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Using neutrons, the "forbidden" (222) reflection in silicon was detected and measured between
15 and 1353'C. At 1001oC the Dawson and Willis anharmonic-force constant was evaluated as
p = 2. 9exlQ tt ergs/At which is close to that derived from the thermal expansion of silicon.
%e have used-these neutron measurements to correct the x-ray /22) structure factor for the
anharmonic atomic motion. The scattering from the anticentrosymmetric valence-charge
density obtained in this way is found to be less temperature dependent than that from the core
electrons. We take this as evidence in support of the shell model and of the failure of the
rigid ion model

I. INTRODUCTION

8'Llicon has the diamond structure which can
be visualized as two fcc lattices separated by & of
the cube diagonal. Vfe may distinguish the two fcc
lattices by denoting them A. and B. The sites of
these two lattices both have T~ point symmetry,
but the sites on the B lattice differ from those in
the A lattice by inversion symmetry. The nearest
neighbors of an A site all lie on the 8 lattice and

vice versa. For quadricovalent silicon, tetrahe-
dral orientation of bonds is expected with Ss-3P
hybridization. ' The tetrahedral hybx'id from the
A site is able to overlap strongly with the opposite-
ly directed hybrid of the B site giving strong bond-

ing and a net charge density that is anticentrosym-
metric with respect to either site. Those reflec-
tions with Miller indices such that h+k+l = (Modu-
lo 4)+ 2 are the so called "forbidden" reflections
and have a structure factor E(h, k, l)=4(f„-fs).
The f's are the Fourier transform of the time-
averaged charge density of the two sites. Thus,
the intensity of this class of xeflections is a direct
measure of the anticentrosymmetric charge density
of the two sites. This has long been recognized
as the explanation for the otherwise forbidden re-
flections observed in diamond structures. ' A re-
cent x- ray measurement' gives F (2, 2, 2)= l. 46
+0.04 for silicon.

However, another possible cause for site asym-
metry can exist in diamond structures. Because
of their tetrahedral environment, each atom sees
a nearest neighbor in one directio~ and a "hole"
in the opposite direction. At high temperatures, we
might anticipate that an atom spends more of its
time making excursions toward the hole than toward
its neighbor. This anharmonicity in atomic motions

F(h, k, l) = (2x/c ) (P/n ) (hkl ) (k 7)

Here, h is the neutron-scattering length, M the
Debye-%aller factor, and a the lattice constant.
They also relate M to e by

(2)

would create a time-averaged asymmetry, also
tetrahedral, in the nuclear distribution. Vfhen

considered together, anharmonic motion of the core
charge and bondi. ng charge work against each other
in the sense that the time-averaged charge distribu-
tion becomes more spherical. These combined
effects become difficult to sort out using x rays
alone. However, neutrons, interacting with what.
for all practical purposes, is a point nucleus mea-
sure only the time-averaged anticentrosymmetric
nuclear distribution. of the two sites resulting from
anharmonic thermal motion. Thus, by combining
x-ray and neutron measurements these two effects
can be sorted out.

Dawson and Vhllis have formulated the problem
for the motion of the atoms in terms of an effective
Einstein potential of the form

V~(r)= Vs+ aa (x +y +s )+ Pxys

which satisfies the T„site symmetry. Assuming
Boltzmann statistics, they expressed the nuclear
distribution as I'„(r)=N e '", where N is the
normalization constant, & the Boltzmann factor,
and T the absolute temperature. The harmonic-
force constant is & and the anharmonic-force
constant is P. The potential for the B site Vs(r)
differs from V~(r) by a change in the sign of the
anharmonic term. They express the neutron
structux'e factor for the forbidden reflections as

F(h, k, l)= —Bike "F(h, k, l),
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F(h, k, I)= (A+B)+i (C+D), (3)

where the real part depends upon neutron polariza-
tion (when an unpolarized beam is used, as in our
case, the sign of this part is immaterial) and

M = 2m2kT (h +k9+lb)/(o!a ).

The thermal-expansion coefficient is given by
g= 8kp/(3o'a). This expression is just twice that
quoted by Dawson and Willis for fluorite in which
there is only one tetrahedral site. In a diamond
structure where both A and B sites are tetrahedral,
a factor of 2 is required.

Aside from the dominant nuclear force interaction
between the neutron and the atomic nucleus, there
is a weak neutron-electron interaction first pointed
out by Foldy. Krohn and Ringo give the value
C~= (- 1.34+0. 03)&&10 cm/electron for the
scattering length arising from this interaction.
There is also a weak interaction accompanying the
neutron's close passage by a nucleus, between the
neutron's magnetic moment and the strong electric
fields within the atom. This Schwinger interaction
has been assigned' a scattering length +iC, (Z-f)
&& cot8, where C, = 2. 92 ~ 10 ' cm, Z is the atomic
number, f is the x-ray atomic form factor, and 8 is
is half the scattering angle. The sign depends on
the orientation of the neutron spin. When these
small effects are included, Eq. (1) is replaced by

unsuccessfully sought previously. ' ' In the pres-
ent experiment, great care was taken to eliminate
harmonics in the incident beam and possible mul-
tiple Bragg events in the sample which would
mask the anharmonic (222). To make maximum
use of the intense neutron flux provided by the
Brookhaven High Flux Beam Reactor, a large
volume single crystal of silicon was employed.

Our incident beam flux was 1.93&&10' neutrons
cm ' sec ', and for the purpose of making relative
measurements of the (222) reflection, a beam area
of 5. 54 cm was used. The peak-to-background
ratio of these relative measurements was optimized
with 20' horizontal collimators placed before the
monochromator, sample, and counter, and the
maximum vertical divergence was 1.O'. At high
temperatures, where the effect is larger, 8-28
scans were employed to make absolute ref lectivity
measurements. For such measurements a beam
area of 1.02 cm was employed with no colimator
in front of the counter. and the maximum vertical
divergence was 0. 9 . During such scans, the
optimum counter position was determined, and for
other temperatures the counter positions for the
relative measurements were determined on the
basis of the thermal expansion of silicon. Our
crystal thickness to was 1.526 cm. The furnace

A = 8e "C,f, cote,

B= 8e C, (Z —f,) Y(h, k, I ) cote,

C =8e "Cyfb,

D = 8e "
(b + C&f,) Y(h, k, I ).

Here, f, is that part of the form factor arising from
the anticentrosymmetric part of the electron charge
density (-bonding electrons), and f, is that part
arising from the centrosymmetric part of the
charge density (- core electrons). The first term
in D is the (222) nuclear anharmonic contribution
which is the effect sought. It follows that f, (h, k, l)

fb (h, k, l). W-e have assigneda value to f, equalto

b of the x-ray (222) structure factor, ' and taken the
usual silicon form factor equal to 8. 04 for f, . The
values assigned the other quantities ' ' axe a
= 5. 431 A, & = 7. 85 ~ 10 erg A, and b = 0. 4151
X10 ' cm For P=3.. 0&&10 ' erg A, 8= 50. 0',
and T= 288 K; 4 = 3.32 && 10 cm, B= 0. 013
~10-'Scm, C= —1.819~10' cm, andD= —3. 74
&10 ' cm. At higher temperatures, the anhar-
monic D term predominates.
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II. EXPERIMENT AND RESULTS

The anharmonic effect is small, and has been

FIG. 1. Plotof the transmitted intensity vs thickness of
boron-glass absorbers. Extrapolation to zero thickness
determines the incident beam intensity. The arrangement
of graphite filters is shown at top of the figure.
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FIG. 2. Loci of double-Brai, g
events in which one or more reflections
can occur simultaneously with the (222}
reflection. The ellipse centered about

/ =0 aad ii=2. 408 )i is approximately
the maximum extent of the resolution
function. The azimuthal orientation of
the crystal is defined at the top of the
figure,
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mas a vacuum furnace capable of melting silicon
mith a maximum sample gradient - 10 'C.

Vfe took great care to eliminate higher harmonics
in our primary beam and to avoid the possibility of
double- Bx'Rgg scRttex'ing. We used R germanium
monochromator reflecting from the (111)planes.
An additional crucial feature mas the use of tuned
pyrolytic graphite filters both befox'e and after the
sample to fu1'ther' ellmlnRte hR1monlc contamina-
tion. ' The combined length of the filters was 23
cm and their arrangement is illustrated at the top
of Fig. 1. The purity of our beam mas verified
by the linearity of the plot in Fig. 1 of the trans-
mitted intensity vs thickness of boron-glass ab-
sorbers over 4 orders of magnitude. Extrapola-
tion to zero absorber thickness determined an
incident beam intensity of 2. 48 x 10 counts per
2x 10 monitor count. This incident beam intensity
was checked using the absolute (111)ref lectivity
of tmo perfect silicon crystals and dynamical
theory to compute the primary beam intensity.
These three determinations mex'e consistent mith
one another to within 5%. A further check on beam

purity mas carried out by positioning the counter
and (111)planes of the sample to diffract harmonic
contaminants. None mere found. At 1001 'C the
purity of the (222) reflected intensity was tested
mith boron-glass absorbers, and no evidence of
contamination mas found.

The measurements of the (222) reflection were
done in symmetrical Bragg geometry. The posi-
tions of double-Bx'Rgg events in mhich one or mox'e
reflections can occur simultaneously with the (222)
reflection are readily ascertained fo11oming Cole
et al. , and are plotted in Pig. 2 as a function of
azimuthal angle ft) and mavelength &. The azimuthal
orientation of our crystal is defined in the top of the
figure. We chose a mavelength &= 2. 403 A. Our
choice mas predicated to eliminate .both "ummegan-
regung" and "aufhellung" conditions, both of mhich
are plotted in Fig. 2 (the latter corresponds to
curves with even Miller indices). This choice of
~ also Rllomed optimum tuning of the graphite fil-
ters. We chose the azimuthal position Q= 0. The
ellipse centered about these coordinates in Pig. 2
is approximately the maximum extent of our reso-
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pIG. 3. 0 scans through the (222) position at (a) 15, (b) 245, (c) 493, (d) 785, (e) 1001, (f) 1200, and (g) 1353'C;
(h) js a 0-28 scan at 1001'C used to determine the absolute ref lectivity of the (222) reflection and to normalize the
& scans. Intensities are in counts per 2 &&10 monitor count.

lution function.
The first seven peaks in Fig. 3 are 8 scans

through the (222) position for the temperatures in-
dicated. The last peak in Fig. 3 is a ~-2~ scan at
1001 'C, and was obtained with a geometry commen-
surate with the determination of the main beam
intensity. The advantage of the geometry used in
these 8 scans to obtain relative values of the (222)
intensity can be appreciated by comparing the 8 scan
at 1001 C to the 8- 28 scan. The over-all intensity
is superior as well as the peak to background ratio.
Other e-28 scans (not shown) were made at 493 '
and 1353 'C. Absolute ref lectivities were deter-
mined by comparing the integrated ref lectivities in
our 8-28 scans to the incident beam intensity. The
relative 8 scans were put in units of absolute re-
flectivity by normalizing the ~ scan at 1001 'C to
the 8-28 scan at 1001'C.

In some preliminary tests, it was found that the
(111) reflection decreased in intensity as the crystal
temperature was raised to 500'C. Qualitatively,
this was expected from the change in the Debye-
%aller factor. Upon further heating at tempera-
tures above 500 'C, it was found that the (111) in-
tensity increased as a function of time when the
crystal was held at a constant temperature in the
vicinity of 750'C. Quantitative results made after

the crystal was kept at 1001 C showed an increase
of the (111)integrated intensity by a factor of 21. 5
over its initial perfect crystal value. As further
measurements of the (222) were made at reduced
temperatures the factor increased to 26. 3 at 785'C
and 28. 1 at 245 'C. The crystal was then brought
to 1353 'C, our highest measuring temperature, and
the factor was reduced to about 4. 0; it then in-
creased from 4. 9 to 7. 7 during the 1200 'C run,
and finally to 9. 9 when the crystal was brought to
15 'C for a final (222) measurement.

This remarkable behavior of the (ill) is con-
sistent with previous measurements of the tempera-
ture dependence of the solubility of oxygen in sili-
con. Starting at temperatures above 500 'C,
oxygen dissolved in the crystal during the growth
process precipitates out in Si-0 complexes. These
Si-0 precipitates cause considerable strain in the
lattice, and for x-ray measurements' could com-
pletely annihilate anomalous x-ray transmission.
Annealing at 1350 'C redissolves the precipitates
and partially removes the strain. For the crystal
used in this experiment, the ratio of the kinematic
to ideally perfect (111)integrated intensity is the
order of 10 . Thus, an enhancement of the (111)
by a factor of 20 due to precipitate strains is not
surprising.
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In converting the measured absolute (222) in-
tegrated intensity, P(222), to an experimental value
for E(222) we used the kinematic intensity expres-
sion:

6.0 x I 0

5.0—

I I I I

g ABSOLUTE 8-28 SCANS

% NORMALIZED 8 SCANS

P(222)=N & F (222)(l —e B"'D~'B)/(2p sin29),

(5)

where N is the number of cells per unit volume and

to is the crystal thickness. We determined an ex-
perimental linear absorption coefficient y, = [1170
+4. 35T('K)]&&10' cm . Since our crystal is not
ideally imperfect we have to justify the use of Eq.
(5) to arrive at F(222). For weak reflections
kinematic theory should suffice because in this
limit both dynamical and kinematic theories give
identical results.

We can define a primary extinction coefficient,
or the ref lectivity of a crystal to that of an ideally
imperfect crystal, as A tanh(4) for Bragg geom-
etry and
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A ' Q O'B„,T(2A)
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for Laue geometry. " The J's are Bessel functions
of the first kind. For neutrons A= lyoyy I Nk

FIG. 5. Plot of the Dawson and Willis anharmonic
force constant P vs T as determined from the (222) re-
flection, dashed line, and as determined from the ther-
mal expansion of silicon, solid line.
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FIG. 4. Plot of F(2, 2, 2) vs T . The solid line is a
line drawn through the origin -T . Results from three
absolute 8-20 scans and normalized 0 scans are shown.

x F(g, g, I), where yD and y, are the direction cosines
describing the directions of the incident and scat-
tered beams with respect to the crystal normal,
and lyoy, I

' '= sin6I for the Bragg case. For our
(111) Laue case, yD=0. 999 and y, =0. 743. The
quantity t is a linear dimension associated with the
departure from ideal perfection, and becomes
equal to the thickness of the crystal when it is
ideally perfect. For large values of A as in our
(111)Laue geometry the extinction coefficient
becomes (2A) '. Thus, we may set

(2&) '=n[2 lyDy, i'~BN&F(111)tj ',

from which it follows that the effective thickness
t is the thickness of our crystal divided by the n-
fold increase in the (111)intensity. Assuming
that this effective thickness is the same in all
directions of the crystal, we ean use the value de-
termined from the (111)measurement to estimate
the extinction coefficient for the (222) reflection.
As an example, consider the worst possible ease
of extinction in our (222) Bragg geometry at 1353 'C
for which n = 4 and E(2, 2, 2)=1.03&&10 ' cm. The
extinction coefficient here is 0. 850 as compared
to unity for an extinction-free crystal. This would

lead to an error of approximately 7% in F (2, 2, 2).
Accordingly, we have treated all our (222) data as
extinction free.

In Eq. (3) we see that in the complex plane, the
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TABLE I. Summary of neutron measurements. Values with asterisks were determined absolutely. Other values are
normalized to the 1001 C absolute measurement (see text).

Integrated
ref lectivity
(10 rad)

Z (2, 2, 2)
(10-" cm)

Z (2, 2, 2)
(10-3)

P
IO erg

288
518
766

1058
1274

1473
1626

0. 103 + 0. 02
0.450+0. 03
1.15 +0.04

*1.07 +0.10
2.40 +0. 06
4. 37 +0.18

*4.37 ~0. 09
6. 85 +0.20
9.92 +0.17

*11.8 ~0.7

0. 0967
0, 210
0.339

*0.334
0.496
0. 675

*0.675
0. 852
1.03

*1.13

+0.010
+0.006
+0.006
+0.015
+0.007
+0.014
+0.007
+0.010
+0.02
+0.03

0.219
0.602
1.06

*1.05
1.67
2.37

+2. 37
3.10
3. 85

*4.24

+0.020
+0.020
+0.02
+0.05
+0.02
+0.05
+0. 02
+0.04
+0.06
+0. 13

5.42+0. 54
4. 60+0. 14
3.72 +0.07

*3.65+0. 16
3.05+0. 04
2. 99+0.06

+2. 99 + o. 03
2. 92 +0. 04
2. 98+0.05

*3.29 +0.10

structure factor F(2, 2, 2) is represented by the
sum of two vectors separated by an angle y.
Writing

F (2, 2, 2)= V, + V~2 + 2V, V~ cosy,

we may solve for Vz.

Vq = —V, cosy+ [F (2, 2, 2)- V ~sin2y]~~3,

where

V, = Be f~(C,2+ Cy)'~2

Vz = Be "[C,(Z —f,) cot 8

that part arising from the anticentrosymmetric
charge density from that due to the anharmonic
thermal motion. %e are able to write then

f,e "=F„„„(2,2, 2)/Bl+ f~ "Y(k, k, l). (I)
Figure 6 is a plot of f, e "vs T'. T'= [4 (X)+—,'X],
where the quantity in the bracket is the Debye
function. Here X= O//T, and O~ is the Debye tem-
perature of silicon, "543. K. T' is - B% greater
than T at room temperature and -1% greater than
T at 1353 'C. %e have used the variation with

and

+ (b+Cyf, ) ] ~ Y(k, k, l)

—(b+Csf, )(Z f, ) —Cy-

C, cot8 —C&(b + C~f,)
' C, (Z f,)

' tan8—

O. I 85—

I I

From the experimental F(222) and Eq. (6), we then
found the quantity Y(2, 2, 2) which is plotted as a
function of T in Fig. 4. Both the results from the
normalized 8 scans and the three absolute 8-28
scans are shown. If extinction were present to any
large degree at 1353'C, we should not expect
these points to lie on or above the line drawn pro-
portional to T in Fig. 4. In Fig. 5, P is plotted
as a function of T. The solid curve in Fig. 5 is
the value of P derived from the thermal expansion
of silicon. ' The two methods of arriving at a
value of P are in close agreement at high tempera-
ture and tend toward a constant value. However,
at lower temperatures the two methods give values
of P which diverge from a constant value in oppo-
site ways. This is not unexpected from the failure
of the overly simplified Einstein model to properly
account for the true frequency spectrum of a solid.
Table I is a summary of the results of the neutron
measurements.

The quantity Y(2, 2, 2) is precisely the quantity
needed to sort from the x-ray structure factor

O. I80

O. I 75

O. I 70

500
I I I

500 700
REDUCED TEMPERATURE (OK)

900

FIG. 6. Scattering from the bonding charge density,
f&e, vs T'. The solid line is the expected variation on
the basis of the rigid ion model, i.e, , g +. The dashed
line indicates the variation expected if the bonding electrons
vibrated with half the mean-square amplitude of the core,

~

~
N/2
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temperature of E„~ (2, 2, 2) previously deter-
mined. The solid line in Fig. 6 is the expected
temperature dependence due to the Debye-Wailer
factor predicted on the basis of the rigid ion
model. ' 3 The dashed line, given merely as a
reference, indicates the expected temperature
dependence of f~e if the bond electrons vibrated
with half the mean square amplitude of the core.

The rigid ion model assumes an electron charge
density rigidly attached to the atomic nucleus
which is incapable of distorting as the ions are
displaced. We take Fig. 6 as conclusive evidence
of the failure of the rigid ion model, for the scat-
tering due to the bonding electrons in Fig. 6 is
clearly less temperature dependent than that from
the core. We view this bonding charge density
as moving with less thermal amplitude than the

nucleus or core charge density. In fact, this
supports in a direct way the concepts of the shell
model. '4

III. DISCUSSION

We attribute the temperature variation of P in

Fig. 5 as derived from either the thermal expansion
or our (222) data to the inadequacy of the Einstein
model. We expect that a near-neighbor anharmonic
potential will suffice to explain our results when the

phonon occupation numbers and frequency distri-

bution of silicon are adequately accounted for.
Our Y(h, k, l) is related to the anharmonic Debye-
Waller factor discussed by Cowley and others.
In particular, it is proportional to his diagram
(b) which is usually overlooked because it does not
contribute to the Debye-Wailer factor in a Bravais
lattice. ' However, such an expression does23~ 25

contribute in a diamond structure. The high-
temperature limit of this expression contains a
term linear in T as well as T . A term in T cannot
be deduced from the Einstein model. Such a term
qualitatively accounts for the lower-temperature
behavior seen in Fig. 4. Computer calculations
incorporating these ideas are in progress. How-

ever, the purpose and scope of this experiment are
adequately served by concepts introduced by Dawson
and Willis.
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