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20.
Finally we would like to comment on the interpre-

tation of Cowley's values on the linewidth. We
presently treat these values~ as half wid-th at half-
intensity, based on Table 7 of Ref. 12. Qther
workers have taken these values as full width at
half inte-nsity. Itis. essential to use the correct
interpretation of these values, inasmuch as a
factor of 2 affects the conclusions derived from the

comparison of theory and experiment, as per Fig. 1.
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An isolated interstitial in silicon at the nominal site is investigated using a procedure based
on the expansion of the wave function in terms of the Wannier functions of the perfect crystal
and using a pseudopotential for the defect potential. Scattering phase shifts are calculated for
states within the valence band and a search is made for bound states within the band gap. We
discover that there is no bound state in the band gap associated with this defect. The change in
the one-electron energy arising from the interstitial is calculated and combined with the corres-
ponding quantity for a single vacancy. We find this major contribution to the formation energy
of the vacancy interstitial pair to be 13.6 eV.

I. INTRODUCTION

An imperfection or an impurity in a semiconduc-
tor may produce a state with an energy within the
band gap of the crystal. A general method of study
of these defect states and of the change in the den"-

sity of states was given by Callaway. '3 In this

approach, the wave function of the defect state is
expanded in terms of the Wannier functions for the
perfect crystal. Matrix elements on the Wannier-
function basis are formed both for the defect po-
tential and the Green's function. Solutions of a
determinantal equation yield the bound state. The
scattering phase shifts defined in terms of real
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and imaginary parts of this determinant are related
to the change in the density of states due to the
defect. 2

This method has been used to calculate the lo-
calized states for an isolated single vacancy and
for the divacancy in silicon, s with successful re-
sults. Recently, the formation energy of the va-
cRncy wRS calculated using these techniques.
However, the results obtained could not be com-
pared directly with values inferred from experiment
because the calculation was incomplete in that it
did not include the changes due to the accompanying
interstitial, and the lattice distortion.

In this work, we use the techniques of solid-state
scattering to investigate an isolated single inter-
stitial silicon atom at the nominal site, namely, the
body center of the cubic lattice.

Two major results are obtained in this calcula-
tion. One is the absence of a bound state in the
band gap, which possibly can explain the lack of
any direct evidence of the existence of an inter-
stitial in silicon. The other is the change in the
one-electron energy arising from the vacancy-
interstiti. al pair formation. However, to obtain
the formation energy we still need the effect of
lattice distortion and the change in the interaction
energy.

In Sec. II we give a summary of the mathematical
theory of solid-state scattex ing, ' the phase shifts, 2

and their relationship with the change in density
of states. In Sec. III we give the method of evalu-
ating the wave function used (plane-wave coeffi-
cients in the expansion of Bloch function) and the
pseudopotential coefficients. Section gf deals
with the potential to describe the interstitial and
the symmetry relations between various matrix
elements of the defect potential; and the compu-
tational details are given in Sec. V. Finally in
Sec. VI we present the results of this investigation.

II. REVIEW( OF METHOD

The single-particle Hamiltonian II can be written
as

I/2
d'~8 ""~4.(it, r), (2. &)

and provide an excellent set of basis functions for
expanding the solution of

(H, + V) g(r) = E }}}(r), (2. 4)

g(r) = Q B„(RJc„(r-5„),

= P (np.
i Vifv)B, (K„), (2. 6)

(ng~ V} tv} fa~(i—}}„}V(T}a (r-R}d'r

(2. 7)

z(}}}=,fd'ax. (1}el' (2.8)

Now we introduce the Green's function G„(R„-R„)
which satifies the equation

g„[z5,„-z„(5„-5„)]G„(f„-R,) = 5„. (2. o)

It can also be expressed as

g @i% ~ 5
G„(R)=

( ), (2. lo)

where E is replaced by E+ie and e is allowed to
go to zero after the integration is performed, to
treat the case when E lies within the band n.

The coefficients B„are now the solutions of

B„(R„)=B'„"(R„)+Q G„(%,-R„)

x(nvi Vi fp) B,(%,), (2. ii)

where the sum includes all bands (n) and all lattice
sites (i1), including the site (or sites) of the defect.

The coefficients B„(R„)are required to satisfy
the equation

Q [z n„„-z„(5„-R„)]B„(R„)

where H~ is the Hamiltonian for the perfect crystal
containing a peri. odic potential, and V is the change
caused in this potential by the defect.

The eigenvalues and eigenfunctions of IIO are
given by

a,y,(%, r) = z„(%)y„(%,r), (2.2)

wllel'8 $„(%,1') ls tile Blocll function a11d E„(k) ls tile

energy as a function of k, n being the band index.
The Wannier functions (involving all atoms in the
unit cell) are given by

where B10'(5~) is a solution of the homogeneous
equRtlon

Q„[z~,„-z„(R„-R„)]B1'}(5„)= o . (2. l2)

D(z) =det[I —GV]

Equation (2. 11) is analogous to the Lippmann-
Schwinger equation of formal scattering theory.
The solutions and the asymptotic form of the wave
functions are described in Ref. l.

The information needed to locate the bound states
and the change in the one-electron energy arising
from the defect is contained in the determinant
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= det[5„, 5„„-5G„(5„-Rp) (n p~ &~ &v)] . (2. 13)

The bound states of the defect are present at
real energies Eo, such that

D(E,) =0 (2. 14)

and occur outside the band. For energies inside
the band D is complex but we have a scattering
resonance' whenever

ReD(zo) = 0,
and the width of the resonance is

I' = 2 lmD(zo) Re
dD(z)&
dE ) 0~

(2. 15)

(2. 16)

The change in the density of single-particle
states, AN(E), produced by the defect has been
shown to be2

c d4
~N(z) = ——,

dE ' (2. 17)

where c is the concentration of defects (c must be
small, i. e. , terms of order c2 can be neglected)
and 6 is the phase shift for a single defect given
by

tan 5= -ImD(E)/ReD(E) . (2. 16)

The contribution to the change in the total one-
electron energy arising from the band states is

hz= E &N(E) dz,
0

(2. 19)

where E is the energy of the highest occupied
band state (zero of the energy is set at the bottom
of the band).

Since D(E) is real outside the band, 5(0) and
5(E ) must approach some integral multiple of v

(zero included).
For a repulsive potential (for example, vacancy}

the change in energy is given by

"~acU„(k)= ~ )
e'~'~v„(r) d'r (3 3)

for all values of k in the Brillouin zone. Vfe shall
use the analytical expression given by Callaway
and Hughes, ' derived by matching with Brust's'
coefficients for k values equal to the reciprocal. -
lattice vectors and Harrison's prescription to eval-
uate U„at 0=0. Thus we have

U„(k) = —(0. 61)+ (0. 177 311)q —(0.016 250)q

+ (0.000530)q, q &12 (3. 4a)

a.nd

U,~(k) = 0,

where

(3.4b)

(3.4c)

strong and gives rise to core states as wel. l as the
valence states of iriterest. The wave functions for
the valence states must be orthogonal to those of
the core states. This can be conveniently achieved
by the use of pseudopotential. 3-' This wi11 simplify
the calculation of energy bands in perfect crystal
and the evaluation of the matrix elements by repre-
senting V in terms of the atomic pseudopotential.

The pseudopotential is local in the sense that
its matrix elements between two plane waves are
functions only of the wave-vector difference, i.e. ,

(ki V„i q)= U(q-k) (3. 1)

and

V„Iq&= P v„(r —R„,)~q&, (3.2)

where v„(r -0») is the atomic pseudopotential
for an atom at the jth site in the unit cell located
at P„and V'„ is the total crystal pseudopotential.

The pseudopotential coefficients needed in our
calculation are the Fourier coefficients of v„, i. e. ,

d,z=c g (e, -z„)- —
I 5(Z) dZ~,

m Jo ]
(2. 20)

To obtain the band structure we expand the Bloch
function in the form

dd = c Z d, ——
I d(Z) dd )l ni ~ 0

(2. 21)

III. ENERGY BANDS AND WAVE FUNCTIONS

In order to evaluate the matrix elements of the
defect potential using (2. 7), we need an expression
for the defect potential V and a way to determine
the Wannier functions (also the energy bands for
evaluating the Green's function).

The true potential of a silicon atom is quite

where n is the nu&..ver of bound states due to the
defect (all occupied) with energies e, (/= 1, ..., n)
For the opposite case of attractive potential (inter-
stitial, for example), one has the result

Q, b„'(k, K,) b, (}|,K,)=5„~, (3.6)

We shall choose the origin at the point halfway be-
tween the two atoms in the unit cell, such that the
atoms in the unit cell at the origin (R„=0) are at
points

~
r~ = +d. This choice of the origin makes

b„'s real.
The functions b„'s are the eigenvectors of the

matrix H&& whose elements are

g„(k, r)=
(

„,p Q b„(%,K,) e"""'', (3.5)2') s

in which K, is the reciprocal-lattice vector. The
quantities b„are the momentum wave functions for
band n and satisfy the orthonormality relation
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(5 /2m)(k+K;) —0.61,

Ei„(K;—K~) cos[(K; —K,) d], f xj .~
~ ~

~

s=j
(3 7)

To limit the computational labor involved, we ter-
minated the sum in (3. 5) to 15 reciprocal-lattice
vectors which included the vector (000), eight vec-
tors of the type (111), and six of the type (200) (units
of 2v/a).

The eigenvalues E (k) obtained by diagonalizing
the matrix H;&(k) are not the energy bands. It is
found that usually two or three subscripts will be
involved in obtaining a band over the entire zone.
Of course, we need to consider only the 4', subzone
of the Brillouin zone with the bounding interior
planes for the subzone D used being k, =0, k„= k„,
and k~= kg.

The energy bands are now identified in the sub-
zone D by taking some reference point and following
the symmetry and behavior of the wave function as
we move from point to point in D. During the
course of this, we find that the label m on the nu-
merical eigenvalue changes. The wave functions
at two points in the k space are connected by the
relation (for k such that we have isolated energy
bands)

b„(o.k, K,) = X„'"(o.)b„(k, a 'K,)e '"-' I~, (3.8)

where o! is an operation of the cubic group, 8 is
nonprimitive translation corresponding to &, and
X„~' (o.') is the character for the operation n in the
jth one-dimensional representation of the point
group. Both X ~~'(n} and e ' ' ' ~ have the numerical
value + 1 (in the case of diamond lattice).

We may use the relation (3.&) to determine
x„'~'(o') by considering the specific case of an o.'

that leaves k unchanged and K,= 0 (say). Thus we
have

of the wave functions for two bands. Thus F"J(o.)
is replaced by I' „(n) where m and n take values
1 and 2.

IV. ISOLATED INTERSTITIAL

As mentioned in Sec. III, we can represent the
defect potential V by just the atomic pseudopotential
at the position of the defect. We consider here the
case of the nominal interstitial, i.e. , the intersti-
tial silicon atom is placed at the point

d = —,'a(3, -I, -I), (4. I)

(4.3)

where 5~ is a lattice vector, the result of the op-
eration is simply to transfer the interstitial to an
equivalent site, i. e. , the new position Pd has the
same relative position for another cell as d for the
cell at origin. Consequently, we are able to con-
nect the matrix elements (ny[ Vl Ev) with (n p, '[ Vl I&')
where R~. and R„. are related to R~ and R„ through

P
From (4. 3) and the fact that the pseudopotential

depends only on the magnitude of r, we find

v„(r —d) = vy,~[(Pr+ R,) —d] (4. 4a}

ol

V(r) = V(Jr+5&) . (4. 4b)

where a is the lattice constant for Si (equal to
5.418 &&10 ' cm) and the regular atomic sites for
this cell are s-,'a (1, 1, 1). The defect potential is

V(r) = v„(r —d) . (4. 2)

A. Equivalent Sites

If for an operation P (with Kz = 0) in the cubic
group we have

b.(k, o)=x'."( ) b. (k, o), (3.9a) Making use of the transformation properties of
the Wannier functions, ' namely,

where

a&k=k . (3.9b)
a„(r —R„)= X„'"(o')a„[o'(r—0„)],

we find

(4. 5)

Thus, we have if b„(k, 0) WO, X= 1. In order to have

x = —1, we must have b„(k, 0) = 0.
At points k where we have double (or higher-

order) degeneracy of energy bands, the relation-
ship between the b„'s is not as simple. For an op-
eration n (with associated nonprimitive translation
t ) belonging to G(k), the symmetry group of the
point of degeneracy k, we now have'

(&el VI Iv) = (~v'I v[ Iv') x.(P}x~(P)

where

R„.= PR~+5q, R„.= PR„+5q

or

R~, = P (R~ —R~), R„e——P (R„—Rg) .

(4. 6)

(4. 7a)

(4. 7b)

b„(k, n ~ K,)e ' .' = Q. I'".„'(n) b.(nk, g),
(3. 10)

where I""„'(n) is the mnth matrix element of the
operation a in the 1th irreducible representation of
G(k). For the cases we deal with in here, we have
at most a twofold degeneracy involving the mixing

Thus we find that the matrix elements for dif-
ferent cell-site vectors R~ break into groups such
that a vector %~ can be connected with the others
in the same group by the use of (4. 7). Table I
gives the distances from the defect for the different
5~'s for three site groups (actually, they should
be referred to as four groups but since site number
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Site group Site No.

8
9

10

Rp
(units ~a)

(000)
(1-10)
(10-1)

(110)
(101)
(200)
(0-1-1)

(01-1)
(0-11)
(2-1-1)

IR„-dI
[units (~ga) ]

ii
i6

2—ii
16

TABLE I. Lattice-site vectors (R„) and the correspond-
ing distances squared from the interstitial site (cf) for the
three site groups, with a total of ten cells.

we have a total of 25 site pairs for which matrix
elements must be evaluated. Table II gives a list
of these pairs and the number of total matrix ele-
ments to be evaluated in both three-band and six-
band problems.

On the basis of previous results in cases of a
single vacancy and divacancy, ' we use only the
first three valence bands for the phase-shift part
and only the lowest three conduction bands when
we look for a bound state (in vacancy, a bound state
was expected above the top of the bands, so the va-
lence bands were used}. (Here we expect the bound
state below the bands, if any, and so must use the
conduction bands. }

V. COMPUTATIONAL DETAILS

With the use of (2. 3) and (3. 5) we obtain

7 forms a group by itself but has the same distance
from the defect as site numbers 4-6, we have in-
cluded it in site group 2).

For the ten lattice-site vectors listed in Table I, sf('(+ R~& ~ ( 8-
&ig & (5 l)

TABLE II. Twenty-five types of potential matrix elements which must be considered for the three site-groups prob-
lem with the ten lattice vectors of Table I. Columns 4 and 5 give the number of matrix elements that must be evaluated
for the problem with three and six bands, respectively. The last column gives the number of matrix elements that are
obtained through the use of symmetry relations for the three-band problem.

Site
pair No. Matrix element

Band
indices

No. of matrix elements
to be

calculated

No. of matrix elements
available

from use of
(4. 6)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

(n, 000 I V I l, o00)
(n, 1-10I V I l, 000)
(n, 110 I V I l, 110)
(n, 110 I V I l, 101)
(n, 200 I V I l, 000)
(n, 000 I V Il, 200)
(n, 110 I V I l, 000)
(n, 000 I V I l, 110)
(n, 0-1-1 I V I l, 0-1-1)
(n, 1101V I l, 0-1-1)
(n, 0-1-11V I l, 110)
(n, 0-1-1 I V I l, 000)
(n, 000 I VI l, 0-1-1)
(n, 01-1I V I l, 01-1)
(n, 01-1 I V I l, 0-11)
(n, 01-1 I V I l, 000)
(n, 000 I V I l, 01-1)
(n, 01-1 I V I l, 1-10)
(n, 1-10I V Il, 01-1)
(n, 01-1 I V Il, 110)
(n, 110I VI l, 01-1)
(n, 01-1 I V I l, 101)
(n, 101 I V Il, 01-1)
(n, 01»1 I V I l, 0-1-1)
(n, 0-1-1 I V I l, 01-1)

n~l
n —l
n~l
n —l
n&l
n& l
n —l
n&l
n —l
n —l
n&l
n~l
n& l
n —l
n~l
n l
n&l
n —l
n&l
n l
n&l
n l
n&l
n&l
n&l

Totals

3 bands

123

6 bands

21
21
21
21
21
15
21
15
21
21
15
21
15
21
21
21
15
21
15
21
15
21
15
21
15

471

3 bands only

27
54
27
54
36
18
72
36

9
36
18
36
18
27
54
72
36
36
18
36
18
72
36
36
18

900
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I

e-(()qq if8) ~ v (~r d)V&~

«'~& ~~& &d, d3I, de. (5. 2)

Using the pseudopotential Fourier coefficients
given by (3.3}, we can rewrite (5. 2), i. e. ,

Q~

(~il�ail&~)=

22 6

exp (i [(Tc+K,}~ (5„-d)
a, t

which are either purely real or purely imaginary
depending upon the band index n (as indicated in
Table III of Ref. 3). The defect-potential matrix
elements are given by [using (4. 2) for the defect
potential j

(ni4~ V~ Iv)=, g ()~[5„(k,K,)5, (p, K,)2w s,4g

the sum over t includes the 15 values of inverse
lattice vectors chosen, and the sum over s now ex-
tends to 65 vectors formed by taking the difference
of two vectors K, and K& each going over the 15
values. Also the sum over t is limited to only those
values of K, which give K,+K, belonging to the orig-
inal 15 values. The choice of (i sin) or (cos) de-
pends on the pair of bands n, l being used.

In Ref. 3 the expression (5.4) has been used and

ten points in the subzone were taken to do the k
and p integrals. Even that limited number of points
required about 6 min of high-speed computer time
for each matrix element.

In the present work we have improved the ac-
curacy by using a different technique. We use here
Houston's method' to evaluate the integral over
the solid angles and then the Gaussian method for
the k™magnitude integral.

Houston's method of evaluating integrals over
the Brillouin zone consists of expanding the inte-
grand (which possesses the symmetry of the cubic
group) in terms of cubic harmonics of von der i,age
and Bethe, 9 and then using the orthogonality of
these harmonics to evaluate the integral. If, for
example, we are interested in an integral

-(p+ K,) ~ (R„-d)]) b„(k, K,)5,(p, K,)

&&V„(p+K, -k —K,) dskd~P . (5. 3)

In (5.3) the % and p integrals extend over the
whole of the first Brillouin zone. To evaluate these
integrals, one could take points only in the ~4, sub-
zone (D described earlier and used in Ref. 3) and
replace k by Pk with a sum over the operations P
(similarly p-yj and a sum over y}. This leads to
the expression (after some mathematical rearrange-
ment)

I= Eq dq, (5. 5)

we expand F(q) using coefficients a&'s

F(41)= Z& 44&(q) &&(8, 4')

such that

1= (4 rr)' r fqq qrqr (q),

(5. 6)

(5. 7)

where a, (q) is given by inverting (5.6). If we ter
minate the expansion (5.6}with N terms, we find

Q~
(n i4~ V~ I) )=,)| d'u

a, (q}= Q (Q ')„F(q,8;, Q,) . (5. 6)

d'& Z, () .,( -yp+K, )
S4y

rr r' I.".'I ((()R„' rr- 44(„rq)r
-(k-yT. K.). ed).*" "X,(p)X.(8)

&& Q b, (p, y K4) b„(k, K4+ K4}e ' 4
' )',

t

(5. 4)
dk=~ d A,=

4S) (5.6)

In (5. 6) F(q, 8„$,) is the value of the integrand at
the value q (for the magnitude) and in the direction
defined by the angles 8„$,. The quantities (Q '}„.
are the "weight factors" for these directions and
are evaluated by inverting the matrix formed from
the cubic harmonics. The values of these quantities
for choices of N up to 16 are given in Ref. 8.

In the present case the integrand in (5. 3) does
not possess the cubic symmetry but it does in (5.4).
So we shall use expression (5.4) and the change

where the sums P and y extend over all operations
of the cubic group (however these sums can be re-
duced to a smaller number depending upon the sym-
metry groups of k and p points used, respectively},

where the integral on the right-hand side is over
the whole zone. In changing from the Brillouin
zone to Houston's method we also replace the Bril-
louin zone by an equivalent sphere which introduces
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certain errors. However, in the case of a face-
centered cubic lattice the errors involved are quite
small (for other lattices, one can use methods sim-
ilar to those suggested by Ganesan and Srinivasan'0).
Thus we get

02
(nP,

~
V~ f)2) =

( )6( )» P k»(2)g» P (4l»

TABLE III. Results for four different values of X, the

strength of the potential. Listed are the location of the

bound state (zero of the energy is at the bottom of the

valence band), the contribution to the change in one-elec-
tron energy from the phase shifts (bZ~h 8 ), and the total
contribution (L5$) from the interstitial. Last four lines

give the locations (Eo~ and E02) and widths {I'~,I'2) of the

two scattering resonances found inside the valence band.

All quantities are in rydbergs.

x g s' sy py

x [)N„k-P[[„xp—(keK, —}pQ Pt}[)

Bound state
~yh. s.

I'g

802
r2

0, 9
-0.005
—0. 576
-0.581

0.407
0. 013
0. 668
0. 08

1.0
-0.011
-0.635
-0.646

0.406
0. 010
0. 663
0. 043

1.04
-0.013
—0.658
—0.671 .

0.406
0. 009
0.661
0. 034

1.1
-0.014
-0.692
—0.706

0.406
0. 008
0.659
0. 028

x Q b, (p, p-'K~)b„(kK, +K~)e'"
)t

(5. 10)

integrals. In that case, the method outlined in

Ref. 4 was used.

where &g~ is the weight factor for the k magnitude
in the Gaussian integration and +h~ is the weight

factor for the 5 direction in the Houston's method.
With the choice of five terms in both the Gaussian

and Houston integration, it took about 10min of
IBM 360/65 computer time with the most efficient
programming. Even though five terms are not
much, it should be able to accommodate changes
in the integrand for a polynomial up to the tenth
degree.

The evaluation of the Green's function was also
done in a similar way for E values below the con-
duction bands, but since it does not use enough
points it was not used for E values within the va-
lence band where one has to do principal-value

5.0

VI. RESULTS

The scattering-phase shifts, as defined by (2. 16),
were evaluated for the three valence bands. The
results for the three site groups, listed in Table
I, are shown in Fig. 1. The bottom of the valence
bands is taken as the zero of the energy scale.
Phase shifts are zero at the top of the valence band
and rise towards m at the bottom of the band, in-
dicating the presence of a bound state below the
band.

The study of the determinant (2. 13) below the
band does indeed show the presence of such a bound

state. The energy of this bound state is -0.011
Ry (i. e. , 0. 14 eV below the valence band).

Two resonances are indicated by the rapid in-
crease of the phase shift through —,

'
m as the energy

is increased. The position (Eo) of such a resonance
is given by the vanishing of the real part of the
determinant, i.e. ,

2.5— ReD(EO) = 0, (6. 1)

2.0

1.5

I.O

or the energy at which the phase shift goes through
2m during the process of increasing. The change
in the density of states follows the Breit-Wigner
formula'3

(6. 2)

where

0.5 r=2 Imp(R) ( Rep(R}
0

(6. 3)

I I I I

0 0.12 0.24 0.56 0.48 0.60 O.T2 0.84 OR96

E MERGE (Ry)

FIG. 1. Plot of the scattering phase shift (in radians)
for valence-band states as a function of energy. The zero
of energy corresponds to the bottom of the valence band.

is the width of the resonance. The two resonances
for the case shown are at energies 0.406 and 0.663
Ry with widths 0. 01 and 0. 043 Ry, correspondingly.

The change in the total one-electron energy is
the sum of the contribution from the phase shifts
and the occupied bound states, i.e. ,
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AE= ~ +DE

where

d E~, ——-(2/1T) ~t 5(E)dE
00

and

(6 .4)

The contribution from the phase shift has an extra
factor of 2, as compared to result (2. 21), to allow
for the two possible directions of electron spin.
The factor N in bound-state contribution has a value
of 1 or 2 depending upon whether it is occupied by
one or two electrons. However, since this contri-
bution is negligibly small, we can ignore this dif-
ference.

Studies were made for different potential strength~

by just replacing Vby A. V. Table III shows the re-
sults for four values of A. .

From the study of the single vacancy, ' it was
concluded that a value of X = 1.04 is required. The

change in the one-electron energy for this case is
now found to be -0.67 Ry. The corresponding value
for the single vacancy is 1.6V Ry. Thus we get a
net change for a vacancy-interstitial formation of
1.00 Ry or 13.6 eV.

To evaluate the actual formation energy of the
vacancy-interstitial pair, one has still to consider
the change in the energy associated with the Cou-
lomb interaction of electrons in the neighborhood
of the vacancy and the interstitial and the lattice
distortion in the two areas.

We searched for a possible bound state in the gap
below the conduction bands. None was found. This
can possibly explain the lack of direct evidence of
the presence of an interstitial in silicon.

Further study on other possible interstitial lo-
cations is in progress.
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The shift of the Fermi energy because of an applied electric field is determined from
Burstein-shift measurements in GaSb at 77 K up to field strengths of 150 V/cm. By com-

parison with results of the Burstein shift at lattice temperatures up to 105 K without an elec-
tric field, the electron temperature is obtained as a function of the electric field. Calcula-
tions of the electron temperature, based on a two-band model, are compared with the experi-
mental results.

I. INTRODUCTION

Hot-electron experiments in semiconductors with

large electron concentrations are often interpreted

by assuming a Maxwellian or a Fermi distribution
function with an electron temperature T„which is

higher than the lattice temperature. Methods of an

experimental determination of T, from Shubnikov-de

Haas measurements ' and Raman scattering' due to
hot electrons have been reported. However,
Shubnikov-de Haas experiments are restricted to

low temperatures and high magnetic fields, and


