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the Haman scattering experiment performed by
Feldmann 8t Ol.

The changes of the in-hand mode frequencies of
tile IongitlId111RI branch R1011g tile [001]d1rectlon
were also measured and the results are shown in

Fig. 3 together with the theoretical prediction
(solid line). As the addition of 9.2% Si to Ge de-
creases the lattice constant by about 0. 5%, the in-
band mode frequencies should be expected to have
a relative increase which is given approximately
by y(&V/V), where y is the Griineisen constant for
the longitudinal branch and (hV/V) is the relative
change of the crystal volume. Using y= 1, an aver-
age value of the Gruneisen parameter as calculated
by Dolling and Cowley, '0 the increase in the fre-
quency due to the lattice contraction was estimated

and added to that calculated from the mass-defect
theory. The resultant change is shown by the dotted
line in the same figure. The over-all variation of
the change as a function of the cox responding in-
bRnd IQode frequency ls qualltatlvely ln good Rgx'ce-
ment with the expex'imental results, though the the-
ory predicts a finer structure than that observed.
This discrepancy may be due to the effects of the
finite concentration that are not included in the the-
ory. A change in the force constants may also have
significant effects on the in-band mode frequencies.
In order to examine this point further, an experi-
ment on a Ge crystal with 5% Si will be performed
in the near future.

%e.are grateful to G. DoQing for supplying the
g(v) for pure Ge.

~Besearch sponsored by the U. S. Atomic Energy
Commission under cont1act w1th UQ1OQ CRrblde Colpora-
'tlon,

~The crystal was kindly loaned by E. F. Hockings of
BCA Laboratories to whom we are very grateful.
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Transverse Negative Resistance in n-Type Germanium
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For g-type germanium the mobility in the [001]direction in the presence of a strong electric
fieM in the I110j direction has been calculated using a detailed model of the material including.
higher (100) minima. The method of calculation is a Monte Carlo approach capable of giving
differential quantities. At room temperature no instability is found, while at 77 K an instabil-
ity 18 obtRlned if the scattering rRte between (ill} Rnd (100) mln1IQR ls suffic16ntly strong.

I. INTRODUCTION

It was first noted by Erlbach' that in n-type ger-
manium a negative resistance knight exist in a di-
xection transverse to a strong electric field, The
origin of this effect veil be discussed in Sec. II.
Krlbach found that this effect could be present in

germanic only i.n a uniaxially stressed material.
Shyam and Kroemer measured a transverse polar-
ization ln tl-type gel manlum at x'oom temperature
and interpreted this as an indication. of the pres-
ence of the Erlbach effect. They explained this as
a consequence of a strong repopulation induced by
higher (100) valleys.

A calculation of tbe r8slstance 111 tbe [001]direc-
tion in the presence of a strong electx'ic fieM in the
[110]direction is presented in this paper. The mod-
el of the material includes tbe effect of tbe (100)
valleys and is similar to the one used by Paige i.n
a study of the bulk negative conductivity in this ma-
terial. This model eras later used by the author
to calculate the anisotroyy of the high-field conduc-
tivity with the Monte Carlo method. In Sec. Ill this
method ls generalized to give the dlffex'entlal con-
ductivity. The numerical results are presented in
Sec, IV. At room temperature no instability is
found, vrhile at 77 'K the transverse resistance can
be negative if the intervalley scattering rate be-
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after Paige (Ref. 3).
general direction in the (110)plane there are, in
the model described above, four sets of nonequiva, -
lent minima. The Boltzmann equation in these
minima ls

tween (111)and (100) valleys is sufficiently strong.

II. PHYSICAL MODEL

The assumed values of the parameters character-
izing the conduction band in germanium are given
in Table I. In the model several approximations of
the band structure are made. The (000) minimum
is neglected since there will be very few electrons
in this valley due to the low effective mass. Fur-
thermore, the nonparabolicity of the (111)valleys
is neglected. This effect is important only at rather
high energies where there are few electrons if the
coupling between (111)and (100) minima is strong.
In analogy with silicon it is assumed that the inter-
valley scattering rate between (100) valleys is
strong. Vhth this assumption it is a good approxi-
mation to neglect the anisotropy between the (100)
minima.

The assumed values of the scattering parameters
are given in Table II. The acoustic scattering is
approximated by an isotropic, velocity- randomiz-
ing collision process. Furthermore, the energy
relaxation by acoustic phonons is neglected„since
it is only of importance at rather high energies
where the energy relaxation due to nonequivalent
intervalley scattering is strong.

In the calculations the ellipsoidal energy surfaces
are transformed to spherical surfaces in the usual
manner. This means that each minimum is char-
acterized by a certain electric field E* with a. mag-
nitude dependent on the angle between the field and
the symmetry axis of the energy ellipsoid. For a

where f„is the distribution function of the electrons
in minimum m, 4& the wave vector parallel to the
field, and v the collision frequency. I „is an in-
tegral operator representing scattering into a vol-
ume element in momentum space. m = 1 corre-.
sponds to the (111)minimum, m = 2 to the (111)
minimum, m = 2 to the two equivalent minima (111)
and (111), and m = 4 to the six (100) minima. In
the case to be studied here, there is a strong elec-
tric field in the [110]direction and a small trans-
verse field in the [001]direction. The effective
fields can thus be written as E*+5 E*. The rela-
tions

El-Ea ~

are immediately obtained from the symmetry of the
band structure. Writing the distributions as f„+Of„,
Eq. (1) and relations (2)-(4) give

A=fa,
&fg= &fa, —

(5)

(6)

Withe= f,+ fa and ufo= 5f, —5fz the equation for first-
order quantities obtained from Eq. (1) is

&Ei d&fo «Ei* sfo
sn

(8)

TABLE II. Electron-phonon scattering processes in germanium, after Paige (Ref. 3).

Minimum
Initial. Final

Phonon energy
(equiv temp)

rK) (eV)

IDtl avalley

Equivalent
intervalley

111
ill
100
100

111
100
100
100

ill
ill
100
100

ill
100
100
010

Rcolls tic
optic
acoustic
optic

acoustic
optic
acoustic
acoustic

430

430

320
430
100
320

9 x 10lo

fo rb idden

1.6x10~0
l.1x10"
8.8x 109
3.8 x10~0

Nonequivalent
inter valley 100 Rcoustlc
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FIG. 1. Projection of the four (ill) valleys of Ge on
the (110) plane, together with the current contributions
from the two valleys in that plane, for two field directions.
Case 1 corresponds to a field exactly in the I'110] direc-
tion, case 2 to a field ti.lted away from the [110]direction
within the (110) plane, but without electron redistribution
between valleys 1 and 2. Case 3 includes this repopula-
tion.

Thus, to the first order in the transverse field only
the distributions in the (111)and (111)minima are
changed.

The transverse drift velocity can be separated
into three components. This is best explained with
the aid of Fig. 1. When the field 5E is added, the
directions of the drift velocities in all valleys will
change. This gives a contribution 6j, to the cur-
rent. In the (111)and (111)valleys also the magni-
tude of the effective field is changed. For the di-
rection of DE shown in Fig. 1 the effective field is
decreased in the (111)minimum and increased in
the minimum (ill). Thus, va will increase and v,
decrease. This gives a contribution 5jb to the cur-
rent. Carriers will also be redistributed from the
(111) to the (111)valley, resulting in a contribution
5j, to the transverse current. If the repopulation
effect is strong, 6j, mill be larger than 5j,+ bjb and
the transverse conductivity will be negative.

III. MONTE CARLO APPROACH

The problem is to find a solution to Eq. (8). The
conventional method is to assume a Maxmellian
form of the distribution and solve for all param-
eters of interest. A comparison with Monte Carlo
calculations shows that this method tends to give

fm Tmnf n (10)

where f, is a, vector, T a matrix, and a summation
. over repeated indices is implied. In the conven-
tional Monte Carlo method described by Boardman,
Fawcett, and Rees, ' the random walk of a single
particle in momentum space is simulated on a com-
puter using random numbers. From this path an
estimate of the vector f, is immediately obtained.
An estimate of the matrix 1' is obtained if at each
collision the scattering probabilities to various en-
ergy intervals are recorded. An improved esti-
mate of f, is given by the solution of the set of linear
equations (10) using the estimate of T. If the elec-
tric field E is given a small increment 5Z, the lin-
ear change in Eq. (10) is

To solve for 5f, it is thus necessary to have an es-
timate of 5T. This estimate can be obtained from
the collision density

P(k, k, )= exp —. ~ (k)dk), ((k)hv k

eZ eE J~
where P(k, ko) dk is the probability that a particle
starting out at wave number k'0 will be scattered
in the interval (k, k+dk). v(k) is the collision fre-
quency, k and 4o are wave numbers parallel to the

electric field, and the transverse wave number is
not written out explicitly for clarity. If the elec-

large errors in population ratios between different
energy minima. Knee the repopulation between
valleys is of crucial importance for the existence
of the Erlbach instability, it is obvious that Eq.
(8) must be solved exactly. For this purpose two
somewhat different Monte Carlo methods were de-
veloped. Both methods will be described below in
a simple case for a single, isotropic valley with
velocity- randomizing scattering processes.

The first method is based on the Monte Carlo
method earlier used by the author to calculate the
anisotropy of the high-field conductivity in n-type
germanium. In this method, the synchronous en-
sembles introduced by Price were used. The
"after-scattering" ensemble f, is the distribution
of particles immediately after they have been scat-
tered. If collisions are velocity randomizing, then

f, will be spherically symmetric in momentum
space and a function of energy only. f, can be ob-
tained from the transport equation written in the
form

fn(e) = J T(e, e')fn(e') de',

where T(e, e') de'de is the probability that a particle
starting out in the energy interval dc' after a colli-
sion will be scattered into the energy interval de at
the next collision. If the energy range is divided
into discrete intervals, Eq. (9) becomes
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tric field is given a small increment 5E, the linear
change in the collision density is

x('(&, ».)= ('(L. &0) '(&)&& —(), ((&)
5E

but

xexp — v k dk dz.

In terms of synchronous ensembles,

((f if-)= E Y,-f,),5E 5E
(2o)

1
v(k)dk= ln —,

eE
0 P

where p is the random number used to generate the
times of flight between collisions. Thus

(14)

lip(k, (0)= ((», »0) ix——1) .
5E

p
(15)

The matrix 5T can thus be obtained if the probabil-
ities used in the estimate of the matrix T are mul-
tiplied by ln(1/p) —I in the respective points of colli-
sion. In the same way differential changes in quan-
tities like the average velocity and time of flight of
particles starting out in each energy interval are
obtained.

In a practical case v(k) is a very complicated
function of energy. It is thus difficult to solve Eq.
(14) for the times of flight. This problem is solved
through the introduction of a "self-scattering" mech-
anism as described by Boardman, Fawcett, and
Rees, ' that is, an additional scattering process

8(k, k')= [I'(k)- v(k)]5(k-k'), (16)

eE &f

5 ~k

corresponding to the path integral formula

nf Lf exp — v=(L) d»)dx . (18)eE eE

If an increment 5E is added to the electric field,
the path integral formula for the change in the dis-
tribution function is

ilf (L()f+ (ix' —Lf=))

where v(k) is the total scattering rate of real scat-
tering processes while I'(k) is a simple function of
k and usually chosen to be a constant. In. the case
of n-type germanium, however, it was found to be
more efficient to choose I" as a piecewise constant
function of energy. In the calculation of 5P only
real scattering events may be taken into account.
This is done by multiplying the transition probabil-
ities by g„Iln(1/p„)- 1] in each point of real colli-
sion where the sum goes over all self-scattering
events including the last real collision. A proof of
this is given in Appendix A.

A second method to calculate differential quantities
cari be deduced from the Shockley-Chambers path
integral formula. In the notation of Sec. II the
Boltzmann equation is

5

48
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Longitudinal electric field, (10 V/Iri)5

Transverse electric field, (10 V/rn)1

FIG. 2. Variation of the transverse drift velocity with
field.

where f, is the "before-scattering" ensemble. This
can be interpreted as a source generating both
"positive" and "negative" particles which are con-
tinuously scattered and annihilated. In terms of
after-scattering ensembles, Eq. (19}is given by

5f,™=T""5f, + (5E/E)(g, -f, ), (21}

where g, is the distribution of particles after their
first collision if they start out from the distribution
f». It can be generated during the Monte Carlo cal-
culation if a new particle is generated in each point
of real collision and is subsequently followed through
its first real collision. This procedure also gives
differential changes in quantities like the average
time of flight. A proof of this is given in Appendix
B.

Both methods described above are in principle
exact. In the practical implementation on a com-
puter, however, an error is introduced from the
necessity to have a finite number of energy inter-
vals. In the calculations to be described in Sec. IV
the energy axis was divided into 100 intervals with-
in the range where the particle density was appre-
ciable. The precision was checked by changing the
size of the intervals. This showed the error in-
troduced by the finite size of the intervals to be
negligible.
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Eg. (8) are few. With the model of the band struc-
ture and scattering processes used here each vaQey
is isotropic and all scattering processes are velo-
city randomizing. The Monte Carlo calculation is
done for a field in the [110jdirection. From Eg.
(8) it follows that it is only necessary to compute
differential quantities in one of the sets of equiva-
lent minima. This reduces the problem of the fin-
ite size of the energy intervals.

IV. NUMERICAL RESULTS

10

Longitudinal electric field, (10 V/m)5

Transverse 'electric field, (10 V/m)

FIG. 3. Components of the transverse drift velocity
versus electric field.

In the numerical calculations both methods were
found to be useful. In the first method the random
walk is simpler and requires less computer time
for the same numbex of scattering events. The sec-
ond method, on the other hand, requires less stor-
age space since no matrix 6T' has to be stored. The
statistical errors were found to be comparable al-
though in a certain sense complementary; in a range
of electric field where one method had a large er-
ror the other could give a small error.

The generalizations necessary for the solution of

The transverse drift velocity versus longitudinal
electric field is shown in Fig. 2 for a transverse
field equal to 10 times the longitudinal field as cal-
culated for T= 300 'K and scattering parameters
according to TaMe II. This choice of the transverse
field corresponds to a constant angular deviation
of the total field from the [110]direction. The
three components. of the drift velocity as described
in Sec. D are given in Fig. 3. v, is due to the
change in the direction of the effective field in each
valley, va is caused by the change in the magnitudes
of the drift velocities in the (111)and (111)minima,
and v3 is obtained from the repopulation of carriers
between these valleys. vs is directed oppositely to
v, and w2 and has to be larger than the sum of v, and

v2 for an instability to occur. From Fig. 3 it is
clear that this condition is not fulfilled. The repop-
ulation is thus too small for an instability to occur
in this case. Calculations have also been made for
different values of the scattering paxameters. No
significant increase in the repopulation effect was

10

V
0

Z

4

8
m 04
0

«1

-Z

T = 77'K

I I

8 10

~0

0
0
8

5-

T j log/

v3

Longitudinal electric field. , (10 V/m)5

Transverse electric field. , (10 V/rn}

FIG. 4. Variation of the transverse drift velocity vrith

field for a nonequivalent intervalley coupling constant
equal to 2.5 xl0'o eV/m (dashed curve} and 5 xl0'0 eV/m
(solid curve).

10

Longitudinal electric field, (10 V/m)5

Transverse electric field, (10 V/m)1

FIG. 5. Components of the transverse drift velocity
vs electric field.
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observed. If the model used is valid, it thus has
to be concluded that the Erlbach instability does
not exist at room temperature.

At VV 'K the situation is different. Figures 4 and
5 show the results obtained at this temperature.
A strong repopulation is obtained, and with the scat-
tering parameters given in Table II the transverse
resistance is negative for a longitudinal field in the
range 3-6x10 V/m. The instability is, however,
very sensitive to the value of the coupling constant
for nonequivalent intervalley scattering. It has to
be larger than about 4&&10~p eV/m for an instability
to occur. The value of this parameter is not well
established, although experimental measurements
of the resistivity under hydrostatic pressure' in-
dicate a value close to 5&10' eV/m. Thus a trans-
verse instability may very well exist at 77 'I, and
experimental measurements of the transverse mo-
bility could provide a better understanding of the
role of the (100) minima in the conduction process
in n-type germanium.

APPENDIX A

proof that the average of $„[ln(1/p„) —1]&E/&,
where the sum goes over all collisions up to the
first real collision, will give 5p(k, kp).

The total scattering frequency is

y(k) = v (k) + v,(k), (Al)

the sum of the real scattering frequency and the
"self-scattering'* fre(luency. The collision density
of particles starting out at wave number k0 is

pp(k, kp) = y(k) exp[- 1 y(k) dk], (A2)
0

where 5/eE = 1 is assumed. The collision density
for a real scattering to occur in the first collision
is

grateful to the National Bureau of Standards and
the University of Colorado for their hospitality dur-
ing the time when a part of this paper was pre-
pared.
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The collision density for the first real collision to
occur in the (n+ 1)st collision is

p(}kg (kk kp) = dk}}pp(kk k}})
"

dk}k-1pp(kkkk kk} g) ' ' '
(k pp(kpk kl)

k pp(kg} kp) dkg
v(k) t' v,(k„) (' v, (kp) I'p v,(k, )

ya,
k}p k0 p

, p(}(k, kp) dk„vd(k„) dk„~v, (k~~) ' v, (kp))l vd(k()dk| .
00 k0

0

(A4)

Using the symmetry of the integrands gives

P}}k|(k, kp) =
k Pp(k, kp) —

)
vk(kg) dk| .v(k) 1

yu
(A5)

The distances between points of collision are gen-
erated by the random numbers

I y(k)dk=ln
Pm

km-1

Thus

I
r„= Z ln ——1 = y(kq)dkq -n

P& J
0

The average of x„ is thus

(A6)

(A7)

n-1

Pp(k, kp) Z 1| y(k|) dkq -n v, (kq) dk|
4a

0 0

k, (k, ko} r(k|}dk|— v,(k|}dk|—( axk v,(k|}dk|)
J

k0 ~0 k}
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pk

((k,=).t ) V(k~)dk~ —)) =5@(@lip), .
4&0

Q. E.D.

APPENDIX 8

Proof that the change in the collision density
caused by an increase 5E in the electric field is
equal to the density of "second" collisions minus
the density of first collisions times the fractional .

change in the field is as follows.
The collision density at wave number k of particles

starting out at ko is

P(), ),)= exp — v()t)d)) .kv(k) k
eE eE „

0

The change in the collision density caused by the
field 6E is

5)t(a, a,)= —)(k,a,) —' v(a)e);-() . (Ba)
5E I

The density of "second" collision is obtained if
particles start out from the density p(k, k,). Thus

I k

p,(k, k,}= p(k, k, )p(k~, ko) dkg

0

=p(k ko} E v(k)dk
ko

and

[p,(k, k,) -p(k, k,)j

5E
P(k, )'(() —ii v(a)da —()

=()p(k, k,) .
Q. E.D.
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