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The acoustoelectric effect, besides producing linear gain or loss of a single acoustic wave,
couples together different acoustic waves. In this paper we first derive expressions for the
second-order field acting on a given wave due to acoustoelectric interaction with other waves,
either collinear or phase matched (and therefore noncollinear). These fields are obtained also
for the case that trapped as well as free carriers are involved in acoustoelectric interaction.
The wave equations are then set up for three coupled waves and solved for downconversion and
upconversion, with pump depletion due to the interaction with other waves generally, but not
always, neglected. In the absence of linear gain or loss, the coupled equations and solutions
are quite similar to those of nonlinear optics, with displacements playing the role of electric
fields. Many of the results derived in nonlinear optics are ther&fore easily adapted to the
acoustoelectric case. The presence of sizable linear gains or losses, generally different for
the different frequencies. , changes the form of the solution, and also has the consequence that
phase matching loses much of its importance. The dependence of gain rates for downconver-
sion and upconversion on the frequencies of the waves involved, on the applied dc fieM, on the
conductivity of the material, and on the trapping parameters is investigated. Detailed plots
are given for some particular cases for which there are experimental data. Finally, the theory
is compared with two sets of experimental data: (i) data of Zemon and Zucker, who studied the
generation of subharmonics, second harmonics, and sum frequencies by a 1-.GHz pump in CdS
and (ii) data from many sources on the evolution of the noise frequency spectrum in moving do-
mains in CdS and GaAs. It is found that the theory gives a good qualitative account of many of
the observed phenomena.

I. INTRODUCTION

It is well known that an acoustic wave propagating
in a piezoelectric semiconductor will, because of
its electric field, give rise to a bunching of the car-
riers. This bunching results in the familiar attenu-
ation or amplification of the wave, depending on
whether the drift velocity of the carriers, in an ap-
plied electric field, is smaller or greater, respec-
tively, than the wave velocity. ' When more than a
single wave is present, interactions occur between
the different waves because the bunches produced
by one wave interact with the electric fields due to
other waves or, perhaps more accurately, because
electrons are simultaneously bunched by all the
waves. To distinguish the attenuation or amplifica-
tion caused by interactions of different waves from
that due to the interaction between a wave and its
own bunched carriers, we shall call the latter
"linear. " In fact, the amplitude of the bunching
produced by a single wave is linear in the displace-
ment or strain amplitude for acoustic intensities
small enough to bunch only a small fraction of the
carriers. In this paper we shall develop the theory
for strain amplitudes S small enough to lie within
this linear regime. How large a strain amplitude
this permits depends on the conductivity of the ma-
terial, the drift field, the frequency, and other pa-
rameters. For a shear wave in the basal plane of
semiconducting CdS, for example, at the frequencyf, for which the wave creates the maximum bunch-

ing (and therefore has the greatest linear gain or
loss), S-10 ' is well within this linear regime. At
other frequencies, still higher strains are in the
linear regime. For a typical sample of photocon-
ducting CdS smaller strains, of the order of a few
times 10, are required to be well within the linear
regime at f,. Such strains are large enough to
cause a great deal of mixing of waves and harmonic
generation.

We begin our discussion in Sec. II by deriving
expressions for the field acting on a given wave in
the presence of other waves, collinear or phase
matched with the first wave. These expressions are
derived first for the case of free carriers, then for
the case that trapped as well as free carriers par-
ticipate in the bunching. In Sec. III these fields are
used in setting up the wave equations for the case
of three coupled waves. The equations are then
solved for downconversion, first for the collinear,
then for the phase-matched case, with and without
trapping. Pump depletion due to the wave interac-
tion is neglected here, but linear attenuation or
gain of the pump are included. The ratio of the en-
ergies of signal and idler after parametric amplifi-
cation is considered. In Sec. IV the dependence of
parametric gain on the many parameters involved
is examined and numerical results presented for
some particular cases. Sum frequency for collin-
ear and noncollinear cases and second-harmonic
generation are taken up in Sec. V, and the depen-
dence of the latter on the various parameters ex-
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To derive the field acting on one wave due to the
presence of other waves, not necessarily collinear,
we start from Poisson's equation

V ~ D=Q= -qn„ (2. 1)

where n, is the density of electrons producing the
space charge, and the equation of current continuity

v ~ J= ——.
et (2. 2)

The notation and units here are those of Ref. 1 un-
less otherwise specified. Combining Eqs. (2. 1) and

(2. 2), we obtain

aD&
v Z+ —i=0.

af&
(2. 3)

The current density is the sum of conduction and
diffusion contributions

J = nq p,E +q+Vn, (2. 4)

amined. A solution that does include pump deple-
tion is given for the case of second-harmonic gen-
eration. In Sec. VI we conclude with an extensive
comparison of the theory with experimental obser-
vations of upconversion and downconversion, in-
cluding those on propagating acoustic domains.

II. COUPLING FIELDS

E(i& .&m+&&m/&o Sm.
m

(2. 10)

where c.c. stands for complex conjugate. The dc
terms E0 and D0 will be assumed, in what follows,
to be independent of the amplitudes E„and B„and
of space coordinates. E0 is then to be identified
with the applied dc field. These assumptions are
reasonable if the strains are not too large. To ob-
tain the coupling fields, we need also the relation
between D, E, and the strain S, e. g. ,

D=&E+e S . (2. 8)

We assume that S may be decomposed into plane
waves just as E and D have been. In the basal plane
of CdS, for which we do our calculations, the piezo-
electric constant e is independent of direction. We
neglect the anisotropy of the dielectric constant E

since, as will be seen, the angular spread we deal
with will be small. Substituting (2. 7) and (2. 8) into
(2. 6), and assuming as usual that the variation of
the wave amplitudes is small in the distance of a
wavelength, we find that E may be written in the
for m

A

(2.9)

where E"' is the familiar result of first-order theo-
ry'

n =no+fn„ (2. 5)

where Q is the diffusion constant and n the local
density of electrons in the conduction band. If we
allow for trapping, this density is given by

Here

y = 2 (pEocosy )/v, ,

being the angle between Eo and k, and

(2. 11)

where n0 is the equilibrium density of electrons and

f the fraction of the space charge that is free. In

going beyond this point, it is convenient to proceed
in rather different ways for the cases with and with-
out trapping. We shall carry through the latter
first.

A. Without Trapping

In the absence of trapping, n may be eliminated
from Eq. (2. 4) by the use of Poisson's equation and

(2. 5) with f= 1. Substitution of the result in (2. 3)
gives the relation between D and E

(2. 12)

The sign conventions are such that the —sign in y
applies when electron drift has a component parallel
to %~, the + sign when it has a component antiparal-
lel to k . As usual, „v,—= oo/&, e& =—v, /D. The
higher-order field E' ', containing the terms due to
mixing, may be written

2~+mrm m'&0

8D
V —+o E —&VV ~ D =V (pEV D)at (2. 6) where

(2. 13)

E = E,+ — 5~ (F„e"" '-" "+c.c. ),
m&0

(2. 7a)

D= D + — 2 (D e" ~ ' "~"+ c.c. )0 m ~ ~

m&O
(2. 7b)

where 00= n0q p. This relation' constitutes the gen-
eralization of White's' Eq. (7) to the three-dimen-
sional case without trapping. Assume now that the
field and displacement are given by

&m~m =km. m -km+km ~ (2. 14)

the subscript mam' denoting the quantity associated
with the frequency co, ~ or ~ + + ~, respectively.
To write (2. 13) as shown the conventions have been
used that D, .=D ... k "=—k ". Note that (2. 13)
has been simplified somewhat by making the as-

A

sumption for the first term that E ~ (k, ~ —k .)
= E "k and a similar assumption for the second
term. This is a good approximation here since,
although there is dispersion, it is usually quite
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small. This type of approximation is, of course,
not permissible in the arguments of the exponen-
tials.

To carry the theory furt)Ier, it is necessary to
insert in (2. 13) values for D,„, and E„.. Since we
are confining ourselves to the case of not too large
strains, or weak interactions, we assume that the
relation between D or E at co ~ and the strain at co ~

are the same as in the absence of other waves, i.e.,
the first-order relation. The resulting E„' ' for
many waves has been written down elsewhere.

Here we shall write only the results for three inter-
acting waves, shown in Fig. 1, with wave vectors
k, along x', k2 along x", and k3 along x. The high-
est frequency ~3 is the sum of +, and v2. For
Secs. II-IV the electric field Eo will be assumed par-
allel to ks, making $„=8„. The cases of greatest
interest to us are (i) the three waves phase
matched, i.e. , k, -k, -k2=0, which implies that
they are not collinear and (ii) the three waves col-
linear. For the phase-matc/ed case we obtain from
(2. 13) for the component of E,' ' parallel to k~

e'i& ~(u (y, - i(u, /(u~) cos(8, + 8,) + (y, +i~, /(o») cos8, Sg-
2& v, +, I', I'~I' 2 3. (2. 15a)

To obtain Pz& one must replace subscript 1 by 2 and 2 by 1 in (2. 15). The component EP& parallel to k, is
given by

E(3& . e p ~& (y&+i(u&/(ur) cos8&+(y, +i(u, /u)o) cos8,
E3 =& 2

2& V~ 003 I",I'2I'3 l 2 ~ (2. 15b)

For the collinear case, where there is not phase
matching,

2
-(2& . e p ~(o 2y+uu, /&u» S~-

2& v, w, I",I*I' (2. 16a)

2 A

Z.~» . e V ~& 2y+»3/~o S S3 &22 III l 2
& V~ (d3

(2. 16b)

where &k=k3 —kl —k2. For col ——&2, i.e. , the de-
generate case, F-3

' is smaller by a factor of 2 than
the expression obtained from (2. 16b) by setting
a&, = &ua. If 8, and 8~ are set equal to zero in (2. 15),
one obtains the results (2. 16), except, of course,
for the factors e" ". In practice, since dispersion
is not large, EI ' and E~ ' of (2. 15) are not too dif-
ferent from the coefficients of e' " and e ' ", re-
spectively, in (2. 16).

fore reemission. Note that the right-hand side of
(2. 17) is the complex conjugate of that given in

Refs. 6 and 7, the reason being that we have as-
sumed the conjugate time dependence. The result
(2. 17) has been found to be in qualitative agreement
with experiment for CdS. '

Because of the frequency dependence off, it is
no longer possible to express n simply in terms of
D. Expanding n in the same type of series as used
for E and D in (2. 7), and then using Poisson's equa-
tion, we obtain for the amplitude at +

n = —ik f~„/q . (2. 18)

When (2. 7) and (2. 8) are inserted in (2. 3) and (2. 18)
-used to eliminate n, the terms in e '"~' yield, for

B. W'th Trapping

We return now to the case where trapping is pre-
sent. It was first pointed out by Greebe that the
trapping factor f must in general be complex and
frequency dependent to allow for the phase differ-
ence between free and trapped carriers. Under the
assumption that there is a single type of trap, the
degree of whose filling can be neglected, it is found
that for an acoustic frequency &o„, f is given by

f =f(+„)=(fo ——i&@ T)/(1 —i&a T), (2. 17)

where fo is the fraction of its time, in the steady
state, spent by a conduction electron on traps and
7 a characteristic trapping time. In detail,
T Tf Tg /(Tf + T,), where T& is the mean time an elec-
tron is free, v, the mean time spent on a trap be-

r

/
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~ x (tda)

FIG. 1. Propagation directions of three interacting
waves.
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the first-order field, )
e(().mx -.mm() (3 2)

-(, ) e y +i/ (d /(dD
m

& ~t m&

y' =I+(pEof cos& )/v, (2. 20)

I m
= ym+ &(~c /(dm+fm &m/~v). (2. 21)

As in the case without trapping, for ~, =(d2, E3 ' is
—,
' of the right-hand side of (2. 22b). It is apparent
that, in the limit f = 1, E,' ' and Ea ' go over to
(2. 16a) and (2. 16b), respectively.

III. DOWNCONVERSION

A. V4ve Equations

We shall write and solve the wave equation only
for shear waves with displacement parallel to the
c axis. The tensor nature of the elastic constant
c, as well as that of & and e, may be neglected.
The propagation direction of the wave with frequency
cu will be denoted by x . The wave equation for the
displacement u of this wave may then be written

8~u 8 u 8E~ 8u

The second-order field may be obtained from (2. 13)
by replacing D ~ with f "D " and I'„by I' . Pro
eeeding as in the case without trapping, we obtain
for the situation of three collinear waves

3
E(2) f

e 8 ~R fR ys+fsY2 +zfRfs Rl/MD 8 (d))~
~ 2~3 Pf Pt4 Pf 8383 e

s 1 1 3 3

(2. 22a)

Again, Ez ' is obtained from this by replacing the
subscript 1 by 2 and 2 by 1. The second-order field
at ~, is given by

"(a) e p ~& fey)+f)y3+ffA~s/(dv
&3 =& Z2~ &s &3 1",FqT'3

xs)8, e (~'" ((u)x(oa). (2. 22b)

When (S.2) is substituted into (S.1) and the condition
imposed that the change in all quantities is small
in a distance of a wavelength, it becomes a first-
order differential equation. With (2. 10) or (2. 19)
inserted for F-"' this equation has one set of terms
in phase with u and another set out of phase with
u . Equating the first set to zero, we obtain the
dispersion. Making use of the fact that e /ec is
small, we may write the dispersion relation, with

trapping,

1/3 "
~2(dm „( )

&
1

e
R

~

ym+&fm(dm/(d()

p 2&c

(3 3)
When there is no trapping f = 1 and (3.3) reduces
to the usual linear dispersion

(S.4)
In Fig. 2 there are shown some vs values calculated
from (3.3) and (3.4) for shear waves of different
frequencies traveling in the basal plane of CdS.
The other parameters chosen are ones that will be
used in later calculations. In all the cases shown,
and indeed universally for vz parallel to k, es de-
creases monotonically from the stiffened velocity
(c/p)' (1+e /2cc) in the high-frequency limit to
(c/p) in the low-frequency limit, where the car-
riers screen out the electric field produced by the
strain (for the parameters used see Table I in Sec.
IV). Increasing v, , or bringing v~ closer to v, and

synchronism, improves the screening and makes
the decrease more rapid. In the ease shown in Fig.
2(c), with typical values of the trapping parameters,
trapping also has the effect of improving the screen-
ing. For some other sets of parameters, however,
trapping has the opposite effect.

After the terms in the phase with u, have been re-
moved, the remaining terms of (3.1) may be written

where p represents the density, E„ the component
of E in the x„direction, and the term 2cn, „Bu /
8x the effect of lattice attenuation. This is not the
form in which the lattice attenuation is usually
written, but it is convenient for our purpo'ses. For
the driving field E, we insert the sum of F-"' and
the appropriate F-

We now look for a solution in the form of a plane
wave

= —(n, „+n, „)u„+—E„"', (3. 5)

where n, is the linear electronic gain, given by

ym+ffm &m /(0n
k~ Im (3.6)

With f„and fz representing the real and imaginary
parts, respectively, of f((d ), (3. 6) may be writ-
ten"

1 sf„(pE0/v, ) cos9 -fz((d„/&un)
2 c v. /I+fe(pEJv. ) «sg. fi(~./~v) j'+ H~.-/~ ) +fr(&Eo/v*) co ' 'fe(
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FIG. 2. Dispersion curves for
shear waves traveling in the basal
plane of CdS for different values of
~~, y, and the trapping parameters.
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When trapping is absent, fs=1, f~=O, and (3.7)
goes over to the usual formula of linear theory. '
To illustrate the effect of trapping on the linear
gain, we have plotted n, vs pZc/v, in Fig. 3 for a
particular case in CdS, with and without trapping,
for the same trapping parameters as were used in
Fig. 2(c). It is seen that the magnitude of the loss
is usually, although not always, increased by trap-
ping. The gain is greatly decreased for small
v~/v„as reported earlier, ' but increased somewhat
for large v~/n, . The latter effect is general and not
the result of the particular trapping parameters
chosen here. In the limit of large v„ the ratio of

I n, „I with trapping to that without approaches f„/
(f„+fq), which is easily shown to be greater than
unity. Of course, the correctness of this conclusion
is based on the assumption that small-signal theory
is still valid at such large values of v~ /v, .

We shall consider solutions of the Eqs. (3. 5) only
for the case of three interacting waves. The direc-
tions of these waves will be as indicated in Fig. j..
Eo will be assumed to lie in the x direction. With
the notation

14

12

IO 0=1

X
4

Eu . 0
-2 .Ol

I

V)

These three equations are coupled together by the
E' ' terms. In this section we shall consider solu-
tions for the case of downconversion, i.e. , initial
conditions (at x= 0) in which the amplitude at &os,

the highest of the three frequencies, is large while
that at either (d& or ~2, or at both, is small. For
small x then the product u,uz is small and we may
take advantage of this to uncouple (S.9c) by neglect-
ing E3 '. Solutions obtained in this way are of

+m=- ~e,m+ &i,m ~ (S.8)

the set of equations (S. 5) for the three waves may
be written

e

-8- fo =0.5

v =I xl0

dgg e (2)= —QgQg+ Zg

dg2 „ e„=—@~2+—E2

F3 e ~ (3), -- = —e3u3+ —E3dx 2c

(3.Sa)

(S. Qb}

(3.Qc)

-IO-
-12-

I I i I I l I I

-5 -4-3-2 -I 0 I 2 3 4 5 y
6 5 4 3 2 I 0 -I -2 -3-4 vd/vs

FIG. 3. Linear electronic gain with and without trap-
ping vs y for 42-MHz shear waves in a CdS sample with
~ = 5x108/sec.
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us = us (0) e (3.10)

us (0) being the pump amplitude a't x= Oq which we

may choose real. With (3.10) we may proceed to
solve {3.Qa) and (3. Qb) for various cases. The first
cases to be considered are those for which x' =x"
=x, i.e. , collinear cases.

8. Solution for Collinear Case, )a3)x &&1

For the collinear case, (S.Qa) and (S. Qb) may be
written

course valid only for values of x small enough so
that the depletion of the pump, i.e. , +3, may be
neglected. They are nevertheless useful for getting
information about thresholds and about the relative
probabilities of different processes. Solutions valid
for all x have been obtained for a set of equations
rather similar to (S.9), describing three interacting
light waves. ' However, the validity of those solu-
tions is limited to the case that n is the same for
all three waves, a relatively infrequent situation for
the acoustical problem dealt with here. We have
nevertheless included such a solution for the case
of second-harmonic generation, which will be taken
up in Sec. V.

When Es's' can be neglected, the solution of (3.Qc)
18

= —ngu(+PIylSs(0) I
8 s 8&™up (3. 11a)

-s = —nsus+P)s ISs(0)le s" e ' ""u„
where, in the absence of trapping,

ie p ~or (2y+ie, /&un)
)fc

4& cps (dj F&F2F3 2

(S. 11b)

(3.12a)

The solution to (3.13) may be written

In the presence of trapping g, is given by

&c fs'Ys+fs'Ys +sfsfs~i/&pp
l] =

4~2 . Ft Ftw Ft
(3.12b)

The quantity p)s is obtained from (3.12a) or (S.12b)
by interchanging subscripts 1 and 2. Consistent
with approximations already made, the g's are in-
dependent of x. Since the presence of the factor
e 3" complicates solution, we shall solve first for
the case 0.3x«1, so that e 3' may be replaced by
unity. We can then readily eliminate one variable
and obtain a second-order differential equation for
the other, e. g. ,

d gg dQg
s +(n, +ns —ihip)

dx dx

—(pi,p),*ISs(0)ls-n,ns+in, isa)u, =o. (3.13)

u, = e'"""e '"~"s'""(4m) ' f[(2m -n, +n, -i~a) u, {0)+2', lS, (0) lu's (0)] e""

+ [(2m + n, —ns+ ib k) u, (0) —2pI,
I
Ss (0) I up (0)]e "Q, (3.14)

where

n —O.
2 ~k ~a

m= R« ~s ISs(0) I'+ '," — —, +ll(™& CISs(»l'+ —, (n -n.) I
~ (3.15)

By a similar procedure we obtain

us =e ' ""p'e ' &' s'"p'(4m) '([27', IS, (0)lu, (0)+(2m+n, —ns+i&)'s)u, (0)]e""

—[2P)s ISs (0)
I
"i (0) (2'm —ni+ ns -i&@)up (0)]e ""). (3.14')

It is readily checked that in the absence of the
pump, i.e. , ISs (0) I

= 0, u, and us are uncoupled and
each takes the form (S.10) as expected.

If w, 4~2, m is, in general, complex and may be
written m = m'+ im". When co, is not too different
from m2, the situation we deal with most frequent-
ly, the imaginary term is small and

m' = [R«i&s
I
Ss (0)

I

'+ (Hn ~
—ns})'- (s&~)']"'.

The quantity m" may be thought of as a correction
to the wave vector, as are + ~4k in the first factor
1n Q1 and Q2 f 1espect1vely.

C. Effects of Linear Gain or Loss

When e, = @2=0, which can be reasonably well ap-
proximated for v„=v„and also m" «m', the re-
sults (3.14) and (S.15) go over to those usually given
for the optical case. "' (Of course, displacements
are replaced by electric fields there. ) The quantity

R„ISs (0) I is to be identified with i/l„, l„being the

interaction length for the wave of frequency m ."
It follows that various results familiar from nonlin-

ear optics may be brought over for this case.
Thus, if m' is real, which means here
Repl, pls I Ss (0) I

& (-,'b k), at large enough x (provided,
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of course, pump depletion is still negligible) there
is exponential growth of the signal and idler as
e ". This is true, independent of initial conditions,
for the nondegenerate case. The initial rates of
growth of signal and idler may be quite different,
however, for some sets of initial conditions. For
example, if a sizable signal is introduced but the
idler is initially zero, the idler will begin to grow
as sinhm'x, whereas the signal, varying as
coshm'x, will not grow at first. In the degenerate
case, however, even for 4k = 0 there will be some
particular initial phase difference between the pump
and the subharmonic for which the signal will decay
exponentially rather than grow. It may be noted
that the condition Re1}11}2Is2(0) I

) (2'bk) is easier
to satisfy in our case than in the optical case be-
cause the basic nonlinearity is larger. If the condi-
tion is not satisfied, however, m' is imaginary and
the amplitudes u, and u2 will vary in an oscillatory
manner with increasing x. As shown by Armstrong
et al. ' this corresponds to energy being fed back
and forth between the pump on the one hand and sig-
nal and idler on the other.

The presence of linear gain or loss alters the
situation markedly. If there is gain, i.e. , n, + na
& 0, the signal will grow essentially exponentially
whether or not IS2 (0) I is large enough to give m a
real part. The reason for this, of course, is that
there is an additional source of energy, the dc
power supply. If m were pure imaginary, the pre-
sence of the factor e" "would simply superimpose
ripples on the exponential growth, large for small
I n& jx, but ultimately small in effect. If, on the
other hand, n, + nz& 0, for the signal to have net
gain IS2 (0) I would have to be high enough to over-
come the linear loss as well as the effect of ~k.
In all, in the presence of linear gain or loss phase
matching becomes much less important.

D. Weak Coupling

Rather different behavior from that described
above may be obtained for the case of weak cou-
pli.ng, i.e. ,

Re((1,1)21 .(0) I'« l((2 -122) (3.16)

If we neglect Imf/pz IS2 (0) I and 4k, for simplicity,
we may expand m to obtain

+1 +2 1 27172 I 3(0)i —+1 +2 ~

(3.17)

For an initial condition u2 (0) = 0 we find, using
(3. 14),

M1 —Q((0) 8 8 2 + 1 — 8 8 1

n, —n~ Qg —Q2

(3.18)

6: =- (1 —8 2")/ (3.30)

A and B are arbitrary constants, and l&, I is written
for the degenerate case. To understand what (3.19)
means physically, consider first the case of linear
loss, i.e. , e&, n~ & 0. In the limit x- 0, 5 - 1 and
(3.19)-(3.14), written for the degenerate case.
If I g, I

& 0., there will for small enough x be net gain
at the subharmonic, the 8 term growing exponen-
tially. With increasing x, 7 decreases monoton-
ically, approaching the value zero in the limit x

The rate of gain will decrease therefore with
increasing x, reaching zero at the value of x for
which P I'g, l IS2(0) I

= (21 (provided, of course, the
sample is long enough). If pump depletion due to
amplification of the signal and idler had also been
included, zero gain would have been reached at a
smaller x value. If, on the other hand, the a' s
had been negative, —5 = 1 for x= 0 and —5 increases
monotonically with increasing x. The A term in
(3. 19) is then the dominant one at large x. Param-
etric gain increases with increasing x, as expected

As expected, if IS2 (0) I is set equal to zero the first
term vanishes and the large square brackets be-
comes e ~". Assume now that a~ is negative and

I (22 I » I (21I, so that by (3.16) and some of our later
assumptions, I (221» Re('0, 1}2)' ' IS2(0) I. Then 1f

IS2 (0) I x 0, even if it is quite small, the over-all
growth of the signal in a long enough crystal will be
predominantly as the first term in the large square
bracket. In other words, the signal will grow at a
rate determined by Inzl rather than n, . This was
first pointed out by Gulayev and Zil'berman, ' who
called it "superheterodyne amplification. " They
suggest that this effect has been observed experi-
mentally but this is not likely, at least not in the
experiments cited, ' because the condition (3. 16)
was not realized. Rather these experiments appear
to illustrate parametric amplification plus mixing
of many frequencies in the presence of linear gain
and absence of phase matching.

By somewhat similar considerations to those
above, Bloembergen" has shown for a weak-cou-
pling case in which, without the pump, there is loss
at both the signal and idler frequencies, but the loss
rate is very much greater for the idler, that it is
possible to obtain net gain for the signal even though
the idler is strongly attenuated.

E. Solution for Collinear Case, Arbitrary ia3 ( x

We consider now the solution of Eqs. (3.11) when
the approximation la3lx«1 is not made. To show
most simply what is involved, let us assume &k= 0
and (d, = v2. The solution that is then obtained for
u, may be written

8-+lx ((48-0'1011I22(0)Ix+~8'In(1122(0&lx) (3 19)Qg—

where
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because of the growth of the pump. Note, however,
that for n, & 0 the quantity that appears in the expo-
nent —5' IS3 (0) I is less than the local value of I SS I,
IS3(0)Ie '3". Correspondingly, for &23&0 the quan-
tity in the exponent,

s, (o

These features are easily understood to result from
the amplification taking place over a distance.
Again, if there were pump depletion due to the pa-
rametric process this would cut down the rate of
increase of parametric gain.

For the nondegenerate case the solutions do not
take as simple a form as (S.19). They can be writ-
ten in terms of half-integral Bessel functions. The

conclusions that linear pump loss (gain) progres-
sively decreases (increases) the rate of parametric
gain of the signal must still be valid, however.

F. Noncollinear Phase-Matched Case

To treat the noncollinear case we return to Eqs.
(3.9). Again, the calculations will be simplified by
neglecting pump depletion by the parametric pro-
cess and, initially, changes in the pump amplitude
due to linear gain or loss. When (2. 15a) is inserted
for E, ' and the appropriate modification of (2. 15a)
for 82&2), there result equations similar to (3.11),
with &k and a3x set equal to zero, and x and g, in
(3. 11a) replaced by x ' and 'g'„x and ))2 in (3. lib)
replaced by x" and pz. Without trapping we have

ie'p, &d (y2 —i&d2/&00) cos(e, + e2)+ (y, +i&d3/0)D) cose,
~i

4& cv~ r, r, r, 2 (3. 21)

e Nlx/2cos8~ e-ed/2co882 Ige~~+ge ~~1
1 L Jt

where

-3)t))ts IS (0) I

2 & &2
2 - 1/2

cos~g cos ~2 2 cosey 2 cos82

(3.22)

(3.23)
There is a similar solution for u2.

The effect of linear gain or loss of the pump is
quite similar here to what it was for the collinear
case. For ~, = ~2 the solution for arbitrary n,x is

-u)s/sos&)) (ge-O' IS) I I S3 &0) ls/oos81u)=e

vis( l I s3 &0) I / os81) (3 24)

where F is the function defined in (S. 20).

G. Some Energy Relations

It is of interest to compare the energy gained by
signal and idler. Clearly when n 0 0 the Manley-
Rome relations do not apply. " For simplicity we
shall consider the collinear case with &k=0, at
large enough mx so that only the e™terms need be
considered. For that case we obtain from (S. 14)

and g2 is as usual obtained from g', by interchanging
subscripts 1 and 2. Eliminating u2 from the coupled
equations, we get a differential equation for u, sim-
ilar to (3.13) except, of course, that derivatives
are taken with respect to x' or x" rather than x.
When x ' and x" are expressed in terms of x and y
(see Fig. 1), all but one of the terms in the result-
ing partial differential equation involve derivatives
of either x or y alone. The exception is
sin(8, —82) S u, /i)x&y This .term vanishes for the
degenerate case and is small otherwise since 8, and

~2 are small. We may therefore neglect this term
and readily solve the remaining equation by separa-
tion of variables. The result is'

and (3.14') the ratio of energy h at &02 to that at &d,:

()33»1) (3 25)
8(&d,) (u, V, IS3 (0) I

This is then the generalization of the Manley-Howe
relations for this case. If we set y = 0 and neglect
lattice losses, which are generally small, n= 0 and
(3.25) goes over to the usual relation"

8 (0)2)/8 (co,) -&d2/&d, (mx» 1, &20). (3. 26)

IV. GAIN RATES AND THRESHOLD FOR DON%CONVERSION

It is apparent from Sec. III that parametric am-
plification. or downconversion by the acoustoelectric
mechanism is a complex phenomenon in that there
are many variables upon which the ultimate gain or
loss of a signal depends. Of the materials param-
eters, once the material and orientation have been
specified the significant variables remaining are
&d, and the trapping parameters f0 and 3. Apart
from the material there are four important param-
eters —the pump and signal frequencies, the pump
power, and Eo. We shall examine the dependence
on all these parameters, providing some numerical
results for shear waves propagating in the basal
plane of CdS. Most of the plots will be for param-
eter values for which there are experimental data.
Detailed comparison with experiment will be car-
ried out in Sec. VI. Numerical values of various
quantities used in the calculations are listed in
Table I.

A. Variation of q with mj, y

Before discussing over-a11 gain or loss it is use-
ful to study the variation of g with the various pa-
rameters. Consider first the frequency dependence
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of gpz. In the simplest case, +3= 2&, = 2(d2 and no
trapping, qp2= jgj', where

e p,
3

4s'cvs, ys+(io, /|o, +td, /~o)'

~ ~

2 2. 2 1/2+ 4) i /4) o
'/ + {Q7~ /2(d ~ + 2(d g /&0 n )

A question of interest is for what value of pump fre-
quency is jgj a maximum. For y=0 this is readily
determined analytically. It is found that j g j peaks

t {d3=2 34~ma or ~i=1 17~m, whe
= (e,&un)'~s. The fact that ii) I peaks at a higher fre-
quency than u& „where I n, I has its maximum (for
y4 0), ' is due to the factor u&, /eo in the numerator.
For y40 the peak in jgj is changed little so long as
y «&u, /~&. This canbe seen in Fig. 4, where Iql
is plotted versus signal and pump frequencies for
some different y values and for &u, = 10 /sec, repre-
senting a typical photoconducting sample, and +,
= 10"/sec, representing a semiconducting sample.
It is only for the smaller values of e, and +3 that
there is a significant difference between the curves
for the different y's. .The rapid decrease of jg j as
the pump frequency falls below co„,will be seen to
have significant consequences for the frequency
changes that take place in domains.

The variation of jg j withy can be seen more
clearly in Fig. 5. Figure 5(a) is a case of a rela-
tively low signal frequency (42 MHz) for which
v&/u&n ——0. 05. Because of the proportionality of
I'l)I to (4y +u, /u&)', this results in very low val-

ues of I ii } in the range y «(&u, /con) for the case

without trapping, fs=l. ln Fig. 5(b) the dip aty=0
is much less pronounced because the signal fre-
quency is 495 MHz, for which u&, /ruD = 0. 6.

The above remarks are made concerning jg j for
the collinear case. For noncollinear cases the
waves were phase matched using {S.2) or {3.4) as
necessary. Since, as noted before, dispersion is
relatively small, the remarks made so far in this
section about j g j apply with little modification to
phase-matched subharmonic generation in the ab-
sence of trapping. They do not necessarily apply
to cases with trapping, however. When there is
trapping it is useful to consider two limiting cases.
In the high-frequency limit roe» 1, fs 1, fr 0.
In this limit jq' j values differ little from those of

TABLE I. Parameters for shear waves in basal plane of
CdS.

~/&0
e2/2mc

(c/p) ~

p
COD

Q)

0.218 c/m2~
9.35
0.018"
1.8x 105cm/sec b

250 cm2/v sec '
5 xl0~/sec "
6.22f '46 Np/cm (f in 6Hz)

~D. Berlincourt, H.
' Jaffe, and L. H. Shiozawa, Phys.

Hev. 129, 1009 (1963).
A. H. Hutson and D. L. %kite, J. Appl. Phys. 33, 1

(1962).
Somewhat higher values of p were used when warranted

for a particular sample.
Taken from. the data of T. B. Batemanand J. H. McFee,

J. Appl. Phys. 39, 4471 (1968).
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I'gl and the remarks made above about IgI are valid fr-0. In that limit we may write, for collinear
for Ig' I. In the limit &or «1, fs-fo, and again case,

ooefo (»')' +(fo ~i/&o)'
(V')' +(~./oog+fo ~i/~o)' (~')'+ (~./»i+fo 2~1/ooD)' j

with y'=1 fo -vo/v, here. As in the case without

trapping, for &y«co& this has a steep narrow mini-
mum, shifted however to 1 fo v-o/e, = 0. This is
shown. in Fig. 5(a) for o =10 'o, ~v=0. 0264. The
location of the minimum, since fo= 0. 05, is at vo
= 2 u, . From Eq. (3.7) it is found that, in general,
a,' goes through zero at the v& value for which lg' j

is a minimum. An example of this may be seen by
comparing Figs. 3 and 5(a), which are plotted for
the same values of the parameters. The minimum
of jg'j is smaller than that of jgj because of the
factors fo in the numerator of the former. These
factors in the numerator account for jg' j being less
than jgj over a good deal of the range of y shown.
For large Iv, I, however, the fo factors in the de-
nominator become predominant and j g' j is larger
than j g j, as seen in the plots. For intermediate
values of ~7 it is difficult to make any general
statements. In numerical calculations we found that
as (d7 increased from 0. 0264 the minimum in j g' j

moved from y = —1 toward 0, approaching very close
to zero for mv'~ 2. 64. At ~v'=0. 264, shown by the
dotted curve in Fig. 5(a), the movement was quite
significant. The peak values of jg' j were always
less than those of j gI.

In Fig. 5(b), where the pump frequency is close
to 1 0Hz, and the other parameters the same as in
5(a) except for o, the minimum in I

g' I, as well as
that in j g j, is much shallower because of the larger
&o, /a&& value. Since &ov'«1, the minimum of I rP I

occurs at y = —l. Interestingly, at this frequency
for the 7 value shown (thus, in general, for the
&oo «1 limit) the peak of I rP, I is actually higher than
that of jgj. This was not the case for larger values
of ~7' for which calculations were done at this signal
frequency.

The next question one could ask about j g,g3 j is
how its value changes when e, and cu3 are allowed
to vary separately with (d3 fixed. This is a more
difficult situation to get general results for analyt-
ically but some may be obtained nevertheless.
It is found that, for a wide range of pump frequen-
cies and y's, the highest value of lg, g2 j occurs at
the subharmonic. This is easily verified for y =0
and +3«(d, . In that case the effect of diffusion is
negligible and the terms oo&/&oD in the denominator
may be dropped. The resulting Re(g,go)~ co,~o,
which has a maximum for , = +3. In the opposite
limit, when all three frequencies are much greater
than +m„ the terms &u, /u&& in the denominator may

be dropped. With y = 0 one then obtains Re(7}p'o)
oL' (M1M2) ' This has a minimum at 4), = (uo. Analyt-
ically it is found that, for y = O„Re(g,'go) peaks at
the subharmonic for +3& 6+ „elsewhere for +3
& 6~, . In the latter case the deleterious effect of
diffusion is apparently lessened if one of the fre-
quencies is lower than —,'~, and the other higher.
For yW 0 it is to be expected that the subharmonic
will be favored to even higher pump frequencies and
numerical calculations confirm this. Since in prac-
tice it has been rare to have a pump frequency much
higher than w „the rate of gain has generally been
greatest at the subharmonic.

%hen trapping is included it becomes much more
difficult to make any general statements about fre-
quency dependence. Numerical calculations show
that Re(ringo*) peaks very frequently at the subhar-
monic. However, for some fo and o' values
Re(q~po ) peaks off the subharmonic at frequencies
where both Re('6, 'go) for fo= 1 and Re(qpo ) for some
other values of fo and o have their maxima at the
subharmonic.
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FIG. 5. ) gt or ) g~) vs y for {a) ~&=2~x42x10~/sec,
&oo=sx10o/sec; (b} &g~

——2ox498xloo/sec, Mo=l. 68xloo/
sec, and trapping parameters as indicated.

B. Rates of Growth-Phase Matched

%e consider now rates of growth or loss of a sig-
nal, with the restriction of negligible pump deple-
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tion, first for phase-matched conditions. In Fig. 6
are shown the sum of linear and parametric gains
for some cases of subharmonic generation without
trapping. The solid lines are plots of q —a/cos8
where, by the definition in (3. 23), q= ~g ~ ~S,(0)~
/cos8. 8, the phase-matching angle, is typically
3' to 6' for these plots. For a pump strain of
2x10 the effect of the pump is almost negligible
and the curve is essentially o vs y. Since lattice
loss is small at 42 MHz, this curve is little differ-
ent from n, vs y, as can be seen by comparing it
with the curve of Fig. 3 plotted for the same param-
eters. For 2x10 ' the parametric gain is no longer
negligible, as is evidenced by the asymmetry of the
curve. With an increase in strain to 10 the ex-
ponent is positive everywhere except for a small
region near y = 5. It should be noted that the strain
of 10 4 has been included for illustrative purposes
only; the theory is not expected to be valid for such
high strains with ~, = 5x 10'/sec.

Qualitatively similar behavior can be seen in Fig.
7 for the phase-matched case with trapping, except
that the gain goes through zero at y = -1. This,
of course, was to be expected since

t
q'~ and n, ,

as shown in Figs. 5(a) and 3, respectively, are both
small around y= —1. As a result of this, and also
the somewhat different shapes of n and g with trap-
ping present, the peak gain occurs for v„= 5v, ,
whereas without trapping, it occurs at v„= 2. 5v, .
(As usual, these statements will only be true if
large amplitude effects can be neglected at the v„'s
concerned. ) The magnitude of the peak gain is also
considerably smaller for the case with trapping.
Although no experiments involving parametric am-
plification of bulk acoustic waves in samples with

15 I I I I I I I I I I I-5-4-3-2 -I 0 I 2 3 4 5 6 7
Y

FIG. 6. Net gain vs y for 42™Hzshear waves pumped
at 84 MHz, under phase-matched or collinear conditions,
with the strains indicated. &~=5 &10 /sec and no trapping
was assumed.
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FIG. V. Same as Fig. 6 except for the incorporation
of trapping, withfp=0 5 V=1 x10 sec.

traps have been reported, there have been such ex-
periments with surface waves. The pump fre-
quency in these experiments was 84 MHz, the sig-
nal frequency 42 MHz, and &u, was 5x108/sec, the
same values as have been used in our calculations.
Detailed results need not be the same for surface
waves as for bulk waves, of course, but it is rea-
sonable to expect similar trends. It was generally
found with the surface waves'9 that total gain, i. e. ,
including parametric) was quite small until drift
velocities as high as 2v, were attained, whereas for
bulk experiments where trapping was not present
smaller v„'s sufficed. The gains were also much
smaller' than predicted theoretically by a calcula-
tion for surface wave parametric amplification
not including trapping. In the light of the results
we have just presented, the discrepancy between
theory and experiment could be at least partly due
to the presence of trapping.

At a pump frequency of 1 GHz and signal frequency
of 0. 5 GHz, with somewhat larger ~, , the gains
are generally larger, as shown in Fig. 8. The be-
havior for the phase-matched case at the lower
strain values is quite similar to what it was for the
lower pump frequency. As in that case, at 2x 10
there is little parametric amplification. At the
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FIG. 8. Net gain vs y for 495-MHz shear waves
pumped at 990 MHz, under phase-matched or collinear
conditions, with the strains indicated. ~~=1.68 x10 /
sec and no trapping was assumed.

highest strain, however, where the parametric
gain is the. predominant one, the deep minimum at
y = 0 is replaced by a shallow minimum at y = 0. 2.

C. Rates of Growth —Co11inear

this strain, in the collinear case, is simply -n,
as it is also for smaller strains. At 1x10, how-
ever, jg j jS,(0)j is so much larger than —,

' dk,
except at y =0 where

j g j has its minimum, that
the lack of phase matching has little effect on the
gain. With trapping present, as shown in Fig. 7,
the same trends are observed although the details
are different. There are no longer any "windows"
at 2x10 and the curves for 2xl0'and 2x10 '
are coincident everywhere, both representing -n
vs y.

For the higher pump frequency, shown in Fig. 8,
lack of phase matching affects the gain rather dif-
ferently. For large jy j values its effect is quite
small. Even for a strain as small as 2x10 ', where
for the 84-MHz pump there was no parametric con-
tribution for the collinear case at large jy j

's, here
there is very little difference between the phase-
matched and collinear cases. The difference stems
from the larger jg j

's for the higher pump frequency,
since the b, k's for the two frequenc'ies are com-
parable at large jy j. At small jy j's, however,
the very large hk for the 1-GHz pump results in
the phase-matched case being strongly favored.
For a strain of 2x10 ' in the range -1& y ~ 1 the
pump makes no contribution to collinear gain, while

(a)

To understand the way in which rates of growth
for the collinear case differ from those for the
phase-matched case, we must first consider the
variation of L& with the relevant parameters. For
the degenerate case (~, = &u, ) it is readily shown that

——k3(V3 51)/Vl
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Plots of bA vs y for some of the cases we have
been discussing are shown in Figs. 9(a) and 9(b). It
is noted that I Ak l is a minimum at y= 0 for an 84-
MHz pump (without trapping) and a maximum at this
y for a 1-GHz pump. Both of these facts are seen
to be consistent with the variations of phase velocity
shown in Figs. 2(a) and 2(b). The large bk for
small y at 1 GHz results from the large k, .

To simplify comparison of gains for the collinear
case with those for the phase-matched case, the
former were plotted also in Figs. 6-8. For all
three cases plotted it is easily deduced from Figs.
5 and 9 that for the smallest strain, 2x10
jg j jS,(0)j &-,' M and the presence of the pump
makes no contribution to growth when the waves
are all collinear. For the 84-MHz pump at 2x10 ',
shown in the dotted line in Fig. 6, only for small
regions around y = + 0. 5 (near where

j q j peaks)
does the presence of the pump result in a small
real positive contribution to the exponent. Apart
from these two small "windows, " the exponent for
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FIG. g. (a) LQ, vs y for an 84-MHz pump, collinear
42-MHz signal and idler, with (dashed line) and without
(solid line) trapping. (go=5 x10 /sec. (b) chk vs y for a
990-MHz signal and idler, with (da =1.68&&109/sec and
no trapping assumed.



MIXING OF ACOUSTIC %AVES IN. . .

IO-8

IO

IO lo»
fo

mm r'r fO
~0 ~ ~411 fo

AVE

~e

O- io g f3 = 84 MHz, co& = 5.x IQaQ.5, g = IO
a l, fsa99OMHz, sec=i.68 x lo

the highest pump frequency the minimum threshold
strain is well away from the subharmonic. This
occurs because

l q l
does not peak at the subharmon-

1c, the angular fx'equency of the pun1p be1ng gl eatex'
than 6(d, for this case. For the cases shown in
Fig. 11, st„varies slowly with frequency. One
mould therefore expect a wide band of frequencies
to be amplified. This is commonly observed, al-
though not invariably the case.

V, UPCON VERSION

A. Nondegenerate Case
IO -2 .2 3 4 5 6 7 8

y

FIG. 10. Square of threshold strain for net ainplNca-
tion of the subharmonic vs y for the cases shown. Phase
matching was assumed.

its contribution to phase-matched gain is considex-
able. Even for a strain of 6@10s the pump makes
no contribution in the range -0. 1 ~ y ~ 0. 1, and the
collinear gain is mell below the phase matched untQ

D. Threshold Pump Strains

The plots of Figs. 6-8 give a little information
on the pump strain requix'ed to make parametric
gain overcome lattice and linear electronic losses.
In this section me examine more systematically
hom the threshold pump strain required for net gain
varies with some of the paxameters. In Fig. 10
there is plotted the squaxe of threshold strain, s,„,
vs y for net amplification of the subharmonic, under
phase-matched conditions, by pumps of 84 and 990
MHz. The decrease in threshold with decreasing
y, which has been observed experimentally, a' is,
of course, due to the decxease in e, , It is note-
morthy that threshold strains are not much different
for 84 MHz without trapping and 990 MHz. The
larger parametric gains possible mith the higher
pump frequency are essentially offset by larger
losses, mainly electronic in origin. The flattening
in the threshold strain obsexved for the 84-MHz
cases ~ust before s,„drops to zero is du, e to the
dip in ~l or l~'I, r«pectively, ~ound l~l =O.
The thresholds for other values of &ov, but fo still
0. 5 and fs still 84 MHz, usually lie between the
dashed and solid curves. For some cases, how-
ever, notably for v = 10" and 10, at large y 's the
threshold strains are found to lie below the solid
curve This is .the result oi lg'

l
being greater

than
l q l

at large y 's [ see Fig, 5(a)].
Finally, in Fig. 11 me show the variation of

threshold strain with signal frequency for various
pump frequencies and y's. For the lower tmo pump
frequencies s,„ is a minimum at the subharmonic,
corresponding to

l g lbeing a maximum there. At
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fox' various pump
frequencies and V values. u&~=10 Djsee and phase
matching was assumed for all cases.

II1 this sect1on we considex the case 1n mh1ch thexe
are initially two maves, with frequencies ~, and ~
and wave vectors k& and ka, respectively, which
combine to form a thixd wave with frequency u3= v,

Because of conservation of crystal momentum,
the wave generated in this may will have wave vec-
tor k1+k~, the direction of which wiD be taken as
the x axis. It will be assumed in this section that
the wave vector ks of a freely propagating wave
with frequency (d3 is not equal to k, +k2. Also, the
dc fiejd Eo will be taken in a direction other than
x, such that it makes an angle 8 with the mave
vector k .

By the use of Eq. (2. IS) we find that the second-



order field E~&31 is given by the expression of (2. 15b)
multiplied by e "~ '", where hk=ks-k~-k, and
is parallel to x. Also we have

The set of Eqs. (3. Q) is still valid for this case.
If we limit ourselves to small enough x so that the
amplitude at ~3 is still small, we may, in this case,
neglect the terms involving 8&121 and Pz'~I . Equa-
tions (3.Qa) and (3. Qb) are then decoupled from
each other and from (3.Qc) and have simple ex-
ponential solutions &&& =M, (0)e '&"'""& Equations
(3.Qc) may then be written

(5. 1)

„(yI+i~/&d~ ) cose, + (y, +i~/(o~) cosa,
FqFqI'3

pression for the propagating wave, «3 = &&3 exp[i(k@
—~t)]. With (5.4) this becomes

~ 31(0)3a(0)
03 —(o!I+&Ig+ In k)

[ -&11 + am} 8&& III+ glx-~3&& 8-+3& 8&&&is»- ~$&&1

(5. 5}

„here ~,' =~,/coseI Rn«,' -=~,/cose2. Th«i»t
of the bvo tex'ms in the square brackets represents
the "forced" wave, with attenuation (or gain) the

combined attenuation (or gain) of &&I Rnd &&~, where-
as the second represents the free wave with the
attenuation (or gain) characteristic of a&~. The
sltuRtion ls entirely sixQi)Rx' to thRt coDsidered by
Mauro and Wang~a for collinear waves, and (5.5)
reduces to their expression when 8, = 83= &, = &3=0.
[Also their factor (k, + kz)/ks must be replaced by
unity, Rs we 11Rve done 8Rrl181'. ] As polIlted Gilt

by them and discussed in Sec. III for the downcon-

version case, if the o.,'s are nonvanishing the lack
of phase matching wiB superimpose a ripple on an

exponentiRHy varying amplitude. For small ex
the ripple will be quite large, of course.

A =(d&;/ Cose iI)+(n, /cose, )+in, k . (5. 3)

The differential equation (5. 1) is easily solved.
With the boundary condition &&,(0) = 0 the solution is

~31(0)&2(0) [a3-K

It is more informative to look at the complete ex-

8. Second-Harmonic Generation

Since we shaB be dealing extensively in Sec. VI
with both second-harmonic generation and subhar-.
IQonlc geD81Rtlon lt ls coDvenlent to introduce. the
abbreviations SecHG and SubHG, respectively.
For SecHG R treatment slxQ11Rr to that of the px'6-

ceding section, a' with some additional manipulation,
leads to

I s,„~= G(2~)
~
s„(O)

~

'[(e-"-"-8- 3-")'cos'(l nk~)+ (e """+e """)'»n'(-.»x)l'", (5. 6)

whex'e

G(2~) =
~

&
~
k,„/2[(&I,„-2o.„)'+(a k}']'". (5.7)

Expression (5. 6) is valid within the linear, or
small bunching, regime. At large amplitudes there
is of course an additional. contribution to SecHG
from the distortion of the wave resulting from the
inability of the bunching to follow. 34 The presence
of trapping also affects SecHG but that will, not
be discussed here.

The coefficient G(2&) is of primary importance
in determining how the efficiency of SecHG varies
with frequency, y, &u„etc. Although G(2&d) is a
more complicated function than

~
If(, for y=0 it is

possible to make 'some simple RDRlytic deductions
if the lattice losses are neglected. This is a good
approximation in most of the range of our interest
since they are generally small compared to & k or
&I, or both. It is found thatfor y, = 0, G(2&d) peaks

For shear waves in the basal plane of Cd8 the quan-

tity efI/685 is Q xl0 If, 1S seell f loni (5 6) fhRf.

G decreases monotonically with increasing &„or
mol 6 precisely with lDcl 6RsiDg so. Fox" f 40 it cRD

be deduced from (5.7) and (5. 2} that there will be
Uttle change in G(2&) when (&d~/~~~)» y2. These
features can be seen in the plots of G(2(u) vs &V

shown in Fig. 12. For each +, the maximum in

G(2&) does indeed occur at &, for y=0, as pre-
dicted. For the larger &„where &,/&II&I, the

peRk vRlue ls the SRme for p= -1 Rs fox' p= O. Fox'

small &'/aPII the y dependence comes mainly from
the factor (y ~+ aP/a&~II)I~~ in the numerator of IM [.
Thus for smaB & the curves for y= -1 lie above

those for y= O. In the various features just de-
scribed G(2&) is quite similar to tff( for the same
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Io:

to eliminate p, from (5. Qb) so that the equation
may be integrated. For the boundary condition we
have chosen, the resulting solution is

I&.- I
= I&-(0)ItanhI2~, ~.ls. (0)I.l, (5. »a)

I&.l= I&.«) lsech&2~of ls„(o) l~~ (5»b)

It is readily seen that, for small x, (5. 11a) goes
over to the result obtained from (5.6) for small x
when 4 k and the e's are set equal to zero.

to

I

toe Io" io4 lo4 Io'4
cu (see )

~ ~

Io"

FIG. 12. G(2~), defined by Eq. (5.7), vs (d for dif-
ferent values of &~ and y, for shear waves in the basal
plane of Cds.

Q2(Q « ~ y2 Jh2
(5. 9a)

= 4$ ~0 k~ Q~Q2~)6fX
(5.9b)

where Ma=i( 2~)
I „~0,

—a real quantity. Assume
now thRt Qe = pey Q2~ = tp2~~ where the-p s Rre real.
For the boundary condition at x= 0 that p2„= 0 and
p„=p„(0), conservation of energy requires that

p = p (0)-4$ (5. 10)

When the u's are replaced by p's in Eqs. (5.9),
the condition (5. 10) may be used to eliminate p„
from (5.9a), making integration of that equation
straightforward. Similarly, (5. 10) may be used

~,'s and y's (compare Fig. 12 with Fig. 4). The
major difference is that 6 falls off much less rap-
idly with frequency on the low-frequency side.
(The fact that G falls off more rapidly for high fre-
quencies than it does for low ones is due to the
steep increase with & of lattice loss. ) The less
rapid variation at lorn frequencies is due to the
presence of the factor in the denominator of 6 in-
volving 4 k. The factor 2I~Ik,„ is very similar
to

I gl and, like
I gl, peaks around &o . However,

~ k also peaks around + „with the consequence.
that the steepness of growth of G(2&v) is cut down
as grows toward , .

Before leaving this section, we note that for
SecHG a: complete solution of the Eqs. (2.9) is
available, i. e. , a solution whose validity is not
limited to the region of small, depletion of the fun-
damental. , for the case @=0, &@=0and lattice
loss is small enough to be neglected. For this
case the coupled equations may be written

VI. COMPARISON VGTH EXPERIMENT

There are considerable data, to which the fore-
going theory may be applied, qualitatively at least.
The most clearcut are those in which a pump was
introduced from outside and the resulting amplifi-
cation studied. We shaH discuss these in Sec. VI
A. In other experiments SubHG was observed even
though a pump was not introduced from the outside.
Data on moving domains, obtained by many workers,
indicate that a great deal of mixing, both domncon-
version and upconversion, is taking place there.
We sha11 discuss these phenomena in Sec. VI B.

A. Parametric Experiments

The first clear evidence for parametric amplifi-
cation through acoustoelectric coupling of different
acoustic waves was obtained for bulk shear waves
propagating in the basal plane of Cd8. A pump of
1 6Hz was shomn to amplify acoustic thermal
noise of 0. 5 GHz. ' This mork demonstrated also
net gains for v~ & v„ the threshold pump strain re-
quired for net gain increasing with decreasing v~,
in agreement with the trend shown in Fig. 10.
Further experiments demonstrating parametric
amplification due to this mechanism, in which a
pump and in some cases also a signal mere intro-
duced from outside, are discussed in Befs. 18, 2'7,
and 28. The data most susceptible to quantitative
treatment are presented in Fig. 13. They were
tRken on shear waves in the bRSRl plRne of R Cd8
sample with p= 715 ~ cm, corresponding to
= 1.66 &&10'/sec. It will be recognized that. extensive
numerical results mere presented for this case in
Sec. IV.

Before going into a detailed discussion of data
in Fig. 13 it is worthwhile to review some of the
relevant experimental details. The pump power
was introduced into the sample at x= 029 and ampli-
fied by a dc field of magnitude such that -0.2 —y—-0.1. At these y values the noise background
and acoustoelectric current mere still very small.
It is reasonable therefore to assume a uniform
field Eo, apart from 10-20% var'iations due to sam-
ple inhomogeneity. Without the pump on, no power
was detected at the subharmonic frequency (nor
any other) anywhere in the sample. This is par-
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FIG. 13. Power at the pump frequency, p&, and at
the subharmonic, P~&&2, vs distance for a phase-matched
ease in CdS with ~ =1.68x 10'/sec (taken from Zemon
and Zucker, Ref. 28).

ticularly significant since the frequency of maximum
gain, ~ /2v, is 0.46 0Hz, very close to the sub-
harmonic. The gain value for the pump stated in
the figure, 6 dB/mm, corresponding to 6. 9Np/cm,
is derived. from the first two measured points.
With the yap on, the subharmonic first became
visible (by Brillouin scattering) at about 2. 5 mm.
The subharmonic was not the only frequency seen.
A wide band of frequencies was amplified. The
amplitudes were greatest in the neighborhood of the
subharmonic, in agreement with the foregoing
theory. The intensity of the subharmonic was ob-
served to increase exponentially at a rate of 22 dB/
mm, corresponding to 25. 4 Np/cm, between about
2. 5 and 2. 8 mm. Between. 2. 8 and 3 mm the in-
crease is less steep, presumably because the pump
intensity has gotten much smaller. Beyond 3 mm
the decrease in —,'f~ is probably due to the generation
of &f&. This surmise could not be verified experi-
mentally, however, due to the difficulties in detect-
ing such a low frequency. '9 The maximum pump
strain, at 2 mm, was estimated to be 1 &10 6."
This value was calculated o from the measured
amount of light scattered by the pump and an ap-
proximate value for the photoelastic constant p44.

3'

The pump and each of the signals within the ampli-
fied band were found experimentan. y to propagate
at the angles required for phase matching according
to linear theory. This latter fact, as well as the
estimate of the pump strain, indicates that the
strains are small enough so that the principal ap-
proximations made in the development of Secs. II,
III, and V should be good.

Since both linear and parametric gain are pres-
ent, the first task of theory is to separate the two.
To do this we assume that the pump loss due to
parametric amplification is negligible for x& 1 mm.

There is lattice loss, however, of 6. 1Np/cm, ac-
cording to Table I, giving a linear electronic gain
for the pump of 13 Np/cm. With the use of Eq.
(3.6) (and neglect of trapping, usually unimportant
at these frequencies) and the parameters of Table
I, this leads to y= -0. 18. Since acoustoelectric
current was still, negligible in the presence of the
strong pump, we assume this y value is valid also
where the signal is being strongly amplified. Cor-
recting the observed net gain of the signal for lat-
tice loss, 2. 2 Np/cm, we filld tlla't tile sllnl of lllleal'
and parametric gain for the signal is 27.6 Np/cm.
For y=-0. 18 the linear gain at this frequency is
21.4 Np/cm, leaving only 6. 2 Np/cm of parametric
origin.

Having separated out the parametric gain, and
noted that the growth varies exponentially with
distance, we are now able to carry out a comparison
with the theory of Sec. III. Since subharmonic and
pump were phase matched, if the pump intensity
had been constant, by Eq. (3. 23), 6. 2= [11 l lS~l /
cos8. %1th 0=6 for this case, we may take cos8
=I and use Ill instead of ill'I. For y=-0. 16, as
can be seen from Fig. 5(b) where the parameters
match those of the experiment, lail =1.45&10',
this value riot being particularly sensitive to y.
T»s leads to

I Ssl =4 3 &&10 ', which must represent
some kind of average since the pump strain is not
actually constant. This strain is well above the
estimate of 1 &10 cited earlier for the maximum
pump strain. That the strain value had to be well
above 1 &10 6 could have been deduced immediately
from Fig. 8. For a strain of 2&106 there is, for
small y, almost no difference between the solid
line representing total phase-matched gain and the
dotted line representing -n, —e,. One might be
tempted to argue that the strain was actually only
1 &10 and the observed gain, after correction
for lattice loss, is simply the linear gain -e,.
A higher value of -n, could easily be accounted
for by assuming a slightly larger -y in this region.
Fortunately, there is another type of argument for
the larger strain value that is independent of the
magnitude of y. Let l denote the distance through
which parametric amplif ication takes place. For
large enough l and constant pump strain the ratio
of the subharmonic intensity with the pump present
to that without a pump is (e'"' '~3") . If we take the
intensity of ,' f~ at x= I in the p—resence of the pump
to be 50 in arbitrary units, then for 2f~ to have—
been experimentally unobservable at the same E

without a pump it must have been 1 or less in the
same units. '9 Thus eal'}li 3)r & 50 ~ith )=3 mm
th'»eads "o

I 1}l ISSI '6 5 'n ""e range -I y-o
l

11 l
varies from 2. 1 & 108 to 1.3 &106, the former

being its maximum value, as shown in Fig. 5(b).
For y close to zero, the minimum value of

l S, l
is

close to 5&10 6 by this argument. Even for the



MIXING QF ACOUSTIC %AVES IN. . .

peak value of
~ q~, 2. 1&10', ~S, I

wouM be g~~ater
than 3 &10 6.

Thus it appears that the theory can account, at
least qualitatively, for some of the principal ex-
perimental observations provided the average strain
is -4&10~ or perhaps a little larger. The discrep-
ancy between this and the maximum value of 1 &10
deduced from the scattered light is likely to be due
to P44. The value used, 0. 054, was taken from
Dixon. " He lists this value as approximate but
does not say how larg. e the error might be. How-
ever, Maloney and Carleton, sa who also made mea-
surements of photoelastic constants, claim that
P44 for CdS is too small to measure.

Parametric theory can also account for the
variation with distance of the pump intensity. As
shown in Fig. 13, at positions well before those
for which ~f~ is visible there is a considerable
flattening of P&, i.e. , it falls considerably below
an expontenial increase. It has been suggested
that this flattening represents a decrease in —ot,
due to a large bunching, produced presumably by
large pump amplitude. This type of nonlinearity
has been discussed by many workers. '3 3~ The
suggestion is not plausibl, however, because the
large amplitude nonlinearity requires strains much
larger than 5&10, i.e. , much larger than would
be consistent with the experimental data. At 5
&&10 the maximum fraction of the carriers that
would be bunched for the sample and frequency we
are discussing is about 0. 1, according to linear
theory. Even at 1 &10 it would only be - 0. 2.
It should be remembered also that the phase-match-
ing angles were in good agreement with linear
theory, indicating that the strain was still small
enough for the dispersion to follow linear theory.

%e can show that the flattening is reasonably
attributed to energy loss in parametric amplifica-
tion. Although for x & 2. 5 mm the amplified fre-
quencies are still too small for any one (more
exactly, any small range) to be visible by Brillouin
scattering, they occupy a sufficiently wide band
so that they represent considerable energy. At
the 3-mm position, where 2f~ has its maximum
amplitude, the half-width of the band is 200 MHz,
as shown in Fig. 5 of Ref. 28. At smaller values
of x, where there has been less gain, the half-
width must be still larger. %'e can use this band-
width to make a crude estimate of the total power
in the amplified noise at 2. 5 mm where ~ f~ is first
visible. The experimental resolution is such 8

that each point represents the intensity in a fre-
quency range of 50 MHz. (Note that for two fre-
quencies differing by 50 MHz the angles at which
phase matching occurs differ by less than 1', the
angular resolution of the apparatus. ) Thus crudely,
with R bandwidth of 4~50 MHz the energy repre-
sented in the noise will be about four times the value

shown in Fig. 13 for &f~. Since the bandwidth of
the pump is less than 1 MHz, probably about 0. 1
MHz, and its angular spread is less than 1 ', each
experimental point for the pump gives the entire
pump intensity. Thus at 2. 5 mm, where P&

=6P& ~& from Fig. 13, the total intensity in the
noise is about ~ of the pump intensity. %'e conclude
that even at the point where ,f~ i—sfirst visible it
is reasonable to expect that the pump has already
lost a good deal of energy in downconversion.
Obviously, this process must have begun before
the point where ~f~ became visible to the Brillouin
scattering. At small x, where the noise amplitude
is small, the energy loss is small and the pump
growth does not fall far below the exponential.
%'hen the amplitudes become la.rge the rate of pump
depletion increases until the pump amplitude actu-
ally decreases despite the continued existence of
linear gain. To make these ideas more quantitative
we have calculated the growth at each signal fre-
quency, starting from the thermal equilibrium value
at x = 0 and assuming all waves collinear and phase
matched. Pump depletion was neglected for this
part of the calculation and Eq. (3. 14) was used for
each frequency with ~% = 0. The rate of change
with x of the sum of signal and pump energy~i@
equal to the rate at which energy is gained due to
linear amplification. %'ith total signal energy
known as a, function of x from the previous calcula-
tion, this condition leads to a linear differential
equation that is easily solved to give pump energy
vs distance. The shape of the resulting curve
was quite similar to that shown in Fig. 13. Indeed,
when a pump strain of 4~10 6 was used in calculating
the downconverted energy the rapid decrease in
pump intensity was found to occur at about 3 mm,
as shown experimentally.

An important implication of the foregoing discus-
sion is that the theories dealing with large amplitude
effects of a single wave may be quite limited in
their applicability. Under conditions where the rate
of loss in parametric amplification and upconversion
becomes comparable to the gain rate, the amplitude
of the wave may not grow large enough fox the pre-
dicted effects to be important, ' As a corollary,
the observation of "saturation of the linear gain"
at large strain amplitudes in CdS by many' workers
is likely to have been at least partly due to energy
losses in mixing with the noise. This situation
should be further investigated, preferably by
Brillouin scattering.

Although experiments in which a pump was intro-
duced from the outside have not, to our knowledge,
been reported for GaAs, there is considerable
evi.dence for subHG by the acoustoelectric mecha-
nism in that material. That first such evidence, and
.the only part not involving acoustic domains, was
obtained by the observation of current noise under
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strong amplification as a function of time. 0 The
noise showed several wide peaks, one at f „others
at —,'f, and ,'f,—. As time progressed, the latter
two peaks grew while the former did not.

B. Domains

When traveling acoustic domains were first
studied by Brillouin scattering, it was observed
that the frequency at which the intensity is a maxi-
mum, f „and that at which the net gain is a
maximum decrease as the acoustic intensity in-
creases. The decrease may be by as much as an
order of magnitude. The first observations of this
effect were made on CdS. ' They were verified by
a good deal of later work, both on CdS and GaAs.
Following the evolution of various different fre-
quencies as domain moves, both during and after
application of the voltage, many workers have ob-
tained detailed information establishing that down-
conversion by parametric amplification and up-
conversion are both going on. Before going into
the discussion of a full-blown domain in semicon-
ducting material, we shall find it profitable to do
some further calculations for the experimental
situation discussed extensively in Sec. V.

1. Low-F lux Domain

In the experiments discussed in See. VI A, the
pump was applied only briefly, for an interval of
0. 5 p. sec. What propagated then .was a narrow
pulse of relatively high-intensity flux, which of
course constitutes a domain. Compared to the
usual mature domain, however, it could be called
a low-flux domain. It is a simpler one to study
than the usual one since, as we saw, the frequency
spectrum was limited, the acoustic intensities re-
mained reasonably within the realm of linear
theory, and the acoustoelectric current was small
enough so that v„= p, Eo. &The experiments were,
in fact, intended to set up a domain that would be
simpler to study. )

Consider the parametric amplification that would
be caused by —,

'
f», 495 MHz, acting as a pump for its

subharmonic. We find Iq I for this case to be smal-
ler by a factor of 1. 7 than the value calculated
earlier for 990 MHz pumping its subharmonic. In

addition, ,' f» is a less coher—ent pump than f» was.
Nevertheless, since the magnitude of ,f» gets some-—
what larger than that of f», as shown in Fig. 13, it
is reasonable that »f» will generate ,' f». As noted—
earlier, this could not be verified in these experi-
ments. However, generation of ,'f» from ,' f» was-—
seen in a similar sample, for the same pump, when

application of a somewhat greater voltage led to
generation of 4f~ closer to the center of the sample,
a more convenient position for viewing it. Thus,
the original' f, would almost certainly have been
downshifted by a factor of 4. The downshifting

would not, however, continue indefinitely. First,
4f» will not grow as large as ,' f» a—t its peak because
the linear gain at this frequency is smaller, down
to about 14 Np/cm. Then, Irl I for generating 8f»
from —,'f» is down by almost a factor of 4 from that
for generating ,' f» fro—m ,' f». I—n addition, ,' f» wi—ll

be still less coherent than ,' f». —Thus the generation
of ,'f » fro—m 4 f» will be considerably less than that
of ,' f» from——,'

f». Finally, at —,'f» further subHG
should be negligible because of a combination of
still smaller I a, I and Ig I, the latter being reduced
by a further factor of 7 (thus down by a factor of
42 from lrl I, for the 990-MHz pump) and still less
coherence.

Consider now the situation for SecHG and upcon-
version for this simple domain. Because lattice
loss grows rapidly with frequency, under the con-
ditions of the experiment n, &

I a, I for both the sec-
ond harmonic of f», 1980 MHz, and the sum f»
+ ,'f», 1485 M-Hz. As a consequence only the forced
wave is found at large x. According to (5. 6) then,
the coefficient of G(2&v») at large x is

The quantity —,
'

I e I k2„ is 9&& 10'/cm and c,k is
—148 cm much larger than n2„—2n„. Thus, even
if the maximum value of I S„(x)I were 10 ', the
intensity at 2f» would be insufficient to be seen. The
situation is somewhat more favorable for observing
the sum of pump and subharmonic frequencies since
l&lk3 /2 2~10 and, although ~k is somewhat
larger than for SecHG, it is not a great deal so.
It is difficult to estimate the maximum value of the
product of the strains at f» and ', f». It should be-
less than 10, however, which would not be
enough to make the sum frequency visible. These
results are consistent with the experimental results.
Neither 2f» nor f»+ ,' f» was seen until th-e applied
voltage was increased, increasing the gain and
therefore the strain amplitudes. Not surprisingly,
in view of the above discussion, when the voltage
was increased, f»+ ,' f» appeared before 2f-».

'
Consider now the situation for upconversion from

—,
'
f» and lower frequencies. We find that G(2&v) does

not change much with frequency in the range f» ,'f». --
It increases somewhat as the frequency is lowered
from f» to ,' f», where it peaks sinc—e, as noted
earlier, —,

'
f» happens to be close to f,. At ,f»it-

is within 10/o of its value at f». Thus, if the applied
voltage had been increased sufficiently to see SecHG
at f», one would expect to see it for fundamental at
2'f», ,'f», Sf», and still —lower frequencies, for-
getting about possible experimental difficulties.
This is in constrast to the situation with subHG.

2. Applicability of Second Order Theory-
The usual full-blown domain differs from the

simple one we have just been studying in two im-
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portant mays. There is no coherent large amplitude
pump and the voltage is not kept low. When the high
voltage is applied there is' high gain in the resulting
high-field regions. For simplicity let us assume
that there is one such near the cathode, a frequent
occurrence in CdS samples. In this region many
different modes, originating in the noise, grom
rapidly in amplitude. After some distance of travel,
short enough so that amplitudes are still in the
linear range, it is expected that the enexgy be spread
out ovex' a wide range of fx'equencles and some
range of propagation directions. As the waves
(which by now may be considered to constitute a
domain) progress and amplitudes continue to grow,
the point will be reached at mhich appreciable mix-
ing can occur. To discuss the mixing, me may con-
sider that the waves in a small range of frequencies
af around an arbitrarily chosen frequency fo, with
a small range of propagation angles, act as a single
coherent wave with frequency fo. The range hf
must be taken small enough so that the coherence
distance (which may be defined arbitrarily as the
distance in which the phase difference between fo
+ & &f and fo —2 bf becomes 2 m) is of the order of
a millimeter. This i.s necessary for obtaining ob-
servable effects on the scale me have been discus-
sing. For shear waves in CdS af = 0. 5 MHE. This
is somewhat larger than the upper limit for the band-
width estimated for the 1-GHz pump we discussed
earlier. It is to be expected that these partially
coherent maves participate in all of the mixing
processes that have been discussed earlier.

It is interesting to compare the mixing in the
situation me have been discussing, mhieh might be
called the random case, with that in the situation
discussed earlier in which there is only one coher-
ent large-amplitude wave, produced by introduction
of a coherent pump from outside. With the intensity
of the one wave comparable to that of the la,rgest
waves in the random case, it mould be reasonable
to expect a lot more mixing in the latter case.
Primarily this would be so because there are so
many more large coherent waves in the latter case.
In addition, interaction of different waves is also
furthered by the randomness in direction of the
large-amplitude waves, whichmould cause them to
overlap more different waves. One can go further
and show that the rate of energy loss due to mixing
should be larger for a coherent wave in the random
case than for the single coherent wave in the other
case, when the two have the same frequency and
intensity. This is true because of the greater num-
ber of large-amplitude waves available as mixing
partners in the random case. Both the rate of loss
in downconversion [as can be deduced from Eqs.
(3.Qc) and (2. 15b)] and in upconversion [as can be
deduced from Eq. (5.4) or alternatively from (3.9)
and (2. 15)j increase as the amplitude of the other

waves participating increases. As a corollaxy,
amplitudes are less likely to grow large enough
for large bunching effects to occur in the random
ease.

It appears that the effects we have been discussing
are illustrated in an experiment37 in which a coher-
ent pump with frequency a little higher than f,was
introduced from outside into a ZnO sample with v„
sufficiently greater than v, to cause current satura-
tion. The sample mas inhomogeneous and showed
net acoustic gain only in a shoxt region, about 1 mm
long, near the cathode. Before the introduction of
the pump this region of the sample showed (by
Brillouin scattering) a continuous acoustic noise
spectrum peaked at about 2. 2 GHz. After introduc-
tion of the pump, mhich had a frequency of 2. 85 GHz,
there mere narrow peaks at 2. 85 GHz and at its
subhax monic, and a minimum at 2. 2 GHz. Mea-
surements did not extend far enough to shorn whether
there were additional peaks at ,' f~ or f~+—,' f~. Ex-—

istence of strong peaks at these other frequencies
is, however, unlikely, in the latter case because
of the large lattice loss at this frequency, in the
former because of the short length of gain path.
8i.gnificantly, the total amount of acoustic Qux mas
considerably reduced, by about a factor of 8 in the
range of measurement, in the presence of the pump.
(Small peaks outside the range of measurement
would not affect this materially. ) This suggests
that the amplitude of the pump did become large
enough to cause large bunching. The large bunching
would xesult in decreased gain, as described by the
large-amplitude theories, 3~ and the total flux
mould not grow as large as when all mas random.
Some contribution to the decrease in Qux might
also have come from the mixing of f~ and ,' f~, which-
as indicated earlier, would give a strongly ab-
sorbed sum frequency. This is the nonlinear loss
rneehanisrn suggested ear lier by Hutson. This
mechanism is not expected to be predominant,
however, since fox the frequencies concerned down-
conversion shouM be stronger than uyconversion.

Because of the randomness and basic lack of co-
herence, and the- energy losses in upconversion
and downconversion, me feel it is reasonable that,
although the total flux in the domain grows very
large, the Qux in what could be considered a single
coherent mave remains small enough so that sec-
ond-order theory is more or less applicable. Even
so, the assumption of small bunching must cer-
tainly be violated in the domain at many points in
time and space due to overlapping of waves. This
will occur in a random way, homever, rather than
in the systematic way it occux s in a single coherent
large-amplitude wave and should therefore have
much less effect. In what follows we shall apply
the second-order theories and show that they do
provide additional insight into what is occurring in
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FIG. 14. Current and flux at different frequencies vs
time for a traveling domain in a semiconducting CdS
sample. The time 0 marks the onset of the deviation in
current from the Ohmic value. Measuring points are
drawn only for 3 6Hz (taken from Wettling and Bruun,
Ref. 44).

the fullblown domains.

3. High-Flux Domain —Early Stages

The type of domain we will now consider is one
developed on application of high voltage to a typical
semiconducting sample of CdS (~, = 10"/sec) or
GaAs (&u, =10'~/sec). With such large ~, values

f, is high enough so that corrections for lattice
attenuation are not negligible. It is therefore con-
venient to use instead f „, the frequency of maxi-
mum net gain, which is somewhat lower than f,
because of lattice attenuation. The evolution of the
frequency spectrum of domains in such samples has
been carefully studied by Brillouin scattering, for
a number of CdS and GaAs samples in which, coin-
cidentally, f „=3GHz. Although these studies were
carried out by several different groups, 4 5 many
of the results are so similar as to be almost inter-
changeable. In Fig. 14 we show some typical re-
sults, obtained on CdS.4~ Initially, i.e. , for times
short enough after application of the voltage that
there is no current drop, growth was found to follow
linear theory. It was very rapid, because of the
large value of I z I, for a small range of frequencies
around f „.After these frequencies had grown to

a considerable amplitude (in GaAs Spears~ found
this to be the point at which energy density had
reached 108 times thermal) their rate of growth
decreased. At this state, lower frequencies, rep-
resented by 2 GHz in Fig. 14, began to appear. The
rate of growth at these lower frequencies was much
greater than predicted by linear theory, as is evi-
denced by the fact that the 2-GHz curve has a steep-
er slope than the initial slope for f „, 3 GHz. I'n

the usual GaAs sample, 4' and occasionally for CdS, '
the spectrum at this stage showed a peak at f,g2.
As has already been pointed out by many auth-
ors, ' ' 4' ' the steeper growth at lower frequencies
and the appearance of the subharmonic are clear
evidence for downshifting by parametric amplifica-
tion rather than large bunching effects. In addition,
Spears also found in GaAs that the angular distri-
bution at this stage showed two peaks at the sub-
harmonic frequency 4 apart, as expected for phase
matching according to the linear dispersion. Thus,
what is going on at this early stage in the high-Qux
domain is, now surprisingly, quite similar to what
was observed in the low-flux domain. 28 Instead of
an essentially monochromatic pump, however,
there is a group of partially coherent pump fre-
quencies, each one presumably producing a range
of frequencies around its subharmonic. Another
difference from the simple domain is that pump
depletion is not seen because the linear gain is so
much greater at the higher voltages. It is the ex-
istence of the large linear gain plus the fact that
the initial pumping takes place over a relatively
wide range of frequencies that tends to obscure the
peak in the spectrum at the subharmonic. This
peak is more likely to be visible in GaAs than in
CdS because the former has a greater value for
the ratio Ig I/I n, I."

4. High-I' lux Domain —Latex Stages

At the stage we have been discussing the current
had just begun to fall. As the current falls further,
still lower frequencies, represented by 0. 6 and 1
6Hz in Fig. 14, are observed. Again, these grow
more rapidly than predicted by linear theory and

by the time current saturation is reached have much

higher intensities than the higher frequencies. In

the range where the current is at or close to satura-
tion, quantitative comparison with theory becomes
much more speculative. One question that has been
much discussed in the literature is that of the value
of y, i.e. , whether one should use y= 1 —pE/v, or
y= 1 —v~/v, . It has been established recently that
the gain is not correlated with the electric field
value in the domain, ' '4'47 but is reasonably well
represented by using y= 1 —v~/v, in the first-order
theory. It should therefore be meaningful to com-
pare experimental results in the saturation or near-
saturation range with our theoretical predictions
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using p in the range 0 to —1, more specifically
close to 0. Fortunately, as has been shown in Sec.
IV, the results of the second-order theory are, for
large frequencies, insensitive to the magnitude of
y in this range. We can get approximate values of
ig I for subharmonic generation in the sample we
are discussing by using the plots of Fig. 4 for (d,
=10"/sec. These plots are made for f „slightly
greater than 3 GHz, but can be used with little er-
ror by taking the value of lpl for 3 GHz as that
given by the plot for f „the value for l. 5 GHz at
that on the plot for ,'f „—etc.In this way we find
that for a 3-GHz pump lgl =3~10 while for pump-
ing by f „/2. 5 I q I =3 && 10 . Thus I q I for SubHG

by 1.2 GHz is about a factor of 10 smaller than l g l

for SubHG by 3 GHz. This is similar to the situa-
tion discussed earlier for the low-flux domain. In
contrast to that situation, however, the strain at
the lower frequency is undoubtedly considerably
higher. Although data for 1.2 GHz are not given
in Fig. 14 it is expected they will be quite similar
to those for 1 GHz. For pumping by 0. 6 GHz,
',f „, Iq I is —down to about 2&10~, while for pump-
ing by 0. 3 GHz, I q I is down by more than another
order of magnitude. Data for 0.3 and 0. 2 GHz were
obtained by Zucker and Zemon on a similar CdS
sample. They find the intensities at these low

frequencies grow to a level comparable to that at
0. 6 GHz. With such a small value of lg I as is found
at 0. 3 GHz, however, further downconversion by
this mechanism would no longer be substantial.
This appears to be in good agreement with the fact
that downconversion of f, by about a factor of 10
is the maximum that has been reported.

Now consider upconversion. In the low-flux do-
main discussed earlier the regeneration of f~ from
—,
'
f~ was observed. " The observation was possible

there because of the partial spatial separation of
the two frequencies. In the high-Qux domains now

under discussion, however, it would not be possible
to separate SecHG from the other processes, with
the possible exception of the second harmonic of 3
GHz. Lattice loss is so high, however, at 6 GHz
that it is not likely to be observed. SecHG must,
nevertheless, be considerable in the domains now
under discussion. According to Fig. 12, for ~,
= 10'~/sec, when the frequency decreases from f,
to ,'f, there is a dec—rease in G(2&@) by only a fac-
tor of 2. In the calculations for this figure hk was
taken to have the value given by linear theory. Un-
der the high-flux conditions in the domain, hk is
likely to be smaller, in which case G(2&v) would be
larger everywhere The ratio b.etween G(2ar) at 3
and 0. 6 GHz would then be larger than 2, probably,
but not a great deal so. The decrease in b,k would
also decrease interference effects due to lack of
phase matching but, as noted earlier, this is not a
major effect in the presence of sizable linear gain.

We conclude then that, at the time of current satur-
ation, since 18(&u) I' increases by more than a fac-
tor of 20 as the frequency decreases from 3 to 0.6
GHz, according to the data of Fig. 14, SecHG must
be considerably stronger at the lower frequencies.

Nondegenerate upconversion, or sum frequency
generation, should, according to the theory of Sec.
V, be of comparable importance to SecHG. - As
noted in the discussion of the simple domain, f~
+ ,' f~ appe-ared more strongly than 2f~ when the volt-
age was increased. Wettling and Bruun' speculate
that part of the 4. 5-GHz intensity seen in Fig. 14
may be due to sum frequency generation. Their
speculation is based on the late appearance of this
frequency and the fact that its gain is somewhat
greater than expected from linear theory. For fre-
quencies below 3 or 4 GHz the Brillouin scattering
technique cannot generally separate the contribu-
tions of downconversion and upconversion. A tech-
nique with greater resolving power is that of ob-
serving the microwave emission that occurs when
the domain arrives at the anode. 49 This emission
is believed to be due to electromechanical conver-
sion of the acoustic flux at the anode surface. Ob-
served in the microwave emission, and therefore
presumably existing in the domain, are peaks cor-
responding to f „, ,'f „, —,'f—„,'f „; su~m fre--
quencies of all these; and second harmonics of the
sum frequencies. 49

The foregoing discussion suggests the following
picture of the mixing in the domain at the time when

f, has been downshifted from 3 to about 0. 6 GHz,
i.e. , at a time close to current saturation and to the
end of the data in Fig. 14. At 3 GHz there is some
gain due to the drifting electrons, i.e. , linear gain,
since y is not equal to 0, and possibly some gain
by downconversion from higher frequencies. On
the other hand, there is loss- in downconversion
and presumably smaller loss in upconversion. The
fact that 3 GHz is still growing indicates that the
linear gain more than makes up for the losses. At
0. 6 GHz linear gain is expected to be small, so
gain by downconversion must be large enough to
somewhat more than balance losses due to upcon-
version and further downconversion.

5. Effects on Removal of Voltage

The picture just described appears to be borne
out by the changes that occur in the amplitudes at
the different frequencies when the voltage is turned
off. Such data were not taken by Wettling and
Bruun, but were taken by Zucker and Zemon4 on
a similar CdS sample and by Spears4' and Palik
and Bray on GaAs samples. In all three of these
references there are data on the changes occurring
when the voltage was turned off after f, had been
downshifted by about a factor of 5 from an initial
value of about 3 GHz. For 0.6 GHz all three find
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that, after a very small fraction of a microsecond
in which its amplitude remains more or less con-
stant or continues to grow slowly, "there is a re-
gion of steep decay. The decay rate is much steep-
er than that due to lattice attenuation at this fre-
quency. The steep decay persists for about 0. 5

psec, after which there is a transition to the slow-
er rate expected for lattice attenuation. A similar
decay pattern is reported by Spears ' and Palik
and Brayso for frequencies in the neighborhood of
1 GHz. For 3 GHz, on the other hand, it is
found~8'5o that attenuation does start at once upon
turnoff, but that for a period of about 1 p,see the
rate is smaller than that expected for lattice atten-
uation at this frequency. After this period the ex-
pected lattice attenuation appears. Zucker and
Zemon find for their sample that the slower initial
rate is common to all frequencies above about 1.5
or 2 GHz. The periods of anomalously rapid de-
cay in the 0.6-1-GHz range more or less coincide
with those of the anomalously slow decay at the
higher frequencies. As pointed out and partially
explained by Bray47 and by Palik and Bray, o during
these anomalous periods there must be a net con-
version of Qux from low to high frequencies. We
c'an 'su@os't a more detailed explanation in terms of
the picture of the mixing in the domain at this state
that was presented earlier. When the voltage is
shut off the linear gain ceases. This affects the
high frequencies most strongly, because they have
appreciable linear gains and lattice attenuation
rates. The amplitudes of the coherent waves at the
high frequencies begin to drop off at once. Since
the downconversion depends exponentially on these
amplitudes, the rate of generation of lower fre-
quencies begins to drop off even more rapidly. The
rate at which the lower frequencies, such as 0.6
GHz, lose energy by upconversion is less affected,
however, since it depends on ) 8„l

~ for SecHG or
linearly on I 8„t for upconversion by mixing with
another frequency. Thus the balance between
downconversion and upconversion is upset and,
plausibly, the low frequencies convert energy to
the hlghel frequencies during the anomaloUs period.

Palik and Bray'~ give evidence that upconversion
through interaction with higher frequencies is more
important than SecHG. Specifically, they find that
the time at which the fast decay at 0. 6 GHz makes
a transition to the normal lattice decay seems to
be more dependent on the presence of some critical
level of flux at the higher frequencies than upon its
own intensity level. The fact that upconversion
through interaction of 0. 6 GHz with higher frequen-
cies is a more important process than SecHG at
0. 6 GHz is not difficult to understand. For genera-
tion of a sum frequency co+ co' we may write a rela-
tion similar to (5. 6) for generation of 2&v, with the
quantity

playing a role analogous to that of G(2a&). If ~ is
taken to be 0.6 GHz and ~' a frequency in the range
0.6 6Hz & v' & 3 GHz, G(v, e') will by our calcula-
tions be greater than G(2&v) by a factor of about 2
to 5. This advantage in generating co+~' over
generating 2(d will be largely offset or even over-
come, by the fact that IS„(0)S„,(0) I & IS„(0)I since
the intensity is a maximum around 0. 6- GHz. Even
allowing for the fact that h4 is likely to be smaller
in the high-flux domain, we expect that the prob-
abilities of generating u+ e' and 2& will be, at best,
about equal. It must be remembered, however,
that there are very many possibilities for ~'. With
this as a weighting factor, it is to be expected that,
at 0.6 GHz, moxe energy will be lost in generation
of sum frequencies than in SecHG.

IV. SUMMARY

For «wnconversion under constant pump strain
the signal and idler amplitudes vary exponentially
with g, the argument of the exponential including
terms involving the pump strain and the difference
of the linear gains or losses of signal and idler.
In the non-phase-matched case the argument also
includes hk, while in the phase-matched case it
includes angular factors. If the pump is undergoing
linear gain or loss at a rate n3 the strain that ap-
pears in the exponential is smaller or larger, re-
spectively, than the local pump strain by an amount
depending on a3 and x. In the absence of trapping,
signal gain, except for very smaQ pump intensities
or very high pump frequencies, peaks at the sub-
harmonic. Maximum gain at the subharmonic
occurs for a pump frequency a little greater than

f, . The gain is found to have a local minimum for
the dc field at which v„= v, . For low frequencies
[(ar/&u~)~ «y ] this minimum may be quite deep,
although narrow. In the presence of trapping the
minimum is shifted to v„& v, . Corresponding to
this, the total (linear plus parametric) gain rate
for low frequencies shows a deep local minimum
for v~-= v, with no trapping, for v„& v, with trapping.
Usually, although not always, the gain values are
smaller when trapping is included, all other param-
eters being held the same. For shear waves in the
basal plane of CdS phase-matched gain is very
strongly favored over collinear at strains of 2&10 ~

and below. The advantage of phase matching is
generally much less at strains greater than 6X10,
how much less depending somewhat on the value
of v~/u, . This is particularly true at high frequen-
cies, where the mismatch in wave vectors depends
strongly on v, /e, .

In upconversion, whether collinear or not, the
amplitude of the sum frequency f3 generated from

f, +f3 is not exponential in the strains at f, and f,
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but rather proportional to their product. It also
includes a group of exponential factors involving

Ql Ap Q3, and bk which at small x gives osc1l-
lations, but at large enough g becomes essentially
either e 3" or e ' " 3'". The remaining factor,
for the case of secHG, peaks for a fundamental fre-
quency equal to f, and falls off much less rapidly
with decreasing frequency than the gain rate for
downconver sion.

Comparison of the second-order theory derived
1n this paper with experiments of Zemon and Zucker
in which a 1-GHE pump generated subharmonics
and second harmonics in Cd8 indicates that theory
can explain the amount of gain observed provided
strains are somewhat larger than were estimated.
The theory can also account for the variation of
pump 1ntens1ty with distance.

Another conclusion that can be drawn from these
experiments and comparison with theory is that
large bunching effects predicted by many authors
will be much diminished, practically, because of
the energy losses that occur in mixing with other
frequencies. This appears to apply also to moving
domains, where second-order theory can account
qualitatively for the downshifting of the frequency
of maximum intensity and for the upconversion ob-
served, particularly after removal of the dc field.
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The frequencies of the local modes in a Ge single crystal containing 9.2 at. % Si have been
measured. A Q dependence of the local-mode frequencies has been observed, contrary to
the prediction of the isolated mass-defect theory. The theory of Elliott and Taylor gives values
for the local-mode frequencies that are in good agreement with the present results. The
changes of the in-band mode frequencies of the longitudinal branch along the |001j direction
wex'e also measured and the results wexe in reasonable agreement with the theory.

The frequencies of the local modes and of some
in-band modes in a Ge single crystal containing
9. 2 at. % Si have been measured by coherent in-
elastic neutron scattering. The experiments were
performed using a triple-axis spectrometer at the
HFIR. The sample crystal' is a 25-mm-long cylin-
der having a loaf-shape cross section with maxi-
mum and minimum diameters of 15 and 10 mm,
respectively. The lattice constant determined from
the neutron Bragg reflections is 5. 630 A, which is
in good agreement with the result of Dismukes

2et al. COnstant-Q measurements were made with

the scattered neutron energy E' fixed usually at a
value corresponding to a frequency of 6.0 THz, a],—

though in ordex to check certain results some mea-
surements were carried out with an E' of 7. 0 THz.
All of the measurements described here were ob-
tained with the neutron momentum transfer SQ
along the [001]direction. The scattered neutron
groups that were obtained in measurements of the
local-mode frequency for two different points in the
reciprocal space are shown in Fig. 1.

The similarity of the phonon dispersion curves
for Ge and Si suggests that a theory of the lattice
dynamics of this alloy which includes only the mass
change might be a good approximation. The theory
for an isolated mass defects g ves a unique value of

11.25 THz for the local-mode frequency v„which
is independent of Q. However, Fig. 1 clearly shows
a substantial difference in the local-mode peak po-
sitions for two different values of Q, and the fre-
quencies measured are larger than those given by
the isolated mass -defect theory.

Several recent theoretical treatments of the
mass-defect problem attempt to take into account
the effects of a finite impurity concentration.
In the present paper we shall compare our results
with the theory of Elliott and Taylor. Although

this theory is considered to be inadequate in many

respects, "the computations required in making
a comparison with experiment are more easily
carried out and it does provide a surprisingly good
description of the present results.

In this theory, the local-mode frequency is de-
termined by the equation

z(~) c&v( 1
Kp( p g dv= 1- p g ~ ~ (1)

v( v v)' —vy q) 1 —c

where c is the impurity concentration, v&(q) is the
in-band mode frequency of the unperturbed lattice
with wave vector q and branch index j, g(v) is the

frequency distribution function, and & = 1 —(M,/M~),
where M

&
is the impurity mass and M, is the host

mass. Since in the present work the measurements


