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Using a simple Hamiltonian of the tight-binding type, rigorous bounds are derived for the

density of states of a tetrahedrally bonded solid. These include inner bounds which define a
band gap bebveen occupied and unoccupied states. The derivation uses only the assumed per-
fect coordination of nearest neighbors, and so it holds for all tetrahedrally bonded crystal
structures and random netvrorks of the kind proposed for amorphous Si and Ge. Various other
results are obtained for the, fractional 8- and p-like character of vrave functions, the attain-
ment of bounds, and other features of the density of states. A band-structure calculation for
the diamond cubic structure serves as a test case.

I. INTRODUCTION

Two broad classes of disordered systems are
encountered in solid-state theory (see Fig. 1). In

the case of what we shall call quagtjtutjye disorder,
one defines a periodic array of potentials which are
not identical. They may, for instance, be of two

types, randomly distributed, in which case the the-
oretical model would be appropriate to a disordered
binary alloy. On the other hand, one may define

an array of potentials which are identical but not

periodically positioned. One might call this po-
sitional disorder. Such a model would be appro-
priate for, say, a liquid metal.

If a positionally disordered system has the same
coordination of nearest neighbors everywhere and

we describe it with a Hamiltonian which involves

only nearest-neighbor coordination, we have the

special ease of toPologgccl di8order. The distinc-
tion between this ease and that of quantitative dis-
order is somewhat clearer. The matrix elements
which specify the Hamiltonian are the same every-
where throughout the structure. It is the eonnec-
tivity of the structure which is disordered. Such a
topologically disordered Hamiltonian would seem
to be an appropriate starting point for a theory of

the electronic properties of amorphous elemental
semiconductors, and in the subsequent sections the
model will be analyzed in detail.

The motivation for this study lies in recent ex-
perimental work' 6 on amorphous Si and Ge. From
the outset it was evident that these substances were
highly disordered, and yet in many x espects their
electronic properties are closely similar to those
of the corresponding crystals. In particular, a
band gap between valence and conduction bands
persists in the amorphous state. The extent to
which such a gap contains a small density of states
tailing off from the two bands is still a subject of
debate. Be that as it may, this remains a re-
markable experimental result.

A model for the structure of these elemental
amorphous semiconductors which has gained wide
acceptance is the random netmcn k model, in which

every atom is almost perfectly tetrahedrally co-
ordinated with its nearest neighbors. Distortions
of bond lengths and angles from the values in the
crystalline state are of the order of 10/~, and yet
the distribution of second and further neighbors
is highly disordered. 7 It is by no means obvious
that such a geometrical arrangement can be con-
structed in practice. Ho~ever, this appears to
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FIG. 1. Various types of disorder, encountered in the
study of the electronic properties of solids, are schemati-
cally illustrated; (a) perfect o: 9er, (b) quantitative dis-
order, (c) positional disorder, (d) topological disorder.

have been convincingly demonstrated in an em-
pirical fashion by Polk. Some aspects of this
structure are illustrated in Fig. 2. Amorphous
semiconductors, as prepared in the laboratory,
will of course contain voids or other defects dis-
tributed throughout such an ideal structure. There
is an urgent need for more experimental investiga-
tion of such defects and their dependence on the
methods of preparation used.

Clearly, it is a reasonable first approximation
to neglect the slight distortions of the nearest-
neighbor relationships from their ideal values at
each site. If we then use a simple tight-binding
model, the overlap integrals of basis functions
associated with an atom and its nearest neighbors
are the same for all atoms and we have precisely
the case. of topological disorder mentioned above.

It should perhaps be emphasized that these as-
sumptions do not, in general, simply reduce the
Hamiltonian to a periodic one. One cannot, in the
topologically disordered case, define a "unit cell"
such that knowledge concerning the matrix elements
of the Hamiltonian associated with those atoms be-
longing to it is sufficient to construct the entire
Hamiltonian. Equally, one cannot apply Bloch's
Theorem to the system.

Our approach will be to concentrate on the local
relationships between the coefficients in a tight-
binding wave function. We use these to generate
results for the bounds on the electronic density
of states and various related properties. We es-

sentially use only the assumed tetrahedral coordina-
tion of every atomic site. The results obtained,
therefore, apply to the entire class of networks
which have this property, including those which
correspond to periodic crystal structures (diamond
cubic, wurtzite, etc. ) and the random tetrahedral
network assumed for amorphous Si and Ge. It is
rather surprising that much can be said about the
electronic states associated with the Hamiltonian
on the basis of so few assumptions. It is, however,
merely the mathematical realization of a well-
known empirical generalization, namely, that the
type and degree of the long-range order is respon-
sible for only the finer structure of the density of
states. This may offend the instincts of a solid-
state theorist, but accords well with that of a
chemist or indeed anyone who has scrutinized the
experimental results referred to above. The elec-
tronic properties of solids are dominated by short-
range order. It is only theory that is dominated
by long-range order because of the convenience of
Bloch's Theorem.

The Hamiltonian which we use provides a rea-
sonable idealized model for amorphous Si and Ge,
but it is too crude to yield a precise description of
these systems. We will postpone comparisons with
more realistic Hamiltonians, together with various
generalizations and extensions of the model to sub-

FIG. 2. Some features of a random network structure
similar to that constructed by Polk (Ref. 8). Fivefold,
sixfold, and sevenfold closed rings of bonds are evident.
For a photograph of a more extended structure of this
type see Ref. 8 or M. H. Cohen, Phys. Today 24 26
(1971).
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sequent papers. '0 Here we will simply explore the
basic properties of the Hamiltonian in its simplest
form. Section II defines this Hamiltonian. Sections
III and IY present, respectively, the principal re-
sult for bounds on the density of states (with a some-
what expanded version of the already published
proof") and various details of the allowed bands.
An instructive test case, that of the diamond cubic
structure, is discussed in Sec. V, and the main
conclusions are summarized in Sec. VI.

Various mathematical proofs and manipulations
are relegated to appendices so as not to divert at-
tention from the main line of argument.

II. TIGHT-BINDING FORMULATION OF THE PROBLEM

In this section the problem of the determination
of the band structure of a topologically disordered
system is put into a precise mathematical form by
the definition of a Hamiltonian.

Let us label the atoms of a tetrahedrally coor-
dinated structure by a site index j and the bonds
by a site index j. Localized functions Q, &

are as-
sociated with each atom and bond such that they
form an orthonormal set and the Hamiltonian has
matrix elements only between basis functions Q, &

associated with the same atom or the same bond.
We have

where V, and Vz are defined to be real.
Note that if we switch off V, me have a Hamiltonian

describing completely decoupled atoms, each with
a singly degenerate eigenstate at energy E = SV,
and triply degenerate eigenstates at E = —V, . On
the other hand, for V, =O the Hamiltonian describes
decoupled bonds, each of which is associated with
eigenstates at 8 =+ V,. Clearly, the ratio I V,/V, i

must be critical in determining the qualitative form
of the band structure resulting from (1). In prac-
tice, for real systems of interest, this ratio is
such that the V, matrix elements dominate. Thus,
the bands are essentially of bonding and antibonding
character, split by the V2 term and broadened by
the V& term. The two matrix elements V, and V,
might, therefore, be called "banding" and "bonding"
parameters. The essence of our task is to show
that the broadening of the bands by the banding
term does not destroy the gap created by the bond-

ing term. Heine' has given an alternative proof
of the existence of a band gap for (1) which is based
on just such a picture and is consequently rather
more transparent than ours.

The functions P,~ may be visualized as the famil-
iar @ps hybridized orbitals of tight-binding theory.
We shall indeed call this a tight-binding Hamiltoriian
although it might be more properly called an equiv-

alent molecular orbital Hamiltonian in view of the
assumed orthogonality of the basis functions p, &.

The Hamiltonian is certainly a very simple one,
but note that for a topologically disordered system
it nevertheless cannot be decoupled in any obvious
way. In attempting to discuss the eigenvalues of
such a Hamiltonian for a structure with N atoms
we are faced with the determinant of a (4%x 4N)
secular matrix which cannot, in general, be re-
duced to a matrix whose dimension is of order unity,
as in the periodic case.

We have not, up to now, said anything about the
structure except that it is tetrahedrally coordinated.
However, in order that the main results of Secs.
III and IV shaQ hold, we need to make one further
stipulation, namely, that the structure shall have
a bounded variation of .density. To be more pre-
cise, the Hamiltonian (1) is assumed to correspond
to a structure in which each atom i has four nearest-
neighbor bonds j and a volume 0 can be defined such
that the number of atoms in any volume 0 is bounded
above and below, the lower bound being nonzero.
This condition of bounded variation of density which
was implicit in the earlier discussion of this
model" avoids mathematically pathological cases
and entails a negligible loss of generality, as far
as systems of physical interest are concerned.

Something remains to be said about boundary
conditions. In a previous paper" the structure
was assumed to be infinite and wave functions were
required to be normalizable. While we believe this
procedure to be correct, a treatment of the prob-
lem using a finite number of atoms and expjicitly
taking the limit as this number tends to infinity
in order to isolate bulk properties seems, per-
haps, more satisfactory. Such a treatment is
given here. We assume, therefore, a structure
composed of N atoms, and it is assumed, purely
for convenience, to occupy a spherical volume V.
It is assumed that homogeneous boundary conditions
are applied at the surface of this spherical volume.
For convenience we give a proof for "free" boundary
conditions. By this we mean that if a given bond

j is cut by the surface and the atom associated with
it within the surface is labeled g, then the basis
function Q, &

is not coupled to any other by the sec-
ond term of (1). It is readily seen that the given
proof can be generalized to apply to any other
homogeneous boundary conditions. The special
choice of quasipexjodjc boundary conditions leads
to an even simpler analysis, but this is, indeed,
a special case and is in, at least, one respect
misleading in that the condition of bounded variation
of density is no longer necessary. By quasipexiodic
boundary conditions we mean that each bond cut by
the surface ls considered to be connected to another
such bond (It is. easily shown that the number of
such surface bonds is egen, which makes this pos-
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sible. )

III. BOUNDS ON THE DENSITY OF STATES

In this section we show that the bulk density of
states of a system, described by the Hamiltonian
defined in Sec. II, must be zero in certain regions
of energy. This has already been shown in a
previous paper, "but we shall give a less ab-
breviated treatment and, as explained in Sec.
II, we will examine a finite system of N atoms
rather than an infinite one.

We begin by projecting out that part of the
Schrodinger equation (H E) (-=0 which lies in the
subspace spanned by Q&& for some given i and

j=1-4. We define the coefficients g,& by

(= Z a,&/&&
fj

and a~i for j = 1-4 are considered as the components
of a vector u(i). Note that i does not label the
components of u. Each component of u(i) is as-
sociated with a certain bond j. Now the coeffi-
cients a& &

of the other orbitals associated with
these bonds may be considered as a second vector
v;. This procedure is illustrated by Fig. 3. Now
the Schrodinger equation gives

Mu(i) = —V, v(i), (3)

where

—E Vg Vg Vg

V -E V) Vq

Vg Vg —E Vg

Vg Vg Vg —E

This relation holds at every site and we will, for
the present, drop the site index i. It is the fact
that the relation (3) holds at every site that forms
the essential basis for our analysis. For a
periodic system there are only n independent re-
lations of this type, where n is the number of
atoms in the unit cell, but, in general, the problem
cannot be so reduced. The matrix M has eigen-
values

minimum squared eigenvalues.
We shall show that if the energy E is such that

max(A„) & V3 (8)

or

min(X„') & V,',

For a finite system, I is just the number of states
g between Eo and E, which satisfy the boundary con-
ditions, divided by the number of atoms ¹

Consider a particular state with wave function
g„which corresponds to an energy between Eo and
E&. For such a wave function we sum the quantity
Iu I

—Iv I over all atoms, noting first that because
of the cancellation associated with each bond in the
interior of the structure and the assumed "free"
boundary condition this reduces to

surface
atoms i,

comyoneat fit

(13)

( ~

then (7) implies a zero bulk density of states at
that energy. Qle first note that either of the in-
equalities (8) and (9), together with (7) implies that

I
lul'- lvl'I &lul',

where 8 & 0 and furthermore, I v I
—lu

&

~ has a sign
which is the same for all atoms, i.e. , independent
of the implicit site index i. Consider then a range
of energy Ep & E & E, for which such relations hold
and let 0 henceforth denote its minimum value in
that range (which cannot be zero).

We define an integrated density of states I by

f= f 'dEn(E),
Ep

where n(E) is the normalized density of states,
that is, we have

4= f dEn(E) .

Ai —-E+3Vi

X2= —E —V, (triply degenerate) .

(4) ~ )
2 j/

(6)

max(&l) lul" v2lvl'& min(&!)Iul',

where max(X„') and min(X2) are the maximum and

(7)

Note that they are functions of energy E. Taking
the scalar product of both sides of (3) with their
respective conjugate vectors, we obtain

u* M u=V~~lvl2.

By expanding u in eigenvectors of M, the following
inequalities are readily obtained from (6):

~ &

FIG. 3. Coefficients of the basis functions 1-4 asso-
ciated with a given atom, in the expansion of a given wave
function, are the elements of the vector u defined in the
text. The coefficients of 1'-4' form the vector v.
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& vN2/s
S 7 (14)

where v is a constant independent of N. Then (10)
and (13) give the following chain of ine|lualities and
equations for the components of any wave function:

N

A surface atom is an atom with at least one surface
bond, i.e. , one not connected to another atom in the
structure. The subscript m labels the components
of u corresponding to such surface bonds.

We now define a surface layer of atoms such that
all surface atoms are included. The conditions of
bounded variation of density imply that this can
be done in such a way that for large N the number
N, of atoms in the surface layer satisfies

in the usual sense is zero between Eo and E, and
hence for all ranges of energy an which either of
the inequalities (8) and (9) applies.

For the special case of quasiperiodic boundary
conditions, the right-hand side of Eg. (13) vanishes
identically. The same analysis then leads to the
conclusion that there as a zero density of states for
regions of energy in which either (8) or (9) holds,
even fox finite N. The limiting argument given above
and the condition of bounded density variation used
in it is not necessary for this special case.

Before examining the bounds on the density of
states which this result entails, we will proceed
to analyze the character of the allowed bands in the
bulk density of states, which we do in Sec. IV.

e Z lu(i)l' Z lu(i)l'- lv(i)l' (15) IV. DENSITY OF STATES IN THE ALLOWED BANDS

P Iu(i)l'=1, (18)

we obtain

5, surface
1ayer only

Note that we have used the constancy of the sign of
lul —lvl .

Combining (15)-(17)together with the normal-
ization condition for the wave function

The same method which was used above to prove
the existence of regions of energy in which the bulk
density of states is zero may also be used to derive
certain properties of the allowed bands. In par-
ticular, we shall show that the average fractional
s- and p-like character and the average bonding
and antibonding character of a wave function are
functions only of the energy E.

To show this, we consider a particular wave
function normalized to unity over the whole system
and expand the vector u associated with a given
site in terms of eigenvectors of M. The eigenvector2" with eigenvalue (4) we call s like, and any
eigenvector u'~' with eigenvalue (5) is called p like.
Both are normalized to unity. We have

5 lu(i)l'&e .
f, surf ace

1ager

(19)

Now it may easily be shown that the quantity on the
left-hand side of (19), if summed over al/ 4N wave
functions, as well as over all N, atoms in the sur-
face layer, equals 4N, . Hence, if we perform a
summation only over those wave functions between

Eo and E» such a sum must be less than 4N, and
so we have

u= c'"u'" + c'~' u'~'

Now Eg. (6) may be rewritten as

A. 'I '"I' A'I "'I'= v'I "I'
or

+(~' v-'-1)
I
c"'I '.

Now consider the quantity

(24)

NI8 & 4N, , (20)

i&4e-'(N, /N) . (21)

Now 8 is greater than zero and independent of¹
The ratio (N,/N) must tend to zero as N tends to
infinity (14), hence we have

recalling that NI is the number of such wave func-
tions. Therefore, it follows that

I' A2- P2
2 2

2 2 7
Ep A 1

—V2
(27)

For a system with quasiperiodic boundary condi-
tions this again vanishes identically, and we im-
mediately have

lim I=O,
g~ ao

(22) where

which is the result which we set out to prove,
namely, that the normalized integrated density of
states between Eo and E1 is zero in the infinite
limit. This means that the "bulk" density of states

z, —Z lc'"I' (28)

(29)
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u* ' Mu= —V2u+ ' v .
This may be written

(31)

~, ~c'"~'+~,~c'"('=-V,u* v .
Now it is natural to define the fractional bonding
character by

(32)

1 1 ~ ufo v
2 2

(33)

These may be called the fractional s- and p-like
characters of the wave function. Without quasi-
periodic boundary conditions these results become
true in the N- ~ limit.

Using E,+F~=1, we obtain

A.2- g(2 2

Es= 2 y2A, 2—

Thus E, is determined for any wave function only
by the energy E which defines A.&, X2, and hence,
(30). This breaks down only for

~
Vq/Vm~ = —,

' when
the relation (2V) is indeterminate for E = V, .

We may further obtain the fractional bonding
character by taking the scalar product of (2) with
u*. We have

touch. Figure 4 also contains indications of the
type of the allowed bands which are based on the
results of this section. E~ and E, are plotted in
Figs. 5-V for the values V, /Vm=-,', —,', and 1. In
Fig. 5 we see that the two bands are, respectively,
bonding and antibonding, and in each band the states
range from pure s to pure p. This is true for all

I Vq/Vql & ~. Figure l presents the case I V, /V2I
& 2 and we see that the bands are now s and p like
with states ranging in character from pure bonding
.to pure antibonding. Figure 6 shows the critical
case where the two allowed bands touch. Note that
in all cases the functions defining E~ and Eb take
values outside the range 0-1 in the forbidden ranges
of energy. Each of the band limits in Fig. 4 can
be seen to correspond to states which are either
pure s or pure p, and either pure bonding or
antibonding. These four possibilities are sketched
in Fig. 8.

There are several more things to be said about
the allowed bands, but since their justification in-
volves various digressions we have relegated it to
Appendix A, and will merely state the results here.

First, we note that of the four bounds three are

in which case (32) and (33) yield

Fg = 2 -
p Vg (A. g E,+ X3Ep) . (34) Elhi

It is clear that the results (28) and (34) entail sum
rules on the density of states n(E). This follows
easily from the theorem that the trace of an opera-
tor is invariant under a unitary transformation;
the appropriate operator in the case of (28) is

S= Z /e&( [, (35)

where s is the s-like combination of basis functions
Q,z associated with atom i The r.esultant sum rule
is

ggX&&~ v, /v,
f dE n(E) F~(E) = 1, (38)

while (34) gives

j dEn(E) Eq(E) = 2 . (37)

Note that n(E) by itself satisfies the sum rule (12).
Figures 4-7 illustrate the results obtained so far.
In Fig. 4 the forbidden regions of energy are in-
dicated for each value of the ratio of the two over-
lap parameters V& and V2. Here, these are as-
sumed to be both negative. This choice corresponds
most closely to the state of affairs in real physical
systems. (Bonding states lie below antibonding in
energy, and s states below P states. ) Figure 4
thus corresponds to the left-hand side of the pre-
viously published diagram. ' Note that there is
always a band gap between two allowed bands, ex-
cept for the one value I V, /V, I

= ~ at which they

bnding s

FIG. 4. Bounds on the density of states, and various
featuresof theallowed bands. E' =F/t V2 f . Shaded re-
gions are forbidden, unshaded are allowed. The only
bound not attained, in general, is indicated by a dashed
line. The bounds marked with heavy lines are associated
with 6 functions in the density of states.
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FIG. 5. Fractional p-like character E& and bonding
character E& of wave functions, as a function of energy
for the case V2= —1, V& ———4.1

I I

-4 -2 2 4
(b)

FIG. 7. Fractional p-like character E& and bonding
character E& of wave functions, as a function of energy
for the case V2= —1, V&= —l.

a,ctually attained, in general. The one which is not
attained, in general, is the antibonding s state and
we have indicated this by a dashed line in Fig. 4.

For I V, /V21 & —, there are two .tates per atom in
each band, as might be expected. For IV, /V21 &-,

I
~ I

there are three in the p band, one in the s band.
This would seem to pose a dilemma since there ap-
pears to be a contradiction at I V, /V21 =-,'. How-

ever, it turns out that for any connected structure
we can show that both of the pure p states are as-
sociated with 6 functions of unit strength in the den-
sity of states. Hence, the bonding p state carries
with it, on crossing from one band to the other, one
state per atom. Thus does the camel pass through
the eye of the needle.

The reader is referred to Appendix A for a further
discussion of these points. %e pass on to an il-

I

-2
I
I 1 ~

I
I

I

I

(a)

El

bonding antibonding

ik F

-2 -1 I

I
I 1--
I

I

I
I
I

(b)

FIG. 6. Fractional p-like character E& and bonding
character E& of wave functions, as a function of energy
for the case V2 = —1, V& ———2. The dashed line indicates
where the two bands touch.

FIG. 8. Bonding and antibonding s and p states have
coefficients of equal magnitude associated with each basis
function and the signs indicated in this figure. Because
of the degeneracy of the p states there are, of course,
other possibilities for these beyond those which are
shown.
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lustration based on t e simplest test case-t e
diamond cubic structure.

V. A TEST CASE—THE MAMOND CUBIC STRUCTURE

The results obtained in Secs. III and IV and
Appendix A apply to all tetrahedrally coordinated
structures (subject to the minor reservations
noted). Tllese lllclllde 'tile familiar cx'ystR1 struc
tures of the group-IV elements and related com-
pounds-the diamond cubic structure, the wurtzite
structure, and SiC polytype structures. The easiest
test case is, therefore, provided by the simplest
of all these crystal structures, namely, the diamond
cubic structure. Ne should perhaps emphasize at
this point that by "diamond" we do not imply "car-
bon. "

Figures 9-11present the results of a band-struc-
ture calculation for the diamond cubic structure
llslllg tile HR11liltolliR11 (1). The density of stRtes is
shown in Fig. 12. (The calculational details are
contained in Appendix B.} Once again the three
cases IV, /V, I &2, IVX/V, l =2, Rnd IVl/Val ~k
are examined. %'e see that in the case of the
diamond cubic structure, all the bounds on the den-
sity of states are always attained and the pure p
states are associated with 5 functions of unit
strength in the density of states, which is in ac-
cordance with Sec. IV and Appendix A.

The density of states shown in Fig. 12 has an
intriguing symmetry. If the 6 functions are dis-
regarded, what remains is symmetric about the
center of the gay. This is, in fact, a general
property of the Hamiltonian, i.e. , it holds for any
structure. This is by no means obvious and its

proof requires a more sophisticated mathematical
treatment which is postponed to a subsequent pa-
per ~

VI. CONCLUSIONS

%'e have found that the electronic structure of a
system with a Hamiltonian, as given by Ell. (1), is
in many important respects quite independent of
the structure in which the atoms are distributed,
provided only that the local coordination of four
neighbors is maintained throughout the structure.

The rigorous demonstration of the existence of
a gay in the density of states, regardless of the
structure involved, has important consequences
for the interpretation of the experimental results
for amorphous semiconductors alluded to in Sec. I.
There has been, in the past, some reluctance to
acknowledge the possibility of a zero density of
states in the gap as being a reasonable postulate
even for an ideally prepared amorphous structure.
In the model considered here, not only is the gap
preserved in the amorphous state but it is presum-
ably larger than in the diamond cubic structure,
since in the latter case all bounds are attained and
the gap has its minimal value.

In reality, amorphous semiconductors have a
certain amount of quantitative disorder as well as
topological disorder. Throughout the structure
bonds are stretched and bent somewhat and con-
sequently the quantities V& and V2 cannot be pre-
cisely the same everywhere. Furthermore, it is
only the nearest neighbors that are coordinated in
very nearly the same way throughout the structure.
This means that if matrix elements between more

) v, /v~[ =&/a

hs X4

X

ee

W

FIG. 9. Band StXO,Chare
for th6 spGclR1 cRsG of the
diRDloDd cQbic 8tx'QctUFe,
with V2= —1, V~= —@.
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[v, gv2[=&/s

-2

r2+ r25

FIG. 10. Band struc-
ture for the special case
of the diamond cubic
structure, vrith V2=1,
V) =- —.1

3 \eegs

X U

widely separated orbitals were to be incorporated
in an attempt to refine the theory, it would not even
be a reasonable first approximation to consider
these to have constant values throughout the struc-
ture. Thus, there is some quantitative disorder
imposed on the topological disorder which is the
main characteristic of these solids.

The present work has shown that topological dis-
order. - bg.-j.tgqlf produces no narrowing of the gap.
However, it remains to be seen what the effect of

the superimposed quantitative disorder may be.
Economou and Cohen~s have studied Hamiltonians of
a simple type with (purely) quantitative disorder,
discussing, especially, the formation of band tails
of localized states. Since the study of topologically
and quantitatively disordered systems looks for-
biddingly difficult, interpretation of experiment
must, for the present, be based on the independent
study of each type of disorder and the synthesis of
ideas from both. Our results should, therefore,

L3

f 0

FIG. 11. Band structure for
the speciaj. case of the diamond
cubic structure, vrith V2= —1,
Vg = —l.

L,
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Vj /Va ~l/4
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Vi /V2 -'I/2

V) /V2 =1

FIG. 12. Density of states for the
diamond cubic structure with the
same overlap parameters as in Pigs.
9-11. Note the |)functions, which
correspond to flat bands in Figs.
9-11.
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not be set in opposition to those of Economou and

Cohen, "but rather should be considered as com-
plementary. On the other hand, they should help
to correct a prevalent notion that topological and

quantitative disorder amount to much the same thing
and that the insights gained by a study of quantitative
disorder alone are sufficient for interpretation of
the properties of amorphous soMs. The implica-
tions of the present study for such interpretation
will receive more attention in subsequent papers, '0

together with various extensions, generalizations,
and applications of the basic theory.
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APPENDIX A: SOME PROPERTIES OF THE ALLOWED
BANDS

This Appendix contains the justification for some
of the remarks of Sec. IV concerning the distribu-
tion of the density of states in the allowed bands,
and in particular, at the band edges. The analysis
of Sec. IV demonstrates that states at the band edges
are of four types. They are bonding s state, anti-
bonding s state, bonding p state, antibonding p state
(Fig. 8). These correspond, respectively, to

I'», and l"» for the diamond cubic structure.
The existence and degeneracy of these states de-
pends critically on the topology of the structure.
For instance, an antibonding s state must have a
wave function of opposite sign on nearest neighbors.
This is impossible if the structure has fivefold
rings, as does the random network model, and
hence, this state cannot, in general, be constructed

and the corresponding bound on the density of states
is not, in general, attained. It may be that states
infinitesimally close to it are attained, but such
questions must depend sensitively on the details of
the structure.

The topological arguments necessary for a dis-
cussion of these states have been set forth else-
where. ~4 Whereas the antibonding s state is not,
in genera/, realizable, the other three are and
hence the corresponding bounds are expecbbN('to

be attained in general. In the case of the bonding
s state, the latter statement rests on the assumption
that the existence of this singly degenerate eigen-
state, which by itself is of negligible weight in an
infinite system, is indicative of the presence of a
band edge at that energy. We suspect that this is
always the case for systems which obey the con-
dition of bounded density variation, but this has
not been proved. The other two attained bounds are
associated with 6 functions in the density of states
(i.e. , states whose degeneracy is of order N) so
the problem does not arise for them.

The 6 functions in the density of states were ex-
plicitly demonstrated for the diamond cubic struc-
ture in Sec. V. In that case they arose from flat
bands in the calculated band structure E(k). We
shall now show that such 5 functions are a general
feature of the Hamiltonian and prove, subject to
the condition that the network be connected, that
these 5 functions always have strength unity. Each
contains one state per atom. (Here and elsewhere
we do not include a factor of 2 for spin degeneracy
in counting states. )

It is again most convenient to use periodic
boundary conditions. Then we require to find how
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many orthogonal bonding or antibonding wave func-
tions of pure p type can be assembled. If we do not
require any matchiIIg condition between atoms there
are 3N orthogonal P functions in all. These may
be regarded as defining a 3N-dimensional vector
space. The question is, if we require perfect anti-
bonding everywhere, how many orthogonal vectors
can be constructed from these 3N vectors to satisfy
this condition. It is easily seen that the antibonding
(or bonding) conditions may be represented by 2N
linear relations among the elements of the vector
defining any p function, since there is one matching
condition per bond and two bonds per atom. This
means that there are at least 3N - 2X= N functions

satisfying these constraints. It is not, however,
obvious that these constraints are independent.
However, we can show that at least 2N -1 of them
are independent, provided that the system is con-
nected, i.e. , we can connect any two atoms by an
unbroken chain of bonds. If this is so, then we can
construct a wave function which obeys all of the
matching conditions except those associated with
any given pa@ of bonds A and B. To do so, we
first construct a p function obeying all the Inatcblng
conditions and such that the coefficients of orbitals
P,~ along a path connecting A and 8 are
++ ——++ ——... in the bonding case or +-+ —+
—~ ~ ~ in the antibonding case. This can always be
done by the kind of construction used in Ref. 14.
New a reversal of sign of all coefficients along this
line preserves the p-like character of the wave
function and results in an infringement of the match-
ing cegditlons at A. and B only. Hence, the re-
maining conditions are independent of those at
A and 8 and so at least 2N —1 matching conditions
(and the corresponding linear constraints) are in-
dependent. It follows that the dimensionality of
the space spanned by the bonding (or antibonding)

p functions is N or @+1. In the limit as N tends
toward infinity there is O~g p function of each type
Per atom and such states, therefore, produce 5

functions of unit strength in the density of states.
Finally, we ask how many states are contained

in each band. In either of the limits V& = 0 or
V3= 0 the answer is trivial since the Hamiltonian
decouples. In the case Vg = 0 we have two bonding
states and two antibonding states per atom. For
finite N and quasiperiodic boundary conditions we
can infer that there are two states in each band
for 0& I V, /V21 & —,'. This follows because the eigen-
values of a finite real symmetric matrix are con-
tinuous functions of its matrix elements. ' Thus
the KV eigenstates in each band cannot leave the
region of energy defined by the bounds on the den-
sity of states as we change I V& /V2I between 0 and

Similarly, we can show that for all —,'& IV, /Val
&~ there are three states per atom in the p band
and one in the s band. Again, these statements
apply only in the infinite limit if we do not have
quasiperiodic boundary conditions.

APPENDIX B: BAND STRUCTURE FOR THE DIAMOND
CUBIC STRUCTURE

In this Appendix the band stlucture of a diamond
cubic crystal is worked out using the Hamiltonian
(l). This calculation parallels that of Hall, "al-
though we have pursued it further to obtain an
analytic expression for the density of states. The
diamond cubic structure is conveniently viewed as
fcc with two atoms at each lattice point. A single
cube of the diamond cubic structure is shown in
Fig. 13 with the unit cell indicated with dotted
lines. Each atom has four states associated with
it and so there are eight states in the unit cell.
These are indicated by numbers which go from 1
to 8, where each number refers to an sp orbital
In) directed along that particular band. Because
of the translational symmetry we can use Bloch's
Theorem and have only to diagonalize an 8 & 8 ma-
trix H» at each point in k space, where II» is given

by

0 0 0

Vl 0 Vg Vg

V, V, 0 V,

Vg Vl Vq 0

0

0

V~r, rg

0 V~ 0 0,

0 0 V3

0
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Det~ef, -E„-~=0,

[(E„-+V,)'- V,') ([(E-„+V,)(E„-- SV,) —V',]'

—4Vf V, (1+n~, )]= 0, (B2)

where Q~yg is given by

Q~g = cos pkg g cos pl~ 6 + cos gk~ 8 cos gag p.

+ cos2k~g coszk„g .

FIG. 13. A uriit cell of the diamond cubic structure,
il1ustrating the notation used to set up the secular deter-
minant

The eight roots of the eigenvalue equation (B2) are
given by

Ep = —V& + V2. (twice),

E;,= —Vq —Vz (twice),

E), = Vg + [4Vg+ V2+ 2V, V~(l + n„„,) ~ ]' ~

(B3)

with n going in sequence from 1 to 8, The summa-
tion over r, is over unit cells, where N/2 is the
number of unit cells in the structure and the unit
cell in Fig. 13 is taken as the origin of coordinates.
%e also have

y„=exp(ik„a/2), y„=exp{ik„a/2), y, = exp(ik, a/2),

where a is the side of the unit cube as shown in
Flg. 13,

The energy levels Eg at k are determined by
putting

The band structure from these roots is shown in
Figs. 9-11 for three different values of the ratio
} V&/V, } . V, and V, are both chosen to be negative
so that the s states and bonding states have the
lowest energy. The band structure is shown along
the path I'XUI. I' in Figs. 9-11 for the Brillouin
zone of an fcc lattice. ~ The notation for the sym-
metry types of the eigenfunctions follows that
of Herring. It can be seen from (B3) that the
bonding and antibonding p states give flat bands and
lead to 6 functions in the density of states at energi. ea
of —V&+ t/"z, both with weight ¹ The density of
states per atom due to the other four branches may
be written

1
vN g E —Vg+ [4'+ V2+ 2Vg V3(l+ n„„,) ~)' p~~3 E —Vg —[4Vg+ V2+ 2Vg V2(1+ n~, )'~ ]~~ ~

1 1
@ —~i+(4~i+~l —2~, Ys((+o'.„)"')"'& —)', —[4)'(+('s-2);)'s((+a, )'~ P~')

2 2 1

N
[{E Vg) 4Vg Vm] (E Vg) Im~

[( )2 4 2 2]2 2 2(1 )
B4)

where the only k dependence in the summation in (B4) enters through n„„.Im denotes the imaginary part
when a small imaginary part is added to E. This density of states can be expressed in terms of the Green's
functions for an fcc lattice 1„,(e) which have been calculated numerically by Frikee':

( I'

dxdg d8
2w ) „e—(coax cosy + cosy cosg+cosx cosx) (B5)

Therefore,
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1 [(E —' Vt) —4V, —Vs ] [E —Vt] [(E —Vt) —4Vt —Vs]
7r 1 2 V~ V, —1 (B6)

Notice that adding a small imaginary part to & is
equivalent to adding a small imaginary part to E,
apart from a possible sign change. However, this
sign change is exactly compensated for by the factor
in curly brackets in (B6) with the result that the
density of states is always positive. In a recent

paper, Joyce has expressed the integrals It„(e)
in terms of complete elliptic integrals of the first
kind. We refer the reader to Joyce's paper for this
further reduction. The density of states (B6) is
shown in Fig. 12 together with the 6 functions at
—v, ~ v, .
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Charge-Transfer Model of the Nonlinear Susceptibilities of Polar Semiconductors*
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The second-order optical susceptibilities of III-V and II-VI compounds are calculated on the
basis of a charge-transfer model and shown to be in close agreement with the experimental
values. The importance of the d-electron contributions to the determination of the sign of the
nonlinear susceptibilities of polar semiconductors and other compounds is also discussed.

In the optical transparency region, the behavior
of the second-order susceptibilities g' ' in dielec-
trics is closely related to the characteristics of
the valence electronic distribution. For simple
structures this quantity can be calculated now by
molecular-orbital methods. ' For polar diatomic
semiconductors simpler methods, based upon
the prescriptions of Phillips and van Vechten, have
also been used to describe the macroscopic elec-

tric susceptibility for sP -bonded III-V and II-VI
compounds. The bond-charge model ' yields re-
sults apparently in good agreement with experi-
ments. However, the adjustable parameters and
assumptions used are not easily justified.

Here we want to show that exactly the same re-
sults can be obtained simply, without any of the
troublesome assumptions about the bond charge,
by a completely different model that sheds more




