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By expressing the carrier distribution function in a power series, a self-consistent method
is presented for solving analytically the Boltzmann transport equation. Using an iterative
technique, this method enables the calculation of carrier mobilities in nondegenerate semi-
conductors to any desired degree of accuracy at fields of any strengths. A "mesh" diagram
is proposed for the calculation of the low-field mobilities governed by polar-optical scattering.
It is shown that the results obtained by relaxation-time approximation under some conditions
are rather poor. The effect of applied magnetic field is also discussed in some detail.

I. INTRODUCTION

The theory of carrier transport phenomena in
semiconductors lies on the determination of the
carrier distribution function f which is governed by
the applied field t', and the scattering of the carriers
with the carriers and the lattice vibrations. In the
steady state these effects are balanced in accordance
with the Boltzmann equation

+ +W(p-p )f(p) —ZW(p -p)f(p')

+ I„f(p) = o,
where e is the electronic charge, W(p-p') is the
transition probability per unit time of a, carrier in

a state with momentum p being scattered into a
state with momentum p by the lattice vibrations,
and L„is the probability per unit time of a carrier
being scattered by another carrier. Thus each
term in this equation represents a rate of change
of f; the term e$ Bf(p)/Sp is due to the applied
field $, the terms Q~. W(p-p')f(p) and

P». W(p'-p)f(p ) are, respectively, due to the
carriers being scattered out of and into state p
through the absorption or emission of phonons, and
the term I„f(p) is due to the carrier-carrier
scattering. Since there is no net carrier transport
in the absence of external fields, the equilibrium
distribution function can be assumed to be the Max-
well-Boltzmann function for nondegenerate semi-
conductors when $ = 0.
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In the low-field transport theory the effect of
carrier-carrier scattering is generally ignored
because the carrier concentration in nondegenerate
semiconductors is so small that the carriers are
mostly scattered by the lattice vibrations. ' The
effect of the e1.ectron-phonon scattering is usually
treated by the relaxation-time approximation.
With this method the off-equilibrium part of the
distribution function is assumed to be small and
to relax with an energy-dependent time constant
which can be calculated from the transition prob-
abilities W(p-p ) and W(p -p). Actually, the
relaxation-time approximation is valid only for the
scattering which is elastic or nearly elastic and
isotropic, and therefore it is not applicable to the
polar semiconductors in which the dominant scat-
tering is highly inelastic and anisotropic. To avoid
using the relaxation-time concept, Howarth and
Sondheimer, ~ and Ehrenreichs used a variational
approach to calculate the low-field carrier mobility
in polar semiconductors, and recently Rode4 used
a simple iterative technique to solve the same
problem. However, both the variational and iter-
ative methods can lead to an exact solution only
in the limit of vanishingly small fields. The accu-
racy of these methods for calculating the low-field
carrier mobility at fields of finite strengths can
be assessed only by comparing them with a method
which can give an exact solution for fields of any
strengths.

The purpose of this paper is to present a self-
consistent method of solving analytically the Boltz-
mann equation and calculating the carrier mobility.
This method is similar to the iterative method4 and
has all the advantages of it. Matthiessen's rule
is totally avoided, and the exact solution of the
linearized Boltzmann equation expressed in the
form of a monotonic series lends itself to straight-
forward physical interpretation. Moreover, this
method has its own merits; it is valid for any types
of band structure and can be easily extended to
study all transport phenomena at a field of any
strengths, and the rate of convergence of the mono-
tonic series can be easily determined.

In this paper we present the calculations of car-
rier mobilities and related transport phenomena in

nondegenerate semiconductors at low fields. The
calculations of carrier mobilities at high fields
will be presented in the next paper in this series.

II. ANALYTICAL SOLUTION OF BOLTZMANN EQUATION

When electron-electron scattering is ignored
and no external magnetic field is present, the
Boltzmann equation becomes

8eF + ——Hf= 0,8' 7

in which, p~, &, and H are defined as

Pz—- O' F/F,

I/~= +; W(p-p'),

HQ = QI W(p'-p) Q(p'),

where F is the applied electric field and Q is an
arbitrary function of p.

To separate the low- and high-field transport
phenomena, we expand f into a power series in E,

f=f,+Ff, +F'y, + ~ +F"f„+" (6)

where ft, is the Maxwell-Boltzmann function
A e ~ ~3~, A is the normalization constant, E is the
electron energy, k~ is the Boltzmann constant, and
T is the lattice temperature. Equation (6) is the
solution of Eq. (2) provided that the series con-
verges. The functions f„ fa, . . . , f„, . . . can be
determined by the following set of coupled equations
which are obtained by substituting Eq. (6) into

Eq. (2) and equating coefficients of individual
powers of I':

e + ~ —Hf, =O,
8pg

e ' +~f —Hf =0
8P

f"i —Hf„, i—-0,
&pg 7

8
fi= —« 0

8'
Using this form of f, for Kf, in Eq. (7), the second
approximation for f, is

(6)

8
f, = —er(1+ H&) ~ (9)

8pp

The continued application of this iterative technique
yields the exact solution for f, as

8of, = er (1+Hr + HrHr+ ~ ~ ~ )
8p~

(10)

The first equation in Eq. (7) is the linearized Boltz-
mann equation which accounts for all the low-field
transport phenomena. It is obvious that f„„can
be determined from the knowledge of f„, and that
if a method can be devised to solve the first equa-
tion exactly for f„ the same method can be applied
to find the exact solutions for all f„~s for n ~ 2,
since all the equations governing f„ for n & 1 are of
the same form. This method of expressing the
distribution function to successive orders in the
applied electric field is similar to the one proposed
by Schottky. ' But unlike Schottky who expressed
the f„'s as solutions of a Fredholm type of integro-
differential equation, we solve for the f„'s explic-
itly by a self-consistent method as described below.

By neglecting the "scattering-in" term Hf, as a
first approximation, we obtain



2526 H. C. LA W AND K. C. KAQ

Hr —a= g8

SPY
W(p -p} W(«r «II

)
Bfg

~tl ply p ~ cog

(»)
I

The exactness of Eq. (10) can easily be verified
by substituting it into Eq. (7).

The physical meaning of Eq. (10) can be seen
by writing Hr Bfo/Bpz in terms of the transition
probabilities

The term W(p'-p)/g p. W(p -p' ) is the ratio of

the number of electrons in state p' being scattered
into state p to the total number of electrons being
scattered out of state p'. The transition of electrons
from one state to another is accompanied with ab-

sorption and emission of phonons. By changing
the summation over p' and p" to the summation
over q, the phonon momentum, Eq. (11) becomes

Hr 0 = P W(p+q-p) Q[W(p+q-p+q+q )+ W(p+q-p+q —q )]
Py 40 BP~-B=B C

+ Q W(p-q-p) Q[W(p-q-p-q+q')+ W(p-q-p-q-q')]
~oe SPy 5 =5-C

It is now obvious that Hr Bfo/Bp~ is the contribution to f, due to the transition of electrons from the neighbor-

ing states p+ q and p —q to state p by emission and absorption of one phonon. Similarly, HrHr Bfo/Bpz can
be written as

W(p+q-p) p[W(p+ q-p+ q+ q }+W(p+q-p+ q-q )] Hr
I+e BPp 0=B+I

+ ~ W(p-q-p) +[W(p-q-p-q+q')+ W(p-q-p-q-q')]
~Pp 8= III-4

This is the sum of four terms. Each term describes the effect of two successive transitions, and each
transition is accompanied with either a phonon-emission or a phonon-absorption process. For example,
one of the terms on the right-hand side of Eq. (13) is

Q' W(p+q-p} Q [W(p+q-p+q+q )+ W(p+q-p+q-q )] Q W(p+q+q"-p+q)
p ftt

[W(p+q+ q"-p+ q+q "+q' ")+W(p+ q+q"-p+q+ q"- q"')] ~, (14)
c BPr- S=B a e"

8 3

f~= (
—er(1 HT HTHr ~ ) . f

ep~

and, in general,
8f = —er(1+Hr+HrHr+ ~ ~ ~ ) fn ep 0 (16)

Thus the distribution function f can be expressed by

00 n

f=f0+ g —eFr(l+ Hr+ HrHr+ ~ ~ ~ ) fo . (17)
n -"1 gp

0'

which corresponds to the two successive transitions
by phonon emission p+ q+ q" -p+ q-p. In general,
HrHr Hr n times operating on Bfo/Bpr is the sum
of 2" terms each of which corresponds to n succes-
sive transitions, and each transition involves
either a phonon-emission or phonon-absorption
process.

Using the same iterative technique which leads
to Eq. (10}, we can obtain

For a given band structure, Eq. (17) can be used
to calculate the mobility due to any type of electron-
phonon scattering at any field strengths. The case
when more than one type of electron-phonon scat-
tering are operative presents no formal problem,
and this will be discussed briefly in Sec. III.

Since 1/r is proportional to the coupling constant

E, which characterizes the coupling strength be-
tween the electrons and the lattice and has the di-
mension of field strength, the rate of convergence
of the series in Eq. (17} is determined, among

other factors (such as temperature}, by the ratio
F/F, . Thus it is safe to state that the present low-

field mobility calculation by keeping only the terms
linear in F in Eq. (17) is accurate up to the order
of F/F, . In the following we present our low-field
transport calculations. The discussion of high-

field transport phenomena will be presented in the

next paper in this series.



ANALYTICAL SOLUTIONS OF THE BOLTZMANN. . . I 2527

III. LOW-FIELD ELECTRON MOBILITY

For fields small enough such that Eofo «Ef, the
distribution function can be written as

f=fo+ &fi

and the electron mobility as

(16)

8E
fi dp fo dP

BPF

where E is the electron energy. The calculation
now lies on the determination of f, which is governed
by the types of scattering. Three cases are dis-
cussed.

8
f~ = —er 0

BPF
(20)

For elastic scattering processes, fo (P) =f, (p ) and
if in addition W(p-p ) depends only on the relative
orientation of p and p' and is independent of the
direction of p or p, then r(p) =r(p ) and W(p-p )
= W(p -p). We can obtain

g [W(P -P ) cos p], (21)
8Pr ka T 8Pp gr

where Q is the angle between pand p . From Eq.
(9) we can express f, as

fi=«a(E) .() 8E

B ~F
(22)

The function g(E) is determined by rewriting Eq.
(10) as

(I Hr)f, =e-r f' 8E
~B T ~PF

(23)

and substituting Eq. (22) into Eq. (23}. Thus,
we have

&g(E)(1 —7 Zy. [W(P P )cosp])=T .
From Eq. (4), f, is then given by

(24)

f (Zl~(o-O' N- o e)l=
I+e ka T 8P~

(25)

A. Relaxation-Time Approximation

If the scattering processes are assumed to be
isotropic or nearly elastic and isotropic, our meth-
od will give the results identical to those obtained
by the relaxation-time approximation. For iso-
tropic scattering processes, the transition prob-
ability W(p-p ) is an even function of the electron
velocity 8E/8P~. Since 8fo/8Pr is equal to
-(fo/kaT)8E/8P„, the term Hr 8fo/8Pr vanishes
and f, is then given by

2a'koeEo 1 5N,W(p-p

eF me k0 1 1

(26)

(27)

m is the electron effective mass, h is the Planck
constant divided by 2m, +o is the angular frequency
of polar-optical phonons, X,X, are the dielectric
constants at infinite and zero frequencies, respec-
tively, N, is the number of polar-optical phonons
and equals [exp(k &o/kaT) —1] ', 5N, = 1 for phonon
emission (by electron), and &N, = —1 for phonon
absorption (by electron}.

Equation (26} is valid only for electrons at the

Theoretically the electron-phonon scattering is
always inelastic to some degree since the energies
of an electron before and after scattering differ
by the energy of a phonon. The usual argument is
that if the energy of the phonon is very much
smaller than the energy of the electron the scatter-
ing can be considered to be elastic. For the valid-
ity of Eq. (25) the scattering must at the same time
be not extremely anisotropic as pointed out by
Herring and Vogt. ' Extreme anisotropy implies
that many terms on the right-hand side of Eq. (10)
have to be included to give a fair approximation
to f, . It has been shown in Sec. II that HrHr Hr
n times operating on 8fo/8Pr consists of 2" terms
each of which corresponds to ~ successive transi-
tions, and each transition involves a phonon-emis-
sion or phonon-absorption process. The importance
of these terms is that when n is large enough to
make nx (phonon energy) to become comparable to
the electron energy, the scattering cannot be con-
sidered as elastic. However, our method provides
a means to test quantitatively the validity of Eq.
(25). If appreciable convergence can be obtained
only after the inclusion of n terms in Eq. (10),
where nx (phonon energy) is comparable to the
electron energy, the accuracy of using Eq. (25)
for low-field mobility calculations may be rather
pool .

B. Polar-Optical Scattering

Although the acoustic-mode scattering may be
considered as elastic, the polar-optical-mjjde scat-
tering has been known to be highly anisotro'pic and
inelastic. For the latter, the series for f, in Eq.
(10) cannot be summed and expressed in a closed
form. Nevertheless, it is possible to write down
the general term of this series and then to examine
its convergence without going through the laborious
work in summing up the leading terms until the
desired convergence is attained.

The transition probability for the polar-optical
scattering, apart from a 6 function expressing the
conservation of energy, is given by'
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wave vector k= 0 in the conduction band with wave

function of s symmetry. As k departs from zero,
there is an increasing admixture of the wave func-
tions of p symmetry. This admixture is particu-
larly important in semiconductors with sma11
energy-band gaps. However, it is not expected to
alter the anisotropic nature of the polar-optical
scattering. On the contrary, the effect of screen-
ing, which is also ignored in Eq. (26), tends to
reduce the scattering probability in the forward
direction. 3 To take into account this effect, we
introduce the Debye shielding length ~~ and rewrite
the transition probability as

W(p-p )

2m&~ eFo 1 1 &N,

mq (1,@0/q p„p )0

e7
f, = (1+H&+ HvHr + '~ ) p/, f() .

Pl (29)

To obtain the general term H7'Hv ~ Hr n times
operating on I/z fp, we proceed as follows:

(i) From Eq. (4) and (29) it can be easily shown
that

in which ~ appears in the screening factor because
q denotes the phonon momentum. By assuming
the band structure of the semiconductors to be
parabolic for simplicty, Eq. (10) becomes

1 2eE0 N 1+ (E/E, ) (1+5 (dp/E)'/2+ 1) (N, + 1) 1+ (E/E,)[l+ (1 —ff 0/0/E)'/ ]0

(2mE)' 4 1+ (E/E~) [(1+Ii((/0/E) —1] 4 1+ (E/E,)[1—(1 —h (dp/E) /0 j

1 1
4 ]((+ (z/E)]((+ are /z}'"+ (]' (+ (z/z][((+ I ra /z)"' —(]')

N, +1 1 1 l

4 1+ (E/E, )[1+ (1 —lf(dp/E)(/2]' 1+ (E/E, )[l —(1-i1 (d /E)'"]'

2eF E
(2 E)1/R (3o)

where E, = ]]10/2mA2D, a quantity with the dimension of energy; the function o((E/I (pp) is self-defined by Eq. (30).
(ii) There are two terms in Hrf/+f0. For the phonon-emission term, 7'(E) and fp(E) can be taken out of

the summation over q and replaced with r(E+ S(pp) and f, (E+ E&0). By performing the summation over q,
we obtain the phonon emission (p+ q-p) term in Hf]((pfp as

1 1 s]3 1

4 1+ (E/E, )[(1+I(d /E)" + 1] 1+ (E/E, )[(1+If (dp/E)"' —1j' E &(Elf'(dp+ 1)

E 1
P gp/ ~(E/-h (d 1) PEfp (31)

where the function, P (E/k(dp} is self-defined by Eq. (31). Similarly, the phonon-absorption (p —q-p) term
in Hrf//, fp is

(N, + 1) A (dp
'" E (dp ~E 1 1+ (E/E, )[l+ (1-5 (pp/E)'/2]' 5 p/0 E

2 E E E 4 1+ (E/E, )[1 —(1 —I(dp/E)'"]' E E

x-' 1 1 1/2"

4 1+ (E/E,)[1+(1 —R((]0/E}'"]' 1+ (E/E,}[1—(1 —k(dp/E)'"]' E o((E/If(dp —1)

(N+1) E 1
2 ~' h p/0 ///(E/f/(dp —1)
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Transition

P+2q. -P+q. P

Mathematical expression

Nq P (E/Su)0+1) Nq

2 n(Z/Fur, +2)

p (E/a~, )
0.(Z/Icuo+1) ~~f0

TABLE I. Four terms in HvHvpzfo. number of all the paths being 2'.
At a given temperature T most of the current

is due to the drift of the electrons with energies
close to k~T. Thus an examination of the following
general expressions for transitions,

¹ P (T/0" + n —1)
2 o.(T/8+ n)

P+q, P

X,+1) p.(E/~~0-1) 5,+1)
2 0'(E/Sero —2) 2

N, P, (Z/n~, +1) (V, +1)
0, (z/I~, )

N, p (T/0" —n —1)
2 o.(T/8 —n)

(¹+1) P, (T/0" + n+ 1)
2 ~(T/O~+ n)

(N, + 1) P, (T/0" —n+ 1)
2 a(T/O~ —n)

(33)

P P q P

p (E/Ku&0)

0, (E/S(so+»

(V, +1) P (E/So, —1) N,
e(E/ace, )

P.S'/'~~0)
0;(E/IM —1) ~~ 0

which are functions of n, should give an indication
of the rate of convergence of the series for f„
where OH is the Debye temperature of the polar-
optical phonons. In Figs. 2 and 3 are shown two
cases for T= 8 and T = 200~ with various degrees
of the screening effect. A small value of E, cor-
responds to a small screening effect. The value of
E, can be estimated as follows:

g~Ne3

m&D mk~ T (34)

where N is the electron concentration. For m =
where function, P( Eh/&u )0is self-defined by Eq. (32).

(iii) The four terms in HrHrpz fo can now be
deduced easily and they are shown in Table I.

(iv) The general term HvHr Hr n'times oper-
ating on P~f0 can be obtained with the aid of the
"mesh" diagram in Fig. 1. In this diagram the
points represent the states of the electrons. We
assign the correspondence between the transition,
transition diagram, and mathematical expression
shown in Table II.

To obtain, for example, HrHrHrHvHrpz fo from
, the "mesh" diagram, we start from the points 1,

2, 3, 4, 5, and 6 which correspond, respectively,
to the states p+ 5q, p+ 3q, p+q, p- q, p -3q, and
p- 5q, and find all possible paths by following the
arrows through which each of these six points can
reach the vertex 0. The value of a path is the prod-
uct of the transitions traversed by the path. For
example, the value of the path 2abcdo is

(N, + 1) P.(E/h~, + 4)
2 o! (E/%&0+ 3)

„N, P (E/I~, + 3) N, P (E/S~, + 2)
2 ~(E/S~, + 4) 2 n(E/g~, + 3)

N. P (E/S~, +1) N, P (E/S~, )
2 &(E/5~0+ 2) 2 &(E/SWO+ 1)

The value of HrHrHv'H&H& pz f0 is the sum of the
values of all possible paths multiplied by P~fo, the

p+5q

p+q

P-q

p- 2q

p-'5q

p-4q

p-5q

x:

X.' X', X'

X X T.

FIG. 1. Mesh diagram.
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TABLE II. Correspondence between transition, transitiondiagram, and mathematical expression.

Transition
Transition

1RgraDl MathexIlatlcal exp1 ess1on

p+nq- p+ (n —1)q
X, P (Z/e~, +n-1)
2 n I/ha)0+n)

p-nq- p-(n+ 1)q P I/N~, -n-1)
2 o.'(E/Ruo —n}

p +nq p+ (n+1)q

p -nq. -p- (n-1)q

)0

wP

~ p+(n+1)q

p+nq

~ p-(n-1)q

p-nq

(Me+1) P,S/S~o+n+1)
cf (E/e~o+n)

(V~+1) 8, (E/@cop-n+1)
&(E/5~0 —n)

free-electrori mass, N = 1018cm-~, and at T = 293 'K,
E,—1 eV. Thus for nondegenerate semiconductors

g, would be considerably smaller than 1eV. %ith
E,= 10~eV, the polar-optical scattering i.s prac-
tically. unscreened. It can be seen in Pigs. 2 and

3 that the values of A&, A2, A3, and A4 increase
with increasing screening effect. A reasonable
estimate of the ratio (Hr)™pz f~/(pz f,) can be ob-
tained by 2" (average value of A„A2, A„and A,)",
the factor 2 being the number of paths. Since 2&

(average value of A„Az, A„and A.,) is less than

unity, the series for f, as given in Eq. (10) is a

monotonic series. This is, in fact, expected in

view of the physical interpretation given to the
term Hv'Sfo/SpF in Eq. (12). Figure 2 shows that
at T= O the truncation of the series at the term
HrH7' Sf,/SpJ, introduces only an error of about 6%,
and Fig. 3 shows that at T=200", E,=10 eV, the
truncation of the series at the term HrHr&f~/Spz
introduces an error greater than 10/o, while trun-
cating at the term (Hr)' Sfo/Spz, the error reduces
to about 6%. For 7=0", E,=10 aeV, and electron
energy E= 20@&o, Fig. 4 shows that the trunca-
tion of the series at the term (H1)' Sfo/Spz intro-

0.7

)f
0.4—

A

C4
«C

0.5, ,

FIG. 2. VRlues of Ag Rnd A2
Rs functions of n Rt T =0" Rnd E
= 5+0, and values of A3 and A4
as functions of n at T =OH and E
=55+0. A~, A2, A3, and A4 are
indicated, respectively, by ,
k, , g, and x for E~=10 eV;
and by O, Q, Q, and ~for E
=10 8 eV.

0 )-

I ~
P I0
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lO
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(I
0.2

FIG. 3. Values of A&, A2,
A3, and A4 as functions of n
at T =20O~ and E =208~0 Af,
A2, A3, and A4 are indicated,
respectively, by, ~, ~, and
x for E~=10" eV; and byo,
Q, Q, and ~for E~=10 8 eV.

O. I—

0
I
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I
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I
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I

l4
I

l6

duces an error of about 10%%ua and truncating at the
term (Hr)~~ 8f&/8pr the error reduces to about 5%.
Prom these results it can be concluded that the
normal consideration for the polar scattering to be
nearly elastic at T»O~ or at T=O& but E»Sp ls
incorrect because it fails to appreciate the effect
of the extreme anisotropy.

C. Mixed Scattering

When there are several types of electron-phonon
scatterings which are equally important in l.imiting

the electron mobility, the operators r and H have

to be replaced, respectively, by the sums of oper-
ators ( g ~ 1/r) ' and g ~ H„where the index i
refers to the different types of electron-phonon
scatterings. Furthermore, if the scatterings
which are isotropic are indexed by r, and those
nearly elastic and isotropic by e, then

+
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FIG. 4. Values of A&, A2,
A3, and A4 as functions of I
at T=O~ and E= 205+0. A~,
A2, A3, and A4 are indicated,
respectively, by, 4, ,
and x for E~ =10 2 eV; and by
0, d„G, and~ for E~=10 eV.

0
I

6
I

IO
I

l2
I

l4
I

l6 20



2532 H. C. LAm AND K. C. KAO

H= QHq„+ QH;, (36)

Substitution of Eqs. (35) and (36) into Eq. (24) gives

— + g P [W„(p-p')(I —cos BP)j.
ref g f r&B

(37)

Equation (37) is equivalent to Matthiessen's rule
which states that the total resistivity equals the
sum of the component resistivities due to different
scattering mechanisms acting independently.

If one of the scattering mechanisms is neither
isotxopic nor nearly elastic and isotropic, we
would have to resort to Eq. (10) using the appro-
priate sums for 7' and H. Though the general term
(Hr)" 8fo/8pr for this case would become more
complicated, the series for f, is expected to con-
verge more rapidly than that for the case involving
polar-optical scattering alone.

IV. SOLUTION OF LINEARIZED BOLTZMANN EQUATION IN
PRESENCE OF ELECTRIC AND MAGNETIC FIELDS

The linearized Boltzmann equation in the presence
of applied electric and magnetic fields is given by

vxB 8f f8 F+ + ——Hf=0
C 8p

where 8 is the magnetic field, c is the speed of
light, and v is the electron velocity which is equal
to BE/Bp. For low electric fields Eq. (36) becomes

the direction of p in a plane normal to 8, and the
term v x 5 (8/8p)(8E/8pr) = 0 unless the effective
mass is a tensorial quantity. These are well-known
facts regarding the nonvanishing of longitudinal
magnetoresistance. In the following we shall treat
in detail the semiconductors in which m is scalar
and T is independent of the direction of p. For
this case it can be assumed without loss of gener-
ality that 5 is perpendicular to F. By choosing
8 in the direction along z axis, we obtain

-e . —r o = o rof(-v„+v„), (42)
8fo fo

c '
8p 8P~ k~T

and to the second order in 8, we have

vxB 8 f-e = ' &'&o(- v„+v )C 8P k'gT

(d —v„-e„, 43

where v„and e„are the electron velocities in x and
y direction, respectively, and fd=eB/me, the
cyclotron resonance angular frequency. Equations
(42) and (43) can now be generalized to'any order
in J3 as follows:

e f' + e ~ ~f + ~~ -Hf=o
8Pp c 8p r (39)

x(u'""(-v„+v,)(-1)" for n=0, 1, 2, . .. , (44)

Applying the same iterative technique as described
in Sec. II, the exact solution of Eq. (39) is

vx@ 8 vX8f, = —er 1+ H- e — —r+ H- e
C 8p c 8p

vxg 8 " 8fx~ H-e ~ —g+ . ~ 4O
e Sp 8Py

x "(v„+v,)(-1)" for n=1, 2, 3, . . . (45)

We ean now determine the distribution function
f, for various types of scatterings:

(i) IsotroPic scatterin. The solution for f, is

The effect of the magnetic field is described by
the terms having the common factor

vx5 8fi=-ee Be —e .
e)e 8p

w'hieh can be written as

vxo B

( Bf)

v x5 8r 8fo 8 8E f„
c 8p Sp~ 8 p 8p~ jp~ T

(41)
It should be noted that when F is parallel to 8,
the term v xB ~ 8r/8p= 0 unless r is dependent on

vxB 8 8f+ —e —v' + ~ ~ ' . 46e 8p 8'
The solution to any order in 8 can be obtained using
Eqs. (44) and (45).

(ii) ¹arly elastic and isotropic scattering. If
it is assumed that the scattering takes place on
constant energy surfaces, the operators Hv' and

vx8 8
pc 8p
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commute. Then to the first order in B, f, is given
by

vxQ 8f = —ef (I+Hr+HvHr'+ )+ -&l 8p

x [1+2H7'+ 3''Hr+ ~ ~ ~ y (gq I)(Hr)" +. ~ . ]
8p~

vx5 8 "
8&g }}+ m (H+) m fo

8p 8PJ

@here C~ is the binomial coefficient Rnd

m=0, 1, 2, . .. . By summing up all these terms
Rnd recognizing thRt

1+ C„""HT+ ~ ~ ~ + C„"'"(H7')" + ~ ~ ~ =
(

1

By Writing

[1+2Hz+3Hz+ ~ ~ ~ +(n+ I)(Hr)"i. . . j 8'

where vz is the velocity of the electron in the di-
rection of E, G(E) can be determined by the fol-
lowing equation:

the total contribution to f, in the nth order of B is

vxg 8 n

f, (B")=- e7 —8
e 8p

@+1
ega ~ Px 1 1 7' W' p p cos

(»)
In particular, the term f~(B ) in the second order
of g. is of importance in calculating the magneto-
resistance. This term is

= ({—{{T)~ G(E) "
u~)8p~ a~r' (49) f (}}')=— e Z [{}'(p"j'){(-cos{')])'~

which gives

G(&)=11[1-&+8 &(p-p ) cos41' .
Thus f, to the first order in B is

E(luations (46), (51), and (53) are identical to those
obtained from the relaxation-time approximation.

(iii) Polar-opticaL scattering. For this case we
first consider the terms which are of first order
in B and contain the operator (Hv) as follows:

e 8' p p 1 —cos

X {{)( Vz+ 5 )
A+T

To calculate f~ to the nth order in B we proceed as
follows. The nth order terms in B can be obtained
from the expansion of the following terms:

(
vX 8 8 sfoHT'- e = v

8p 8Pg

By expRnding binomiRlly

vxB

the general term in the nth order of 8 is

vx5 8, 8foHg
p 8p~

'

{m)'(-e = r {m}"'v&8 8 8f
c 8p 8P~

~ q
08 sf

8p 8p&

The term (Lfr) 8fo/8pz can be evaluated by com-
puting the values of all the paths in the "mesh"
diagram described in Sec. III 8. If r(x&,&) repre-
sents ~ evaluated at the state represented by point
xi,~, where j indexes the points on the path i in the
"mesh" diagram, then the sum of all the terms
listed above can be expressed as

All yaths f
in (HT)~ 8fp/8Py—

(value of path i) Z
Al 1 yoints j

on yath f

~(&i,,))
' td(- m, +v,)

As an illustration we have
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117' —e —v' + —e ' —r Hv'

N, p (E/bolo) [r(E+ Solo)y r(E)] +
' ' [r(E —h&o)+ r(E)] ' ttl(- v„+ v,), (55)

(Ns+ 1) p, (E/h& il) fil

B

vxa vxg s
Hv'Hv' —e ~ —7 + IIV' —e ~ —v Hv'+ —ec 8p c 8p

vxg

N, P (E/h&o+ 1) Ns P (E/h&tlo)
[ ) )]

(Ns+ 1) P, (E/h&o+ 1) Ns

P (E/h~o)
[ (E) (E h ) (E)]

Ns P (E/h+o 1) (¹+1) P+(E/h+o)
[ (E) (E h ) (E)]

(Ns+ 1) p+(E/htdo 1) (¹+1) p+(E/holo)
[ ( h ) ( h ) (E)] fo ( )

2 ol(E/holo —2) 2 a(E/bolo 1)—
Now we can write a genera) formula to calculate the sum of the terms which are of either even or odd order
in 8 and contain the operator (H&)" as

all paths $

in (a~)~ abbot@~

(vaiue of path 2)

2n 2n
& x Q r(x, &)

o ttl2"(v„+ v,)(-1)"for the case in even order
nl 1 points l 4~

in B
!

on path f

2n+ 1 2n+ 1

! x g r(2, &)
2 ol2"''( v„+v,)(--1)"for the case in odd

all points j order in Bon path f

It should be noted that for mixed scattering the same principle as described in Sec. IIIC can be applied
to calculate the over-all distribution function in the presence of both electric and magnetic fields.
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