp —— X&V
2 ]) — — ) 2 ~

(6. 13)

One can already anticipate, from the structure of
the above equations, that if we retained the second
exponential factor in the integrand of the numerator
then we would get a result which would be higher

order in both 4T and e. To see this more explicit-
ly, we shall expand the second exponential factor
in powers of the exponent, i.e. , we can write
(6. 13) as
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1/8 (2) E 3 0 AT ~(3) E

where Ey = 6y+ e'gyp' and

~%VP') '=.] ox»p --Ex(g '+&)ox~), (8»)
The determinant in front of the integral in (6. 14)
results from a change of normalization. The first
term in the curly brackets in (6. 14) corresponds,
of course, to the neglect of terms of O(y') in
Z„„„andyields the result derived before [Eq.
(5. 5)]. The first nonvanlshlng correction to this
would come from the y4 term in (6. 14). Upon in-
tegrating this gives

(6. 16)

Recalling that (V '+ A), ', is just the screened po-
tential V';, orie can write

Z =/I+AVf '

~ ].—AT —, no
~ EJ, Vqq +0 AT

( . 6. 1'7

Therefox'e we have

+fleet — AT lnZg ytlct

= —in|1+A V~
AT

we IQay write

(Egg t ) kTQK

y 3+~Oe + ~ - ~ + ~ 08AT 3 AT 3(g g)

(6. 19}

This means that for AT & 4 and for low concentra-
tion of charges the fluctuations of O[($ —Q )'] can
be ignored.

As may be seen from (6. 6) the contribution to
the free energy from fluctuations of O[(P —$0)']
has in i,t a term proportional to AT. This would
imply that at T=0'K there is a finite entropy of
the system, i.e. ,

%6 know, however, that since thexe is no macro-
scopic degeneracy in our system there can be no
net entropy at T'= 0 K. This Iaeans that the terIQ
linear in AT in Eq&„,t must be cancelled by a cor-
responding term in E ~. To prove that such a
cancellation does indeed occur one would have to
extract the term linear in AT in E z in the full non-
linear theory. At this point we have not been able
to demonstrate this.

(6. 18}

The configurational average of the second term
mill be hard to perform, but one can anticipate that
the leading term in ((V~„') ) will be &, i. e. , of
O[e'] and

dg(n,"'(E,)) - „g as T-O.

So that, in terms of the width of the tail of the
density of states 4 iritroduced in Sec. IV

d lng

FIG. 5. Various graphs corresponding to the fifth term
in the expansion of ln6+&V) in powers of AV. The ring
diagram (a) yields the dominant contribution.

VII. DISCUSSION

Let us next turn to some of the consequences of
the results of Sec. V on electronic structure and .

transport in amorphous semiconducting alloys. -

Vfe saw that the effect of interaction between the-
charges is to lower the energy of the charged sites
(there is no effect due to interactions on-'.the neutral
sites). This has an interesting effect on the single-
particle density of states of the noninteracting sys-
tem (Fig. 1). Consider, for example, the conduc-
tion-band tail. At T = 0 'K all states above the
chemical potential are unoccupied (and hence neu-
tral) and the density of states is unaffected by the
interactions. On the other hand at T= 0'K all
states below p ale occupied and their energies ax'6
lowered by an amount 8 x. In Fig. 6 we have dis-
played the renormalized density of states f» the
conduction-band tail, It shows cleax'ly that in or-
der to excite an electron from an occupied conduc-
tion state to an empty conduction state it mill cost
at least e~x in energy. We. have also displayed, in
Fig. 6, the occupation number of charges of the
interacting system, Fs(E), as a function of the re-
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n(E)

FIG. 6. We have displayed the mean occupation number
g N} of quasielectrons in the conduction-band tail as a
function of their renormalized energy. We have also
shown the renormalized single-quasiparticle density of
states for the electrons in the conduction-band tail. The
effect of Coulomb interaction is to introduce a gap in the
density of states.

normalized energy of the localized states. It is
once again an unit step function (at 7= 0 'K) as in
the case of the noninteracting system. There are,
however, "no available states" in the interval
p, —e w &E & p. . It may be recalled that such a well-
defined gap resulted as a consequence of our earlier
assumption that the distribution of Q' in various
configurations is sharply peaked. More specifical-
ly, such an assumption implied that the energy of
every charged site was lowered by precisely the
same amount, viz. , e x. %'e know that in a random
system the distribution of P will have a certain
width. The effect of the statistical fluctuations
would be to smear out the average energy gap. In
order to be able to say precisely how the fluctua-
tions will modify (say) Fig. 6 one would have to
develop a probabilistic theory of the self-consistent
field. We know, however, that the renormajized
density of states will have a discontinuity at the
chemical potential. It is perhaps reasonable to
anticipate that after the fluctuations have been
taken into effect the renormalized density of states

p.-e K p.
-=E

PIG. V. We have displayed an ansatz of how the density
of states would look if one did a probabilistic theory of
the self-consistent field.

FIG. 8. Henormalized density of states corresponding
to the valence- and conduction-band tails in the Mott-CFO
model.

would look as shown in Fig. V. In Fig. 8 we have

displayed the complete renormalized density of
states. As may be seen from Fig. 8, whereas
the distribution of charged traps is bimodal in
character with peaks separated by approximately
2e x, there is no gap from the top of the occupied
region of the valence-band tail which ends at the
Fermi energy to the unoccupied region of the con-
duction-band tail which begins at the Fermi energy.
The total density of states at the Fermi energy is
reduced by a factor of 2 below its value in the ab-
sence of interactions.

The ac conductivity of all amorphous semicon-
ductors exhibits a dependence on frequency pro-
portional to & where the power S is between 0. 7

and 1.0, and becomes less and less temperature
dependent at the higher frequencies. These two
facts have been used as evidence that the ac con-
ductivity is due to phonon-assisted hopping of elec-
trons between the localized states near the Fermi
level. ' It turns out that one needs a very large
density of states at the Fermi level to explain the

experimental results on the basis of hopping con-
duction. %'e have seen that the effect of interac-
tion between the charged states in the gap is to
reduce the total density of states at the Fermi en-

ergy by a factor of 2. Also, according to what we

have said it will cost e ~ in energy to remove an
electron from a charged conduction state and put
it in an empty conduction state. In fact; this ac-
tivation energy ~ —= e ~ is directly related to the
total density of states at the Fermi level
[z o-g~' (p)j. In Fig. 9 we have plotted this ac-
tivation energy vsg"'(p, ). As may be seen from
it, a large density of states at the Fermi level
can produce an energy gap there (in the above

sense) as large as 100'K. It would, therefore,
be interesting to reconsider the theoretical dis-
cussion of hopping conduction in the light of these
remarks.

In all of the preceding discussions we have as-
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FIG. 9. Plot of the energy gap ~=—@2' {expressed in
'K) vs the density of states at the Fermi level. This gap
may be interpreted as representing an activation energy
for hopping conduction bebveen localized states near the
Fermi level. We have assumed a value of 15 for the
static dielectric constant of the amorphous semiconductor.

sumed that the chemical potential p, is unaffected
by interactions. In general, of course, it will be
and the correct chemical potential shouM be de-
termined by the relation

where N' and N are the total number of positive
and negative charges, respectively, in the inter-
acting system. Since the system as a whole is
electrically neutral the chemical potential should
be determined from the relation S&F&/Sp = 0. Since
we have dealt with symmetrical bands the chem-
ical potential is unaffected by interaction between
the charges.

VIII. SUMMARY

Within the premises of the Mott-CFO model for
a covalent amorphous semiconducting alloy we have
investigated the effect of interaction between the
charged traps in the mobility gap. We expressed
the grand partition fun, ction as a functional integral
over a set of Gaussian random fields. We evaluated
this integral in the mean-field approximation and
showed that the mean field corresponds to the gen-
eralized Hartree self-consistent field. We then
demonstx'ated that for the system under considera-
tion the Hartree approximation represented the
exact ground state at T= 0 'K. We then derived
an approximate expression for the mean occupation
number and the renormalized band structure. It
was found that the effect of Coulomb interaction

between the charged states was to render the dis-
tribution of ehax'ged tx'aps ln energy blmodal in
character with peaks separated by approximately
2e x and to reduce the density of states at the
Fermi energy by a factor of 2 below its value in
the noninteracting system.

There is convincing evidence that the localized
states in an amorphous semiconductor are associ-
ated with potential fluctuations. ' It would be very
interesting to investigate what effect the local
fields, which we saw result from self-consistent
interaction between the localized charges, would
have on the mobile electrons. That is, one should
study the motion of electrons in a system with
fluctuating potential plus randomly distributed
Coulomb fields.
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APPENDIX A

In Sec. IV we performed the configurational
average of the Hartree term in the free energy.
We expanded the inverse dielectric matrix,
(I+ A V) ', in powers of A V [see Eq. (4. 19)]and
averaged term by term. We then argued that in
each order in V;& the most singular contribution
comes from the ring diagrams, and we summed the
contributions of ring diagrams of all orders. This
yielded a result of O(e~). Let us now estimate the
orders of some of the other diagrams. Consider,
for example, Fig. 2(a). It will correspond to a
term

+ &&0(&~)e~)&&0(&;)eg&&~i&&~2&&I"2I'i2I'ag&
f 1@

We know that

&&o(&~)&= J „'&o(«)a(«)d«'/f 'g(«)d&* '.

Suppose i were a valence site, we would then have

&&0(&f) & =&o/&'

where ¹&is the number of quasiholes in the valence-
band tail, in the noninteracting system. There-
fore it is easy to see that, because of the factor
q, , the summation over i wouM give a factor
(Nt —No); and since electrical neutrality is pre-
served in the noninteracting system this would
vanish. Thus diagrams with loose ends [q&no(~, )]
would vanish due to electrical neutrality.

Since we know that the divergences that occur
in the averaging procedure are due to the long-
range nature of the Coulomb force, one can anti-
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We shall now derive the lowest-order correla-
tion energy for the system we have been consider-
ing, using the dielectric formulation of Cohen. '
We shall adopt the notation used in the reference
cited above and we shall suppress the details.
The calculation follows very closely Sec. IV of the
above reference. The essential point of the gen-
eralized self-consistent field theory' is that while
calculating the total energy of a system of interac-
ting charges one parametrizes the energy by some
parameter $ (different from e ) in such a way that
for g = 0 the parametrized energy reduces to that
of a problem which is closer to the real problem
than the noninteracting system, and for $ = I be-
comes the actual energy.

We have for the total energy of our system

E((nj)= g (e;+ Vt"')n;+ —gesq; q; V, ~n, n~.

(81)

We have introduced a set of external fields V&"'

with a view to employing the dielectric formulation.
To obtain the free energy one starts with the expression

U=~ («+ &i*')&«&+ —~s'q~q;V;; (n; &&n;)

+ —$P, esq, q V, ~J(& , ~n&
—n(n, &&n~&)

2
(82)

for the average total energy in thermal equilibrium,
where &s&= Tr(e~p), P being the density matrix.
The free energy is given by

E= U+kT [Tr(P lnP)]. (83)

Applying the variational principle 5I' = 0 subject
to 5TrP = 0 to (82) and (83) we obtain for P

p=e s"s/Tre s"s,
where

Hs =Z [eq+ V,'* + (1 —$ ) V,']n,

cipate that diagrams with single V&& bonds will
dominate the averaging over those with multiple
bonds. In fact, the most dominant of these are
the simple cycles or the rings. The next order
contributions will come from diagrams of the type
shown in Figs. 2(g) and 2(h). We have summed
all such diagrams to all orders and we find that
they give a contribution to the free energy of O[e'].
We give the explicit result for the contribution to
the free energy from diagrams of the type given
in Fig. 2(g) (for example):

4~, t", ' —&n,&'
(E)=- —e ~ no(«)a(E~)dE;~ —

I a(E;)«;,0 gs„ J 8 ~ )
i.e. , E is of O[es]. We recall that the rings gave
a contribution of O[e ].

APPENDIX B

p+ —)~e q;q, U, ~n, n„ (85)

V,'=pe'q; q, V„(n,) . (86)

V& is the total self-consistent potential energy at
site i. Because of the stationarity of E with re-
spect to P,

=
2

Ze q;q, V;;((n;n;& —(n;)(n;)).dE 1
~ ~

(87)

In order to get E we have to find (n;) and &nqnz&,
and integrate (87) with respect to $. We have

(n;)= Tr ne "s/Tre s "s . (88)

Taking the variational derivative of this with re-
spect to the external field we get

-kr „, = &n, n, &- &n,. )&n, &

6&n, &

g ySX

C;, -=(n; n; ) —(n; )(n, ),
Z„=- 6(n, )/6V,'*'.

(810)

(811)

Therefore (89) reads (written as a matrix equation)

—k T K= C [I+ (1 —$ ) V K], (812)

where we have redefined V»=e q~q&V» and there-
fore

C = —kT K [I+ (1 —$ ) V K]

Hence we have

dE 1—= —Tr(VC) .
d$ 2

(813)

(814)

Integrating this we get

E=E(0)—s(kT) J dg Tr[VK[I+ (1 —$) VK] 'j. .

15)

Let us define Vt&" = V&~+ V', "'. The "dielectric func-
tion" e is defined through the variational derivative

(816)

From (86) and (811)we get

=I+ VK .

Substituting (817) into (815) we obtain

(817)

E=E(0)+ ,'(kT) j d$ Tr[(—e-I)[I+(1 —$)(e-I)]
(816)

~ is, in general, a function of the parameter $.
For $ = 0, the dielectric function reduces to the

+ (1 —h) Es qpq/Vg/ yyxt (&n~n&& —&n;&&n„&).
6(n, &

» g @OX

9)
Let us define
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Hartree dielectric function e&. In terms of this
the integral in (818) can be performed and ~e get

E=E(0)+ &(kT)Trine„. (819)

E(0) is just the self-consistent field result and the

second term is the lowest-order correlation ener-
gy. But this is precisely what we obtained as the
contribution to the free energy from the fluctuations
of O[P]. We have thus demonstrated that the
fluctuations about the mean field do represent cor-
relations in the system
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