
PHYSICAL REVIEW B VOLUME 4, NUMBE R 8 15 OCTOBER 1971

Screening of Excitons in Semiconductors
J. G. Gay

Research Laboratories, General Motors CorPoratiori, 5'arren, Michigan 48090
(Received 17 February 1971)

A theoretical study of screening of excitons in semiconductors is presented. The study was
motivated by a desire to improve the understanding of the optical effects of exciton screening,
particularly with regard to photoreflectance experiments. The theory is based on a dielectric-
function approach to the screening and thus ignores exchange contributions to the screened
electron-hole interaction. To avoid having to work with retarded interactions, the region of
carrier concentration for which the plasma frequency is comparable to the exciton binding en-
ergy is not treated. Away from this region the interaction can be approximated as instanta-
neous, and expressions for the exciton energy can be derived. In numerical application to CdS
it is found that screened exciton binding energies are comparable to those obtained with a.
Debye-HGckel potential for the interaction. However, because the free-carrier plasma is self-
screened, the band gap is a function of carrier concentration. When this is taken into account,
the absolute-energy shift of excitons under screening (which is what figures in the optical
effects) is much less than the binding-energy shift. In addition to the downward shift of con-
tinuum absorption due to the self-screening, the screening modifies the continuum enhance-
ment and reduces it to unity for very high carrier concentrations.

I. INTRODUCTION

The optical properties of a crystal are deter-
mined by &3, the imaginary part of the transverse
dielectric function. In the effective- mass approxi-
mation, e2, near the direct spin-degenerate band
edge of a semiconductor, is given by'

„(z)=s('- ) )z, ) P: (.
xs [z —(z..—z„)),s (z )),F(E)

E,„+E
where the energy E is measured from the top of
the valence band, E is the gap energy, and &,„
is the conduction- to valence-band momentum- matrix
element. The first term gives the contribution of the
bound exciton states. The E„are binding energies
and the F„are enhancement factors given by

F, -~~, (0) ~, (2

where g„(r) is the gth relative bound-electron-
hole wave function of zero angular momentum. The
second term gives the continuum contribution.
S (E) is the joint density of states and F(E) is the
continuum enhancement,

F(E) l.
(2/m) '~ sinqr/qr

which involves the ratio of the zero-angular-mo-
mentum wave function with electron-hole interac-
tion to that without. q is the wave vector corres-
ponding to E.

Since the electron-hole interaction determines
the E„,F„, and F(E), and influences S (E), changes
in the interaction can produce changes in the band-
edge optical properties.

Albers3 has proposed that reflectance changes
obser ved in modulated- reflectance experiments
on crystals are in part due to screening of the

electr on-hole interaction produced by modulation
of surface-carrier concentrations. Screening ef-
fects should be most prominent in photoreflectance
experiments4 because the modulation is a direct
injection of free carriers produced by pumping
with an intense light beam. Albers was able to
show, on the basis of a Debye-Huckel potential
for the screened interaction, that shifts in the ex-
citon ground state due to screening could easily
account for the magnitude of the photoreflectance
signal of CdS, and could reproduce portions of
the structure of the spectrum. More recently
Stobel et al. ' have published new photoreflectance
data on CdS, which they ascribe in part to screen-
ing energy shifts. Because of this apparent con-
tribution of screening to the photoreflectance sig-
nal a theoretical study of screening was under-
taken whose results are reported here.

The theoretical development is hampered by two
fundamental complexities. The first complexity is
that the plasma-exciton interaction includes ex-
change between the exciton particles and the par-
ticles of the free-carrier plasma. The other is
that the screened electron-hole interaction is not
instantaneous because of the inertia of the plasma.
In going from weak screening of a bound-exciton
state to screening sufficient to cause the state to
disappear, one cannot avoid a region in which the
plasmon energy and the exciton binding energy are
comparable: Su~ -E~. In this region, particularly,
one is confronted with a retarded interaction and
has to deal with a Bethe-Salpeter equation in the
relative coordinates rather than a Schrodinger
equation. 6 Similarly for continuum states there
is a velocity region between slow particles which
the plasma screens, in effect, instantaneously, and
fast particles which the plasma does not see, where
the electron-hole interaction depends on the par-
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s past as well as present location. The
parameter which replaces E, is the ve 1ocity- mo-
mentum product Sv q.

We ignore the exciton- plasma exchange problem.
We treat the exciton charge density as classical
and the pl as

ma�

' s response to it via the longitudinal
dielectric function «(ar, q ) . We get around the re-
tarded- interaction problem by avoiding the regions
5~ -E, and ~~ - v q. Away from these regions the
exc iton charge density approaches limits in which
it is static . In the no- exchange approximation the
plasma response then involves only the static di-
electric function «(q ) = «(0, q ), and Schrodinger
equations can be constructed which approximate
the actual situation at 1east in an idealization in
which the exciton is at rest and scattering process
es are not present.

Within this very simplified framework it is pos-
sible to obtain a qualitatively satisfying picture of
the effects of screening which shows clearly the
1im itation s of an instantaneous - interaction appr oxi-
mation, and which points up a feature of screening
which has not been emphasized, namely, the self-
screening of the free- carrier plasma. This ef-
fect, which causes a decrease in the band gap with
increase in carrier concentration, affects the ex-
citon energy shif ts and thereby the principal contri-
bution of screening to the photoref 1ectance effect

The theoretical development is presented in
Secs. II and III and includes numerical calculations
for CdS. The results are discussed in

Sec�.

IV.

II ~ SCREENING OF BOUND STATES

density, consisting of the charge density of the
electron and hole,

p(q) = p, (q) +p„(q) (6)

2 2 2 2 [P (q)ph(-q) +P«(q)p. ( -q)]

x 1 + 2 —1 + —1

d3 1+, , [p. ( q) p, ( - q) + p«( q) p«( -q)]
2KO 2g

induces a charge density in the free- carrier plasma
according to (5 ) . This implies that p(q ) is in some
sense static. These densities give rise to potentials
P (q) and 5&[& (q), and have an energy of assembly

d'„'.[P(q) + 5P(q)] [a(- q) + 5e(-q) 1

d 4m'if,~ [p(q) + 5o(q) ] [o(- q) + 5p(-q )]
2«p 2' if

(7)

In (7 ) «p is the static longitudinal dielectric func-
tion of the crystal in the absence of free carriers
(presumed independent of q ) . It is present because
any charge seen by the plasma is already screened
by the valence electrons whose fr equency response
is much greater than that of the plasma Using
(6) and (5) in (7) allows us to express W in terms
of o, (q), p„(q), and «(q), where from here on

«(q ) will mean the dielectric function of the free-
carrier plasma alone,

A static classical charge density p(x ) introduced
into a crystal induces a density

5p(x) = J d' x' p(x') [I/«(x —x' ) —1]
x g — — —1 + —1 (6)

with transform

5P(q) =p(q) [I/«(q) —1] (5)

where «(q ) is the static longitudinal dielectric function.
While the application of (4) or (5) to compute the

density induced by electrons and ho 1es has been
justified by Kohn and Sham and Rice for weakly
bound systems added to a perfect insulator, it is
not correct for a semiconductor containing a free-
carrier plasma. This is because to avoid exchange
effects it is essential that there be an energy gap,
large relative to the exc iton binding energy, sepa-
rating filled from empty levels. Thus if we use
(4 ) or (5 ) to compute charges induced in the free-
carrier pl asma, we completely ignore exchange
between the plasma and exc iton particles . '0 Never-
the 1es s, we use an approach based on the dielectric
function because it accounts for a part of the plas-
ma- exciton interaction in a consistent way, and

leads to manageable calculations .
We assume therefore that the exciton charge

In (8 ) the first term represents electron-hole in-

teractions while the second represents self -energy
terms. The terms p, (q ) p, (- q ) and p„(q ) p„(- q ),
which represent bare-particle self -energies, have

been discarded.
We now examine separately the two cas es in

which we may treat the exciton charge density as
static . First we consider the case of an exciton
weakly bound relative to the plasma frequency
E~ «5 ~~. Then the plasma responds so swiftly
that it sees the instantaneous position of the elec-
tron and hole . Thus, we have

p, (x) =- e6(x- r, ) p„(x) = e5(x - r„) . (9)

We can locate the center of mass at the origin
and the electron and hole on the g axis for conve-
nience. Then the transforms of (9 ) are

-i p p ip em«riii-
(10)

(q) eewp F«eeia am&i''/N
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In these x = l r l = I r, —r„ l is the electron-hole
separation and M is the exciton mass. Using the
densities (10) in (8) gives an energy of assembly

2

= p„(x) + p, (x) .
The energy of assembly is

2

w,„=& g(r) I, I
g(r))

y

+4m'K J q' «(q)'

in which the factors involving K(q} have been
simplif ied.

The first term in (11) depends on r while the
second does not. Thus, we have

w(r) = v(r)+ w„. (12)

V(r) is an electron-hole potential, so from effec-
tive-mass theory we can write a Vfannier equation
for the excition binding energy,

[p'/2 p. + V(r)]g(r) = Z, y(r),
where spherical bands are assumed and J[L is the
reduced effective mass. 5'„ is composed of clothing
energies of the electron and hole, and does not con-
tribute to the binding energy. It does contribute to
the absolute exciton energy, however, and will
f igure in the ener gy shifts which produce the photo-
reflectance signal.

Let us look now at the opposite limit E~ »5~~.
Since the Coulomb interaction is instantaneous,
the p, p„ terms [the "one" in the first term of (8)]
are treated as before and contribute the Coulomb
potential —e'/Kor. The remaining terms contain
induced densities and involve the response of the
plasma to the excition density. The condition
E,» S&~ means, however, that the plasma is too
sluggish to respond to the instantaneous relative
position of the excition" (though it still sees the
instantaneous position of the center of mass). This
is taken care of by using a time-average exciton
charge density

p(x) = J d r, d r„[e«x r„) —e5(x ——r, ) ] I e(r„r„)I
a,

(14)
where 4'(r, , r„) is the wave function of a localized
exciton, i.e. ,

I
Wr. r.}I'= «R- R.}

I
e(r) I' (15)

where R is the center-of-mass coordinate,

R=(m, r, +m, r„)/M . (15)

Since the charge induced by p(x) is independent
of Ro we may determine the induced charge with
HO=0, i. e. , with

I
4(r-., r-„)I'= 5&R)

I
q(r-) I'.

Then, we have

p(x) =e(M/~. )'I t(Mx/m. }I'- e(M/~«)'I y&Mx/~a) I'

If we add to 5'„ the kinetic energy

T =
& y(r)

I
(p'/»)

I
y(r)), (20)

we obtain the absolute exciton energy, i.e. , the
energy referred to a bare separated electron and
hole. To get the binding energy we must refer
the energy to a clothed separated electron and

hole, i.e. ,

Ea= r+ W„- W

where W„ is defined by (12) and (11).
We can write (21) as a Wannier equation,

[p'/2p+ V,„(r)]y(r) =Z, y(r),
where

V.,(r) = ~ 4, i, ,-„-t)g y 4m' y q vyq)

(22)

—r p —q —2e2 . 23
Vlf

The potential (23) depends on g(r) through p(- q)
and, as a consequence, (22) must be solved self-
consistently.

In order to do calculations based on the
Schrodinger equations (13) and (22) it is neces-
sary to approximate the dielectric function K(q).
We use for «(q) the long-wave limit of the self-
consistent-field (SCF) dielectric function of a
classical plasma (see the Appendix),

«(q} = 1+q'/4', (24)

Q3 = 4vNe3/KPT, (25)

and where N is the carrier concentration. The
classical plasma approximation, i.e. , a Boltz-
mann distribution for the plasma particles, was
chosen because we wish to work at moderately
high temperatures (-80 K), and because we were
not able to express K(q} in terms of known func-
tions when the Fermi distribution was used. The
price paid is that exchange is eliminated even
among the plasma, particles. The use of the long-
wave limit instead of the exact SCF «(q),

where Q is the Debye-Hiickel screening parameter,
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FIG. 1. Binding energy and
enhancement relative to their
unscreened values as a function
of carrier concentration for the
ground-state exciton in CdS.
The Debye-Huckel binding energy
is given for reference. The gap
running from 10 to 10 repre-
sents approximately the region
specified by (30) where static
solutions are not applicable. To
the left of the gap the curves
were obtained from (22). To the
right they were obtained from
(13).

1014 1015 10"

CARRIER CONCENTRATION IN cm

1017 1018

~(q) = I+g(q) q'/q',

introduces some error. In (26) g(q) is a cutoff
function, described in the Appendix, which de-
creases the susceptibility at short wavelengths.
This error is discussed in Sec. IV.

The approximation (24) when inserted in (11)
leads to manageable integrals which yield a po-
tential

(26) tric fields favor screening effects over electric
field effects. 3 The material parameters used
were m, = 0. 2m, mz —- 0. Vm, and I(' = 8.46. These
give an unscreened binding energy of the ground
state of 2. 96x10 eV. The results are shown in
Fig. 1 as plots of E, and I $(0)12 vs N relative to
their unscreened values.

The region A~~- E, in which neither static solu-
tion applies was arbitrarily taken as

V(r) = (e~/~o) (- e ~/r+ ,' qe o"-)

and a clothing energy

W = —3e Q/2zo .

(27)

(26)

(30)

where ~~ was computed assuming equal numbers
of electrons and holes,

The Schrodinger equation (13) with (27) for V(r)
can be solved for all its bound states by one of the
standard techniques.

The nonlinear equation (22) is not so simple.
Consequently we estimate only its ground state.
This is done variationally using the trial function

(~s/&) lla e-&r (29)

It turns out that the integrals involved in com-
puting the expectation value of E~ with respect to
(29) can all be done in closed form and give a sum
of rational functions of g for the expectation value.
Minimizing this sum with respect to q gives esti-
mates of the ground-state energy and wave function.

Because we wish to keep the calculations uni-
form, and because estimates of the excited states
or more accurate estimates of the ground state
are not of much practical value, only the ground
state of (13) was estimated, again variationally
using the trial function (29).

The calculations were done for CdS at 80'K.
CdS was chosen because its relatively tightly
bound excitons and modest intrinsic-surface elec-

~~ =4v¹/~, p. , (31)

As implied by Sec. II, slow continuum states
are shifted in energy by W„. This will be dis-
cussed in Sec. IV. In this section we wish to esti-
mate the effects of screening on the continuum en-
hancement factor (3).

For small relative velocities, i. e. , when
v. q « ~~, the plasma reacts instantaneously to the
electron-hole position, and we have the Schrodinger
equation (13) to which potential scattering theory
can be applied to obtain P(0). For high relative
velocities, v q» or~, the plasma reacts only to
the time-average charge density, which is zero

As indicated in Fig. 1, our calculations predict
uniformly larger decreases in the binding energy
than does the Debye-Huckel potential. This does
not imply that greater energy shifts in the photon
energy required to excite an exciton are predicted.
This is because the screening actually decreases
the band gap E,„, which compensates the decrease
in E,. This will be discussed in Sec. IV.

III. SCREENING OF CONTINUUM STATES
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centrations relative to the Coulomb enhancement, '

F, (E) =IIoIe' /sinhIIcI, o'=R/(E E-), (34)

where R is the exciton Rydberg IIe /2II ~v~~. For
the lowest carrier concentration N= 1.6 x 10' /
cm3 it is seen that ea(E) is essentially unchanged
from its unscreened behavior except for the struc-
ture near E =0. This low-energy structure is
strongly Q dependent, so the particular structure
shown is not characteristic of the low-N enhance-
ment. For the larger concentrations, 1.6&&10' and
1.6x 1020, e2(E) has markedly diminished until at
1.6&&10 it has essentially become the dielectric
function without interaction proportional to S (E).
The change from Coulomb behavior occurs near the
point 1.35' 10"where the last bound state disap-
pears.

If we adopt

ve q & ~0 (0 (36)

.0.00 .02

for a continuum state. The second term of (23)
vanishes and V,„(r) reduces to a Coulomb poten-
tial. Thus for fast particles the plasma has no
effect on the electron-hole interaction and g(0) is
not changed from its unscreened value.

For the low-velocity li.mit, potential scattering
theory gives for the enhancement factor (3),

F (E) = »m
I 1/f, (r ) I

', (32)
r-0

where f, (r) is the Jost function~ defined as the
solution of the zero-angular-momentum reduced
radial equation satisfying the boundary condition

lime""f, (r) =1.
f'» OO

(33)

Thus the effect of screening on the continuum en-
hancement for small v q is determined by finding
the Jost functions associated with the Schrodinger
equation (13). Our calculations for CdS use the
approximate potential (27). The Jost function is
then easily found by starting at large r (= 10/Q}
with a plane wave and numerically integrating the
radial equation to the origin. The value at the
origin gives the enhancement via (32}. The re-
sults are shown in Fig. 2 for three carrier con-

(Ace - E ) IN eV

FIG. 2. Imaginary part of the transverse dielectric
function due to continuum absorption as a function of en-
ergy for various carrier concentrations. Values are
relative to the unscreened value at the band edge. The
curves were computed assuming that the plasma response
is instantaneous. Negative shifts in the energies of slow
particles due to self-screening of the plasma are not in-
corpo rated.

as the condition for small relative velocities and
use kv= v;E, the condition becomes

E (~@(dp (36)

Using (32) for v~ shows that the three calcula-
tions of Fig. 2 taken in order of increasing N are
valid for E less than 2&&10, 2X10 ', a,nd 2&&10 eV.
Thus for all but the largest N the screening effects
on the continuum enhancement are much less than
indicated in Fig. 2.

IU. DISCUSSION

This work was undertaken to try to improve the
understanding of the role of screening in photore-
flectance experiments. Ideally one would like to
develop the theory sufficiently that the changes in
the transverse dielectric function due to screening
are predicted quantitatively, and then use these
changes to compute a theoretical photoreflectance
spectrum which can be subjected to a detailed com-
parison with experiment.

%'e do not attempt such a comparison for two
reasons. The first is that the screening theory
developed in Secs. II and III is not quantitatively
accurate. The second is that we believe that varia-
tion in the dielectric function with depth into the
crystal, due both to intrinsic su~face effects and
to variation in pumped carrier density with depth,
affects the photoreflectance signal but is not suf-
ficiently understood to incorporate into a photore-
flectance- spectrum calculation.

Consequently we confine our discussion to a more
or less qualitative description of the consequeiices
of the theory of Secs. II and III. The theory pre-
dicts quite different bound-state energy shifts than
the shifts obtained by Albers using the Debye-
Huckel potential. In addition the clothing of slow
continuum states shifts absorption into the band
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FIG, 3. QuaHtative behaviox'
OI the ba,nd edge and ground State
enex'Qf 3.8 3. fQnctlon of ca,lx"iex'

concentx'ation in Cds. The nem. '-
lg constant exciton enex'$p is fox'-
tuitous (see text).

gRp and provides R. potentlRl Dew soux'ce of photo-
r eflectRQc8 sigQRl, .

Energy shifts which contribute to the photore-
flectance signal (or to any optical effect involving
photons near the band-gap energy) are due to the
difference between the enex'g18s reqMred to. cx"8Rte
R screened RDd Rn unscreened electron-hole pR1r.
Therefore» to the extent thRt vRlence electx"Gns Rx'8

not scr8ened by the (fx'68 CRrr18r plasIQR» energies
are to be measured x elative to the top of the valence
band. In computing the exciton binding energies in
sec. II, we rneasux ed energies relative to the bot-
tom of the conduction bend. However, because of
the clothing energy W„ the band-gap energy depends
on the carrier concentx ation. To get absolute shifts
%'8 must x'efex' the excition enex'g18S to the top of
the valence band by taking account of this change
in the band gay.

The chRQge entex's the binding-energy cRlculR-
tions for l.ow and high carrier concentrations dif-
fexently. At low N, where the plasma sees only
the Rvex'Rge position of the electx'GQ. Rnd hole,
does Qot flgux'8 1Q the exc1ton energy 1tself, . Rnd

affects the binding energy only by lowering the
continuum edge. We get the absolute excition en-
ergy by deleting W„ from (21). When this is done
the exc1ton ener~ shows a very sl1ght negative
shift because of the electrostatic energy of its
charge cloud.

At high N, vrhere the plasma sees the instanta-
neous position of the electron and hole, %' is COQ-

tained in the absolute exciton enexgy. The exciton
energy is obtained by RtMing the negative 5„to the
positive shift caused by the decrease-in the- binding

energy tcf. (12)j. This means that for large Ã we
cannot hope to estimate absolute energy shifts ac-
curately. IQ fact, we cannot predict the sign of the
shift because it is the difference of large quantities
which themselves can only be crudely calculated
via the theoxy Gf Bec. II. If 5'„ is approximated by

(28), the absolute shifts are negative. Provided
thRt the obsex'ved shifts Rx'8 due entl. x'ely to screen-
ing, this is contrary to expeximent. 3' The nega-
tive shift is due in part to the use of the long-wave
approximation for e(q). The integrands which
lead to (27) for V(y) and (28) for W„have differ-
ent large-q behavior. The integrands for V(x)
contain oscillatory factors of the form singe/qr,
which provide a natural cutoff. The integx ands
for S"„donot contain these factors, so 9' is af-
fected mox"8 by the long-%'Rve RpproxlIQatl. on fox,"

~(q). ff we approximate the cutoff function of
Fig. 5 by

g(x) =0, x&1.

the integrals for 9 cRQ be done, Rnd give

2@tan-s Cmax+ '9 &m~x
~ (88)

&0& 3 Q 2 Qmax+ 0
where q „=2(2pkT)'~'/L However, the integrals
required to obtain Vb ) using the cutoff (87) could
not be done. Figure 3 therefore shows the shifts
in the continuum-edge energy Rnd. ground-state ex-
c1ton energy vs cax'x'18x' concentrRt1OQ for Cds Rt

80 K„using (27) for V(r) and (383 for O'„. The
slight upw'ard shift 1Q the excition energy Rt high pf

is thus fortuitous. The results of Fig. 3 do show,
hovrever, that it is not correct to mork with bind-
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Particles

Schematic
showing the nipple in
«E~(q) curve and
the consequent density
of states which occur
because of self-
screening of slow
plasma particles.

-- Screened Particles

EFFECTIVE DENSITY OF STATES S(E) F(E)
VfAVE VECTOR q

ing-energy changes alone. In view of the near
cancellation of the dielectric effects it is not worth-
while to refine the calculation of the absolute ex-
cltoD shifts siDce exchRnge effects ' will hRve to
be included to determine the sign of the shifts.

The continuum shift is not a rigid lowering of
the E (j) curve because only slow particles are
screened. The screening actually produces a nip-
ple in E~(q) at j=0. This is illustrated in Fig. 4
along with a schematic of the resulting density
of states. The nipple shape in the region v q

- e~
depends on the continuum solutions to a Bethe-
Salpetex equation, so a determination of the shape
ls Qot R simple mRttex'. However one can mRke
an order-of-magnitude estimate of the amount of
absorption shifted as follows: Suppose the con-
tinuum a.bsorption in an energy range LE above
the edge is rigidly shifted downward. The amount
of absorption involved can be estimated from (1)
and expressed as a fraction of the amount con-
tained in the ground-state exciton line. Using (36)
to estimate hE we find that for N in the range
10'6-10~~ per cms the amount of absorption shifted
is of the order of 1% of the absorption of the ground-
state exeiton line.

Calculation of the differential x eflectance signal
caused by a shift of this amount shows that it can
make only a minor contribution to the photoreflec-
tance signal. Furthermore, the absorption is re-
duced by blocking or hand filling. ~3 Estimates
which ignore the multiple valence bands of CdS
show that at 80 'K W„ is equal to the effective
Fermi level Ez at N= 2x 10~6, and is several kT
below at N= 10'~. Thus, because the shifted states
are filled, this source will not become more im-
portant at high carrier concentrations. The maxi-
mum contribution in fact occurs in the region of
carrier concentration at which W„-Ez.

The discussion Rbove hRs covel ed the principal
results of this paper insofar as they bear on photo-
reflectance experiments. These are (i) exciton
energy shifts due to screening are considerably
smaller than the corresponding binding-energy
shifts, and (ii) screening of the continuum does
not make a major contribution in the carrier con-
centration range (& 10'7 per cm~) which is achieved
in current photoreflectanee experiments on CdS.
At higher concentrations the loss in continuum en-
hancement illustrated in Fig. 2 ean be significant.

ID Rddltlon to provldlng these results the dielec-
txie-screening theory has value in providing a pic-
ture of the process by which excitons are screened.
In summary, the picture is the following.

At low concentrations the free-carrier plasma
is sluggish and responds only to the time-average
charge density of the exciton. In this limit the
plasma siIDply clothes the exciton chRx'ge cloud
and lowers its energy. As its density inex eases
the plasma becomes less sluggish and begins to
respond to the relative motion of the electron and
hole. Now, in addition to the clothing of the ex-
citon charge cloud, the electron and hole become
individually clothed and the electron-hole interac-
tion begins to be screened. Howevex, until the
plasma frequency becomes much greater than the
exeiton binding energy, the plasma does not re-
spond i.nstantly to the electron and hole motion,
and the screened interaction is retarded, making
it necessary to describe the relative motion by
means of a Bethe-Salpeter equation. Finally, as
the plasma density becomes large, the plasma
ceases to see the electron and hole as a charge
cloud and responds essentially instantly to their
relative motion. In this limit the screened elec-
tron-hole interaction becomes instantaneous and
the relative motion can be described by a Schr6d-
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inger equation with a potential similar to the Debye-
Huckel potential. The exciton binding energy van-
ishes when the plasma density becomes high enough
that it is energetically favorable to clothe the ex-
citon particles with a unit charge cloud rather than
to bind them together.

It is probable that in a corx'ect theory which in-
corporRtes exchRnge the details of the 8cx'eening
process will be altered but the basic features just
described will persist.
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Feixl~ gives the following expression for the
longitudinal dielectric function of a classical
plasma computed in the self-consistent-field ap-
proximation:

o(q)~ e l&~v/3-1 e (l y/3-)

K(lop q) = 1 1/3 /ft
kT, . 2' 8+/'g

(Al)
where 1/(q) is the Fourier transform of the Cou-
lomb potential, y =Sq/(2mkT)'", and e=ft~/kT.

By manipulation this can be converted into an
expression involving the integx'al representation
of the "ge" error function, ls

FIG. 5. The cutoff function of the clRsslcal dielectx'lc
function.

Thus (A2) and (AS) permit the calculation of

ll(lo, q) for all real values of its arguments. For
('d= 0 and g 0+q %'e have

Impel(0, q)=0, Rely(0, q)=1+g(-', y)ql/qe, (A4)

1/(q)Zr 1 v
1/3~TkTQ $

8+ $"g ~ P 8+ 't"g

W(e) is an entire function defined in a region in-
cluding the real axis by

Rnd

g(x) = (1/x) e "'f," e"dt . (Ae)

g(x) 18 easily evRlllR'ted llslllg tables of DRwsoll'8

integral, and is plotted in Pig. 5. It functions as
a cutoff on the susceptibility at short wavelengths.
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Starting from the motion of the free electron, a model is developed for the impact ionization
of electron-hole pairs in the presence of a strong transverse magnetic field. The ionization
rate was found to depend only on the quotient of the effective electric field strength divided by
the magnetic field E~ff/B. For n-InSb the ionization rate was calculated in dependence of
E,ff/B for different values of the mean free path for optical-phonon scattering. Impact ion-
ization begins at &eff/&=2. 7&105 m sec

I. INTRODUCTION

The problem of impact ionization in semiconduc-
tors in crossed electric and magnetic fieMs was

. first investigated by Toda and Glicksman. ' They
suggested the "transverse breakdown, " and impact
ionization in the Hall direction at comparable or
lower electric fields than in the absence of a mag-
netic field. But measurements by Ferry and Hein-
rich showed a decrease of the ionization rate caused
by the magnetic field. This result was in agree-
ment with unpublished measurements done in our
laboratory. Therefore, and because of our interest
in the ionization process in the somewhat different
geometric conditions of a ~ pinch, we developed
a model foi the impact ionization in crossed fields,
in which the Hall field is regarded as an independent
physical quantity. The decrease of the ionization
rate predicted by our model therefore does not ex-
clude the existence of a transverse breakdown, but
only indicates that this effect will be caused by a
nonlinear dependence of the Hall field strength on
the magnetic field, as was also predicted by
Schmidt and Nelson.

Our model is valid for a semiconductor with the
following properties: (a) moderately doped n type,
(b) parabolic conduction band, (c) dominant optical-
phonon scattering, (d) isotropic effective mass.
Starting from the equation of motion of a free elec-
tron, we investigated (Secs. II-V) the behavior of
an electron in a magnetic field. The velocity vector
of such an electron is moving on a gyration circle
which is not centered in the origin of the velocity
plane. To get a one-dimensional (energy) descrip-
tion, we divided this gyration circle into a "fast"

half and a "slow" one, as determined by the abso-
lute value of the velocity. The energy of the elec-
tron was averaged separately over each half circle
and the continuous motion of the velocity vector on
the gyration circle was replaced by transitions be-
tween the two energy mean values. With these
transitions and those caused by the scattering with
acoustical and optical phonons, the Boltzmann equa-
tions and two continuity equations for the motion
of the particles in the energy space are formulated
(Sec. VI). In Sec. VII this system of equations is
solved and the energy distribution of the electrons
is determined. The ionization rate, the number of
electron-bole pairs produced by one electron within
unit time, is given in Sec. VIII. It was found to de-
pend on I= (8,+Es) ~ /8 only. Here E, is the ex-
ternal electric field, EH is the Hall field, and 8 is
the magnetic field.

II. SOLUTION OF EQUATION OF MOTION

Moving in the crystal the electrons are not sub-
ject to a homogeneous friction, but lose their energy
by single impacts. Between the impacts the behav-
ior of the electrons is described by the equation of
motion for free particles:

dv 8
(E+v&&B)dt m~

where t is the time, —e is the electric charge of
the electron, m~ is the effective mass, v is the
velocity, 8 is the magnetic field, and E is the elec-
tric field at the position of the particle. The elec-
tric field is the sum of the applied external electric
field E, and the Hall field P-&.-

If the magnetic field is perpendicular to the elec-


