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The electronic structure of binary alloys is discussed for a system in which both the atomic
energy levels and the hopping integrals are random quantities. This paper is a detailed study
of the generalization of the coherent-potential approximation (CPA) introduced earlier by the
present authors. We show that a locator description provides a particularly suitable formal-
ism for setting up this generalized problem and how, with the aid of a simple device, configura-
tion averaging may be performed by the use of established techniques. The approximation
used is, as in the case of the usual CPA, a single-site one. Three self-consistent equations
are obtained that must be solved simultaneously; these replace the single CPA equation. Nu-
merical results are displayed for a series of alloys, and a discussion of certain aspects of the
theory, such as its moment-preserving properties, is also included.

I. INTRODUCTION

Much of the work on the electronic theory of
binary alloys has been a development of the mul-
tiple-scattering formalism of Lax. ' At present
a rather satisfying stage in the theory seems to
have been reached with the introduction of the co-
herent-potential approximation (CPA) by Soven,
and its subsequent developments. ' The simplicity
of the CPA arises from the fact that formally it can
be viewed as a reduction of the alloy problem to one
of a single impurity in a self-consistently deter-
mined effective lattice. In the usual tight-binding
model, only the atomic energy levels are assumed
to be random, i.e. , to depend on the occupation of
sites by either of the constituent species. In the
effective-medium approach one replaces the aver-
aged alloy by a periodic lattice of "effective
atoms, " whose effective localized energy is to be
determined, and whose coupling (via hopping inte-
grals) is the same as in the real alloy. One now

introduces a single real atom into the effective

lattice (this replacement, it is assumed, does not
affect the coupling, but has only the effect of pro-
ducing a perturbation localized on the impurity
site itself) and determines the condition that on the
average (the impurity can be either of two species)
no scattering occurs, i. e. , the average single-
site t matrix is zero. This gives the CPA self-
consistency condition.

The introduction of this effective lattice sim-
plifies the derivation of the self-consistency equa-
tion, but it is not essential. For example, we can
use, if we wish, the virtual crystal —or indeed the
pure lattice of either of the constituent atomic
species —as the "unperturbed" lattice, and then
perform the more complicated multiple-scattering
calculation. The difficulty then arises of dealing
with multiple-occupancy effects correctly. This
has been done by Leath, among others. Using a
diagrammatic propagator expansion technique,
Leath shows how to sum all non-crossed-line dia-
grams in the perturbation series. Since such dia-
grams have a single-site nature, their summation
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is equivalent to the CPA.
The mathematical apparatus is very similar for

a variety of the elementary excitations and a body
of literature now exists that, while containing
variations in appearance, is equivalent to the CPA:
for electrons, Soven, Velicky et al. , and

Yonezawaa; for phonons, Leath' and Taylor; and

for excitons, Onodera and Toyozawa.
All of the work mentioned above adopts a prop-

agator formalism. An alternative approach is the
locator method introduced by Matsubara and

Toyozawa and extended by Matsubara and

Kaneyoshi. ' A summary of the technique is given

in the work of Ziman. " The essence of the method
is to use, as a starting point, localized atomic
states (as opposed to the Bloch states of the prop-
agator formalism), and to allow delocalization via
the overlay (hopping) integral. In the usual alloy

model it is the energy of these localized states that
is the random quantity, the hopping integral being
taken as independent of the nature of the pair of
sites involved. The locator expansion can be rep-
resented by a set of diagrams that are equivalent
topologically to those of the propagator expansion.
Just as in the propagator expansion, the summa-
tion of all single-site (non-crossed-line) diagrams
retrieves the CPA result, as demonstrated in the
work of Leath. ' His work thus establishes an
equivalence between the two approaches at the
lowest order in a cluster expansion, and is sugges-
tive of an equivalence for higher-order clusters as
well. It is worth noting here that a locator-type
expansion was also used by Anderson' to discuss
the localization problem. The development in that
work was rather different, however, because of the
need to determine a probability distribution rather
than an average.

Several lines of development of the CPA (or
equivalent theories) have suggested themselves.
The inclusion of contributions from higher-order
clusters (crossed-line diagrams) would be one way
of improving the CPA. An attempt to include the
effect of two-site clusters is described in the work
of Aiyer et al. ' Another line of development con-
cerns the failure of the CPA to give a finite density
of states out to the component band edges. This
failure violates a requirement discussed by
Lifshitz, "and is a particular drawback in applying
the CPA to optical phenomena. Recent work by
Eggarter and co-workers' attempts to rectify the
deficiency by a moment approach in the energy
region near the true band edges.

Another significant area of development has been
the extension of the alloy theory to the physically
important case of alloys whose pure constituents
have different bandwidths. Within the tight-binding
or Wannier scheme, this means removing the re-
striction (common to early treatments of the CPA)

that the hopping integrals of the model be indepen-
dent of the occupation of the sites which are coupled.
The problem of a random hopping integral has
been treated previously in two limiting cases.
Takeno' (see also analogous spin-wave work of
Izyumov' ) investigated the limit of small impurity
concentration, allowing the impurity potential to
extend via off-diagonal matrix elements to neighbor-
ing host sites. The resulting extended impurity
cluster (i. e. , impurity atom plus neighboring host
atoms) was then treated as the scattering entity,
but with the important assumption that these im-
purity clusters do not overlap. Scattering within the
cluster is treated exactly and, when averaging, the
cluster takes the place of the single-site scatterer
of the CPA or the appropriate low-concentration
theory. Because nonoverlap of the potentials is
essential to the approach, no parameter for im-
purity-impurity coupling appears in the results and

there appears no obvious way of extending the theory
to alloys of general composition. A second limiting
case, that of weak coupling, has been discussed by
Berk. ' In this regime, both the diagonal and off-
diagonal parts of the model Hamiltonian are allowed
to be random, but fluctuations of the matrix
elements about their average values are assumed
to be sufficiently small that scattering from these
fluctuations can be treated in second order of self-
consistent perturbation theory. More recently,
Soven has recast the CPA for a system of random
muffin-tin potentials. When the model is appropri-
ate, the choice of constituent muffin-tin potentials
accounts for the different bandwidths of the pure
solute and solvent materials, and the theory is not
limited, as such, to a particular regime of param-
eters.

In this paper we present another approach ' to
the problem of "off-diagonal randomness, " using
the Wannier representation of the model alloy
Hamiltonian. The physical parameters (as in the
work of Takeno and Berk) are the atomic energies
and the hopping integrals (or masses and force
constants in the phonon case). Like Soven' s, our
theory is not subject to any special limits. Re-
cently new work has appeared by Tanaka et al.
and by Shiba. The latter bears some resemblance
to our approach, but (for an AB alloy) is restricted
to the case of the &-B hopping being the geometric
mean of the A. -& and B-8 hoppings.

The theory we shall describe here is expressed
in a locator language and may be described as a
generalization of Leath's locator formalism of the
CPA. The physical content of the method is de-
scribed very simply. We start with a random set
of basis states and allow delocalization via hopping
which is also random (although correlated, of
course, to the randomness of the basis states
themselves). When it comes to performing con-



2414 BLACKMAN, ESTERLING, AND BERK

II. LOCATOR APPROACH TO STANDARD CPA

Our purpose in this section is to discuss a pro-
cedure for obtaining the CPA in terms of a locator
expansion for the usual model alloy, i.e. , allowing

only the diagonal part of the Hamiltonian to depend

on site occupation. Leath has already worked this
out in detail, but we present it here since our
derivation of the result is somewhat different and

bears directly on the subsequent generalization.
The model Hamiltonian is

0= 2 6)st dig+ h to 0 JQg (2. 1)

figuration averages, the approximation we use is,
as in the CPA, of a single-site nature. Although
it may not be immediately obvious that a single-
site theory is possible when off-diagonal random-
ness is present, we will show that, in a locator
formalism, its use appears very naturally.

As discussed at the beginning of this section. ,
what is implied by a single-site type of approxi-
mation (such as the CPA or our generalization of
it) is the concept of an A or E type of atom embedded
in an effective environment. If one then decides
to use a locator language, what one is essentiaQy
doing is considering the way an electron diffuses
away from theA or 8 impurity; i.e. , one calculates
the self-energy corrections to the A or 8 locator.
In the standard CPA (nonrandom hopping integral)
the self-energy corrections are independent of the
atomic species, reflecting the fact that both A and
8 atoms "see" the same effective environment
(see Sec. III). When we introduce randomness into
the hopping, however, the manner in which the
electron diffuses away (and hence also the renor-
malization effects} will be dependent on the atomic
species.

The averaging technique that we use is parallel
to that of Leath. ' lt does, however, differ some-
what in procedure, and thus we present a deriva-
tion of the locator approach to the standard CPA
in Sec. II, which will be appropriate for the gen-
eralizations of subsequent sections of this paper.
In Sec. III we set up a locator expansion for the

alloy in which randomness in the hopping is in-
cluded. Vfe also describe a device for formally .

associating all the randomness with single sites,
thus expediting the averaging process. On aver-
aging, a set of three self-consistent equations is
obtained that must be solved simultaneously. A

confirmation of a satisfactory reduction to the
standard CPA in the appropriate limit is given in
Sec. IV. To illustrate the behavior of the theory,
numerical results for a simple cubic lattice with

nearest-neighbor coupling are shown in Sec. V.
Finally, in Sec. Vl, we turn to more general con-
siderations such as the moment-preserving prop-
erties of the theory.

where at& and a; are electron creation and annihila-
tion operators in the Wannier representation (sub-
scripts i refer to lattice sites). t&~ is the hopping
integral between sites i and j (for the moment
assumed independent of the atomic species occupy-
ing the two sites). We take t;; equal to zero. The
diagonal energies ~& can take values E& or E& de-
pending on the type of atom occupying site i,

In the locator formalism, the alloy Green's
function G satisfies the equation

1'= (G» &
= (G &0, (2. 3)

where the subscript zero denotes the diagonal part
of the averaged G. The fully renormalized locator
is thus the properly averaged sum of all terms in
(2. 2}which start and end on the same site. It will
be noticed, at this point, that our definition of the
renormalized locator differs from the usual one
(e. g. , Ref. 12). A comparison of the two ap-
proaches will be deferred until the end of this sec-
tion. Once y is known, the density of states of the
averaged system is given by

p = —(I/wN) Im Xj~G&= —(I/v ) Imp (2 4)

where C& is the averaged alloy Green's function
in the & representation.

Now let us consider specifically the single-sste
approximation. %ithin this scheme, the renor-
malized locator y again contains terms of (2. 2}
that start and end on the same site. The approxi-
mation is, however, the lowest order in a cluster
expansion, and correct averaging of only those
terms that have a single-site nature (in diagram-
matic language, those terms not containing crossed
lines) is all that is required. Keeping (2. 3) in
mind, we can see that the series for (G & must
have the form

(G &= r+ V ~Y+ vf & f y+ ~ ~ ~ (2. 5)

where the first and last y in the second and all
subsequent terms ref er to different sites. This
ensures that the diagonal part of (G ) is just p,
and comes entirely from the first term of (2. 5).
A further restriction must be applied, however;
viz. , in any term of (2. 5) none of the site indices
is repeated, and thus all y's of a particular term
refer to different sites. This restriction can be

=g )5 ) ) r +g gt ) )~g g
t +g )g ) )erg )ez t ) a,

g eg ] p + e ~,

(2. 2)
Summation over repeated indices ls understood.
The symbol g denotes the bare locator which can
take either of two possible values, viz. , (E E„)'—
or (E -Es) '. The fully renormalized locator y
is defined in this work, in terms of the configura-
tionally averaged Green's function, by
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(a) L lJ [[[][[+ ~ ~ + ~ ~ + the end-point sites are the same.
The equation for the renormalized interactor

U[r] can be written

(b)
A+ - + -'-- + U[r] = t+ (tG [r] t)' (2. 6)

A
/

(c)

/
/

. ~ , x + i , i, . ~

FIG. 1. Diagrams for complete Green's function (a),
renormalized locator (b), and interactor (c). A re-
stricted sum on all indices is understood unless explicitly
indicated otherwise.

understood if we remember that y has been defined
so as to include properly all irreducible diagrams
containing single-site scattering. The nth-order
term in (2. 5) then comprises all reducible diagrams
containing n irreducible parts. Without the restric-
tion on repeatability of site indices, we would ob-
tain spurious contributions to irreducible single-
site diagrams or irreducible parts of single-site
diagrams.

It is straightfoward to write down a formal ex-
pression for the renormalized locator y in terms
of the restricted summation of (2. 5). The diffi-
cult task then becomes the explicit summation of
the restricted series. The basic trick is to relate
the restricted sum to a completely unrestricted
sum, which can be simply carried out in k repre-
sentation. In this section we use one device for
carrying out the program, and, in Appendix A, we
outline an alternative procedure that some readers
might find clearer.

At this point the discussion is expedited by going
over to a diagrammatic development. We use the
following notation: A heavy horizontal line repre-
sents the averaged Green's function in the single-
site approximation; single and double vertical lines
are, respectively, bare and renormalized locators;
and single and double horizontal lines are, respec-
tively, bare and renormalized interactors. The
bare interactor is the hopping integral t~& itself;
the renormalized interactor is the appropriate sum
of hopping processes.

To simplify the notation, all sites are considered
inequivalent unless explicitly indicated otherwise.
Also, we denote the averaged Green's function by
G[r] (anticipating the use of functionals), without
explicit need of the averaging symbol. Thus, the
single-site locator expansion can be summarized
by the three graphical equations of Fig. 1: (a) is
the restricted series for G[r], viz. , Eq. (2. 5);
(b) represents the renormalized locator; and (c)
shows the diagonal element of the renormalized
interactor. The broken line has no factor associ-
ated with it, and appears merely to indicate that

The use of the prime in (2. 6) is to indicate that
internal sites must be distinct from the end-point
sites which are associated with the two hopping
integrals. To make this point clear, consider a
typical term in the expansion of (2. 6) [ the next
term in the series of Fig. 1(c)]for the diagonal
element Uo[r]. Such a term is shown in Fig. 2(a).
In the absence of the prime the appearance of
spurious terms, such as that of Fig. 2(b), would
also occur. An expression that is equivalent to
(2. 6), but one that is much more convenient to work
with, is the following:

U, [r]=r '(Glr]f), . (2. 7)

This is easily understood by a comparison of Figs.
1(a) and 1(c)—the addition of a t at one end of Fig.
1(a) and the dropping of a r at the other end will
give us U with the required properties.

Now, as Fig. 1(b) indicates, the renormalized
locator can be written

(2. 8)

f'=r/(1- rUO[1]) . (2. 9)

Now, in Figs. 1(a) and 1(c), replace r (double ver-
tical lines) by the new quantity I . This just defines
the new functional G[&] which, by the definition
(2. 9), can be expressed in terms of r. After a
little consideration (for example, by writing out
the first few diagrams —ignoring the contribution
of crossed-line diagrams) one discovers that the
resulting series in y is just the same as the series
for G[r]—but with the summation restriction re-
moved. This sum is easily performed in the k
representation to give

G,[r]=r/(1 r4 (2. 10)

where t& is the bare interactor t in the k represen-
tation. Hence, rearranging (2. 9),

(0)

(b)

~' [j [J [[ '.

r
~'1[ .. L['

FIG. 2. Example of an
allowed diagram (a) and a
forbidden diagram (b) and an
illustration of the need for the
prime in Eq. (2. 6).

where the angular brackets denote the configura-
tional average. We are still faced, however, with
the explicit summation of G[r]. This can be accom-
plished by a simple functional analysis. Define the
quantity I' by
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y= I'/(1+ U [I']I'),
and substituting for y in (2. 10), we have

(2. 11)

(2. 12)

defined renormalized locator (without the need for
explicit multiple-occupancy corrections) plays an
important role in the ensuing development. We
now turn to the problem of generalizing these
results to a compositionally dependent hopping
integral.

The right-hand side of (2. 12) is now expressed
entirely in terms of the argument of the functional
G&. Thus it is now trivial to write the desired
quantity G,[yj as

G,M= 1+ y(Uoh'] —ft)
'

Since

y= (I/&)&t Gt [y]= Go

(2. 13)

Eqs. (2. 7), (2. 8), and (2. 13) constitute a self-
consistent solution within the single-site approxi-
mation.

For example, if we choose a crystal with local-
ized energy levels of zero as the "unperturbed"
lattice (we could equally well choose the pure-A or
pure-B lattice), we can write

(2. 14)

which, from (2. 13), identifies the self-energy Z as

Z=E —(y t+ Uti) . (2. 15)

Then using (2. 15) to replace Uti in (2. 8), one gets,
in a few simple steps, the equation

Z= o —(E„—Z)Gti (Ett —Z), (2. 16)

where E is the virtual crystal energy c&E&+c&E&,
and c~ and c~ are the concentrations of A and &
components, respectively. Equation (2. 16) is
just the usual result for the CPA. 3'

To compare the above development with Leath's,
we point out that in his work' the renormalized
locator (there called o) is defined with respect to
an unrestricted Green's-function sum. The start-
ing point is now an expansion such as our Eq. (2. 5)
or Fig. 1(a) [and Fig. 1(c) for the renormalized
interactor], but without the restriction on repeated
site indices. It is then necessary to make multiple-
occupancy corrections to the locator itself by the
subtraction of appropriate sets of diagrams from
a basic locator defined similarly to our Fig. 1(b).

That the two approaches are equivalent is clear;
they are both single-site approximations and thus
give the same averaged Green's function. They do
differ, however, in their definition of a renormal-
ized locator; e. g. , Eq. (2. 3) does not hold in
Leath's procedure, Our treatment, in fact, in-
volves a simple expression for the renormalized
locator —although, of course, at the cost of having
to evaluate a restricted sum.

As will be shown in Sec. III; the use of the above-

III. "LOCATOR-MATRIX" APPROACH TO
GENERAL RANDOMNESS

The work of Leath' has demonstrated that, for
randomness in the diagonal part of the Hamiltonian
only, the propagator and locator techniques pro-
vide entirely equivalent ways of treating the
averaged alloy problem; there is no reason for
preferring one approach over the other. In this
section we will show how, by use of the locator
formalism, off-diagonal randomness may be
introduced into the problem in a very natural way.
The basic philosophy is, if the very useful CPA
result can be obtained in terms of delocalization
of atomic states by a fixed hopping integral, then
it should be meaningful to generalize this physical
concept by allowing delocalization to take place
via a random hopping integral. Let us consider a
very simple method of setting up the problem.

We first have to generalize the Hamiltonian (2. 1)
such that t is random. The following notation is
used:

if sites t',
, j are of type A

if they are of type J3

if one is an A site and the other, B.
(3. 1)

Now introduce occupation indices x; and y; such
that

x;=1, y;=0 if i is anA site,

x, =0, y~=1 if i is aB site. (3.2)

xg;= 0,
3xf

(3. 3)
(xt) = cA ~ (vt) = cB

c„and c& are the concentrations of 4 and 8 com-
ponents, respectively. As in Sec. II, the bare lo-
cator is denoted by g &

and can take the values
(E —E~) ' or (E —Ett) '. As a locator development,
the alloy Green' s function appropriate for the gen-
eralization of (3. 1) can be written

Git ~ =g i~ it ~ +g i [xt+tmxm+Ti Pt&m+xt I t&m

+st ttw ]G i (3.4)

Notice that all the randomness is now associated
with a single site (it occurs in Z, x, and y only)
rather than with pairs of sites as well. This sim-

The following are some examples of their properties:
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pMication greatly facilitates subsequent develop-
ment.

Now, keeping in mind the properties of the occu-
I

pation indices [ as in relations (3. 3)], let us pre-
and postmultiply (3.4) by the various combinations
of the pair {x,y}. Four equations are obtained,

XlG ll'Xl' Xl gl5ll»+ Xlgl lmXmGml»Xl»+Xlgl glmpmGml Xl

y IG II'y I' yl%5 l l'+y fgtllmymGml'y 3'+y lgl0 fm+mG m1'y l' 1

XlG ll 3'l' = XlS'l+lmXmGml»X l»+ Xlt'l~ lnSmGml'Xl»

3'lG ll'Xr =3'lC'l~l&mGml'Xl ~ +P lC'l~ lmXmGml'Xl

(S. 5)

For brevity we will write
~AA ~ ~BB

XlG ll»Xl» ~ ll» y X l~ ll»3 l» ~ ll» I

XlG ll»1l' —G ll' »

A+lgI=+l/(E E2) gl y

y 4 l yl/(E EB) gB

(S. 5)

On averaging, the weights will thus be included
implicitly, e. g. ,

(g g ) = CA /(E —EA)i &gQ(
= CBI(E —EB)&

and note also that

(S. 7)

&BA GBB
—

0 B ll' +
O

B

x(G 0
) (g g)

((g", ) &=cg(E -E„)
The weight is correct because of the property x,
= x, . The complete averages can then be obtained
from the relations

&g& = &g")+ &g'),

«)=«"") «-& (G"'& «'").
The fact that a site cannot be occupied both by an
atom of type A and one of type B is clearly taken
care of by the property x,y l= 0, and thus G „must
be identically zero.

Replacing (S. 6) in (3. 5), we can express the four
equations in a convenient form as a 2&2 "locator-
matrix" expansion,

sion in this form is clearly to facilitate the aver-
aging process, there are two other aspects of
(3. 9) to note. This expression is particularly
convenient as it is in a form that implicitly keeps
account of the allowable order of successive hop-
ping processes through the laws of matrix multi-
plication. Furthermore, in processes involving
repeated hoppings off the same site, the possibil-
ity of simultaneous occupancy of that site by both
A and B species is precluded by the property of
the occupation indices, xlyl = 0, which is implicit
in a product such as g& gl .

Vfith the following quantities understood as ma-
trices, we rewrite (S. 9) as

Gll'=@l &ll'+C l ~l (3. 10)

and return to the considerations of Sec. II. Be-
fore discussing the configuration averaging of
(3. 10), however, we will clarify a point that
otherwise might appear inconsistent in the later
development. Consider the averaging of the dia-
gram of Fig. 3 which comprises just bare locators
and interactors (now both 3 &&3 matrices). The
internal part of the diagram (tgt )0 is just one con-
tribution to a renormalized interactor matrix. Let
us now focus our attention on the part of this term
off-diagonal in the superscripts, i. e. , (tgt)0 . We
might expect that this term, and the off-diagonal
part of the renormalized interactor matrix itself,
will vanish as hopping begins and ends on the same
site, but the species superscripts are different.
From matrix multiplication and averaging, though,
we find that

&(t«)o &= ( &g"&&)o+ (&&g'&P)o

With the right-hand side of (3. 9) expanded in a
perturbation series we notice that all the random-
ness occurs in the g matrices only and thus, apart
from the fact that matrices take the place of c
numbers, we have a locator development identical
in form to that of the diagonal randomness case.
This fact is immediately suggestive of the means
of configuration averaging. The procedure that
we will use is simply that of Sec. II appropriately
generalized for dealing with matrices. Although
our motivation for expressing the locatox expan-

which is certainly not zero. However this and
any other term of the off-diagonal element of the
renormalized interactor matrix will never con-
tribute to the series expansion for y or for G. Such
terms will always be associated with additional
factors-in this case, g"(tgt)0 g . It is these that
cause the contribution to vanish because of the fac-
tors x, y, (=0) implicit in the productg"g . Thus
our formalism is well behaved, although the occur-
ence of a renormalized interactor, which is diago-
nal as regards sites and off-diagonal as regards
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FIG. 3. A diagram that clarifies
behavior of A 8 element of renormal-
ized interactor.

species and yet nonzero, may be at first be a little
surprising.

%e wiQ now pxoceed with the configuration avex-
aging of (3. 10) Very little change is needed in the
discussion of Sec. II except for reciprocals being
replaced by matrix inverses. The renormalized
locators and interactors are now matrices, while
the number unity becomes the unit matrix. Equa-
tion (2. f) remains the same,

Uol~]= v '(G[H f)o,

and (2. 8) becomes simply

~= (g (1- Us[~]g) ')

(3. 11)

(3. 12)

G. l~) = [1+~(UoI.~]- f.)] '~. (S. 13)

This completes our formal generalizations of the
alloy problem. The remainder of this section will
be devoted to expx'essing our theory in a form that
is more convenient and in which the physical con-
tent is more transparent.

%hen we need to refer to the specific matrix
elements of Uo, we will use the notation

The matrix generalizations of the steps leading to
the alloy Green's function can be written down term
by term in analogy to the discussion of Sec. II.
The final result, however, is immediately avail-
able by inspection of (2. 13),

3 —Pa &a- UsG„D,, (3. 16)

where the denominator DI, is given by

Ds= 8&- Us)- 8~a+&ns-2Us&s)+ (&s&s-&s)

(3. 1V)

locators, appropriately weighted, with each of the
atomic species. This feature of the present ap-
proach is very appealing to physical intuition. Be-
cause of the randomness in the hopping integral
the manner in which an electron diffuses away from
a given site will be dependent on the atomic species
occupying that site. Thus we can realize the de-
sirability of retaining some distinction between
species throughout the averaging process. The
inherent nonequivalence of atomic type, even on

averaging, is reflected in the self-energy correc-
tions of the renormalized locators in (3. 15); U,
and U2 are generally unequal. In the standard CPA,
where the hopping integral is assumed nonrandom,

U& becomes equal to U2, and the necessity for dis-
tinguishing between atomic species throughout

averaging no longer applies. This simply empha-
sizes the fact that only in that particular limit do
both A and 8 atoms "see" the same effective en-
vironment and interact with it in the same way.
From the above discussion it can be seen that the
locator language provides a very natural descrip-
tion of the generalized alloy model. Our insistence
on the simpler definition of a renormalized locator
in the discussion of Sec. II now becomes clear.

Let us now turn to the complete Green's function
of (3. 13). Replacement of y from (S. 15) provides
us with the x'elation

and, for compactness, we have written

4 = Ug+ 1/y", 8 = U + 1/y (3. 18)
The averaging in (3. 12) can be done in a straight-
foward manner, giving the result

~BA

0 y) ' z —E„-U~ ' E —E —Pg

(S. 15)
From (3. 15) it is seen that a new feature of our

theory is the association of differently renormalized
I

By invoking (S. 15) we can eliminate U, and Us to

give

~=(E-EA)+cB/~", &=(E-~.)+c2& (3»)

For completeness we include here oux' yet unused
relation (3. 11). The alloy Green's function G is
replaced by its value from (3. 16) to give

,A A »s- Ugs+ rs nsPs -&Os Us8s-2

+Us 1 Us & s ~&s- Usus ~&s- Us&s+&s- &s~
(3. 20)

GAA A GBB P GBA GAB 0 (S. 21)

which are, of course, necessary for internal con-

With the help of the definitions (3. 18), we confirm

from (3. 20) the relations

I

sistency in this treatment. In fact, if we assume
these relations, which we are certainly entitled
to do as they are inherent in our averaging pro-
cedure, the system of equations (3. 16) can be
solved without the explicit use of (S. 11). Equa-
tion (S. 20) will be useful, however, for the dis-
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cussion of Sec. IV.
If we perform a summation over k states in (3. 16)

and use the relations (3. 21), we obtain three self-
consistent equations, n»= XW», P»= p. W», t'»= vW», (5. 1)

with useful simplifications. We will proceed with
this restriction and write

y" = (I/&) ~»(B —P»)/D

y' = (I/&) &»(A —&»)/D»,

0= (I/N) 5~» (t» —U3)/D»

(3. 22)
(5 2)

we can rewrite Eqs. (3. 22) in a useful form,

where W, is an appropriate structure factor. Intro-
ducing now @ and 4 defined by

+= (I/&)~aD» ' C'= (I/&)~a WP» '

The first simplification that occurs in the limit
&»= P»= t'» (= t») is an equality in all the elements
of tPe renormalized interactor, i.e. , U&= U&= U3

(= U, say). This is most easily seen by a com-
parison of the pair of elements in the top row of
(3.20). This gives us U, = U3; the pair in the
bottom rom then gives us Uz= U3. Bearing in mind
the relation (3. 8), the addition of the four elements
of (3. 16) gives us the total alloy Green's function

(4. 1)

A self-energy is defined in the usual way,

G, = (E —Z —t») ~, (4. 2)

which, by a comparison with (4. 1), the equality
of the U's, and the definition of A and B of (3. 18),
allows us to write

E —Z=U+(y +y ) (4 3)

Now, by the use of Eqs. (3. 15) and remembering
that y + y = Go, we are able to obtain after a little
manipulation the relation

Z= & —(E~ —Z)GO(Es —Z), (4. 4)

where & is the virtual crystal energy. Referring
back to (2. 16), we see that (4. 4) is the usual CPA
self- energy equation. Having established the
correct limiting behavior, we now return to the
general case.

V. NUMERICAL RESULTS

Our set of self-consistent equations are applicable
quite generally, but, for numerical calculations,
a model of nearest-neighbor hopping provides us

D» is substituted in from (3. 17) and then A and B
can be eliminated by use of (3. 19}. We thus have
three equations which must be solved simultaneous-
ly in order to determine the two renormalized lo-
cators y" and y and the renormalized interactor
U3. Equations (3. 22} represent, then, our approach
to the generalized alloy problem, and replace the
single self-consistent equation of the standard CPA.
Before proceeding further we will make the con-
nection to the CPA by examining the behavior of the
expressions derived in this section in the limit of
nonrandom hopping (n = P= t;).

IV. STANDARD CPA LIMIT

y =B&—PC, y =A%- XC, 0= U34- vC. (5. 3}

Eliminating 4 and C from (5. 3) gives us the rela-
tion

v(Ay"-By )
3 (gyA py8)

(5. 4)

thus reducing the number of equations in which a
k summation is needed from three to two, viz. ,
those for the two locators

1 ~~ B —p. W„
y = —wN I, p —qW~+rW„'

1 ~ A —&W~
y = —C 2 y

N „p-qW, +rW',

where

(5 5)

p=AB —U3, q=Ap. +BR- 2UBv, r= &p, —v

(5. 6)
At this stage we have simplified our expressions
as far as is possible and so turn to the results of
numerical calculation as the most efficient way of
displaying the essential features of the theory.
The reader is referred to Appendix B for details
of the actual calculation of the locators of (5. 5).
Suffice it to mention here that the structure factor
used was one appropriate to a simple cubic lattice
(of nearest-neighbor distance a) with a half-band-
width of unity, viz. ,

3 (cosk„a + cosk, a + cosk, a ). (5 7)

The quantities calculated are those of immediate
physical interest: the total and partial alloy den-
sities of states

PA, B = —(I/m)im y ', P„,= P„+Ps . (5. 8)

A fairly comprehensive set of figures is given
and so a brief summary of their content should be
helpful. The bulk of the discusison will center on
Figs. 4-9, which all pertain to the same set of
alloy compositions. The principal quantity of in-
terest is the total alloy density of states pt, t, which
is plotted in Fig. 4 for c&=0.6, c&=0.4, E„=—E~
=0. 2, v=1, and for various values of & and p, . For
economy of presentation we have taken v= —3'(&+ p),
a choice which is physically reasonable, but not
at all essential to the development of the theory or
to the mechanics of the numerical analysis. The
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.z '("
—I.6 —l.2 —.8 —,4 E 0 E .4 .88 A

ENERGY

l.2

~ X =.5.p = I.5
X=.8, p. = l.2

, p. = I

p. = 8

FIG. 4. Total density of states
for five different alloys. E~=-&~
=0.2, cg=0. 6, c~=0.4, and the
A-B hopping (v) is 1.0. The
A-A. (A) and B-B (LLt) hoppings are
indicated at the right of the
figure.

case &= p. = 1 gives the standard CPA result and is
displayed in the central curve of the figure. In
Figs. 5 and 6 we show the separate component den-
sities of states p~ and p» respectively. The con-
centration weighting is, of course, included as it
is inherent in the definitions. These quantities,
when integrated over the occupied portion of the
band, indicate how, on average, the charge density
per atom is distributed between the two constituent
atomic species. The real parts of y and y are
shown in Figs. V and 8, respectively, while in
Fig. 9 the real part of Go (=y"+y ) is given. In
these last three curves we have omitted the plots
for the aQoys with X=1.2, p=O. 8 and X=0. 8,
p, = l. 2 for clarity of display. In Fig. 10 we again
show a density-of-states plot. Here the relative
concentrations are changed to c&= 0. 9 and c& = 0. 1,
but otherwise the parameters are the same as in
Fig. 4. Two examples of the split-band regime are
displayed in Figs. 11 and 12. In the former we
have E&= —E&=0.75, c&=0.6, c&=0.4, and &=1;
in the latter we have just changed the concentrations
to c&=0. 9, C~=0. 1. Finally, in Figs. 13 and 14
we show the effects of changing v for fixed values
of & and p. In Fig. 13 the total density of states is
plotted, and in Fig. 14 the component densities are

given. In both figures the parameters are E~= —E&
0 2y cg 0 6) cg 0 4y ~ 0 8p and p 1 2
Vfe now discuss the features of the theory in some

detail and return to the total density-of-states
curves of Fig. 4. The front curve of the set illus-
trates the pt, t of an alloy for which the pure host
(A) band is three times wider than, and completely
overlaps, the pure solute (8) band. As we move
back through the set of curves, the host band
narrows while the solute band broadens until,
finally, the host band is one-third the width of, and
completely overlapped by, the band of the pure
solute. In each case, the host band is centered
above the solute band center. The rather marked
effects of the different constituent bandwidths are
clearly evident in the figure and are, of course,
very much as one would expect. In the first curve
(X= 1.5, p = 0. 5), for example, the influence of the
much narrower solute (8) band shows up dramati-
callyin the negative-energy portion of the spectrum.
A comparison with Fig. 5 shows that most of the
weight in this negative-energy(E = —0. 3) peak is
contributed by the B component density p& . In-
terestingly, however, p~ (cf. Fig. 6) also exhibits
a small "satellite" peak in the same region. This
extra structure can be seen in the same energy

I I I ~
0 I I I I I I

-2.0 —l.6 —l.2 —.8 —.4
E

0
E .4

8 A

ENERGY

.8 I.2

'~ ) ~ .5.p 1.5~ X ~ .8, p ~ l.2
l, p I

p .8

FIG. 5. B (minority) com-
ponent density of states (pz)
for the alloys of Fig. 4.
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region of the corresponding curve in Fig. 7 for the
real part of y . The satellite peak in p„ is evident-
ly a reflection of the fact that the density of states
of the much narrower pure B band varies strongly
with energy in a region accessible to the wide pure
A spectrum. Since the renormalization of the lo-
cator associated with the A species is due to the
replacement of A atoms by B atoms, and is energy
dependent. it is sensitive to the piling up of B-like

states in the negative-energy portion of the spec-
trum. One sees no corresponding satellite struc-
ture in the positive-energy tail of the rather
featureless p& . This is consistent with our inter-
pretation, since the A band density of states does
not vary sufficiently rapidly on the scale of the
width of the B band. On the other hand, for X= 0. 5
and p=1. 5, the host band is much narrower and,
indeed, contributes structure to the positive-ener-
gy portion of p&. It is, in fact, somewhat enhanced
in this case because of the higher concentration of
A atoms. As the other curves in Figs. 5 and 6
' d'cate this satellite effect depends rather sen-

suffi-sitively on one of the constituent bands being s i-
ciently narrow compared to the other. The devel-
opment of satellite structure in the component den-
sities of states can be physically important. For

8--

I

I—l.2

4--

I

I.8 l,2 l.6
ENERGY

l.2--

I
I.8--I'

g

I
I.4

I
I

l.2
I
I

l.6
ENERGY

—.8--

-I 2--

FIG. 7. Real part of renormalized locator y for three
of the alloys of Fig. 4. Solid curve, ~= p, = 1.0; dashe
curve, X=1.5, @=0.5; dot-dashed curve, &=0.5, p=1.5.

FIG. 8. Real part of renormalized locator y . Notation
is that of Fig. 7.
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erties of the theory.

VI. SOME FURTHER ASPECTS OF THE THEORY

In t'his section we complete our discussion of the
theory with a brief account of a few of its general
properties. Of most interest, probably, are its
moment-preserving properties. We could, of
course, obtain these by means of direct calcula-
tion; it is, however, considerably less arduous
to use diagrammatic arguments. As such con-
siderations involve some subtlety, it is convenient
to introduce them with reference to the standard
CPA-this we do in Sec. VI A-after which they
are applied to the random-hopping-integral prob-
lem of the present paper.

A. Moments in CPA

According to Velicky et al. , in their work on
the fixed-hopping-integral problem, the CPA
preserves the first six moments, at least, of the
density of states and the spectral density. This,
of course, compares excellently with the figure
of 3, which was the highest number preserved in
earlier approaches. Whether the CPA itself
preserves more than six moments is a question
that, as yet, does not seem to have been answered.
We will address ourselves here to that problem
by way of diagrammatic considerations.

Following Velicky et al. , we will denote the
Pth moment of the spectral density and the density
of states by M~ and p. ~, respectively. M~ and p, ~

are the coefficients in an expansion in powers of
z ' of the alloy Green's function G~ (z) and the
density of states p(z). z is the generalized energy
and, specifically, the Pth moment is the coefficient
of the term in z '~".

In a diagrammatic expansion of G —we will con-
sider "bare" diagrams for simplicity —each inter-
actor is z independent (it is just the hopping inte-
gral), and each locator contributes to O(z '). Thus
a diagram containing n locator lines is O(z ") and
so may contribute to the 1'n —1)th moment (and, of
course, higher-order moments as well). We may
expect, therefore, that if a diagram containing n

locator lines has not been averaged properly, the
(n —1)th moment will be in error. Let us consider
this in more detail both from a propagator point of
view (which is simpler) and from a locator point of
view.

Figures 15(a) and (b) and Figs. 15(c) and (d) rep-
resent, respectively, in the propagator and locator
formalisms, the two lowest-order diagrams that
the CPA does not include in a properly averaged
fashion (they are all two-site cluster diagrams).
The notation of the locator diagrams has been ex-
plained earlier. In the propagator diagrams, the
horizontal lines are bare propagators, while the
vertical lines represent scattering at impurity

(a)

(b)

(c)

FIG. 15. Propagator dia-
grams [(a) {b)] and locator
diagrams [(c), (d)]. These are
the lowest-order diagrams that
receive an incorrect weight-
ing in the single-site approxi. —

mation.

sites. In all cases scattering or hopping off iden-
tical sites is denoted by the joining of vertical
lines. For a diagram to contribute to the density
of states, it must be diagonal (initial and final
sites the same); a diagram that contributes to G„(z)
can, of course, be diagonal or off-diagonal.

Let us first consider the propagator diagram of
Fig. 15(a). Now a single propagator is O(z ), but
the z term itself is diagonal (consider the expan-
sion of a single propagator in powers of z '). Thus
the leading off-diagonal contribution [which is what
is required for an internal propagator of Fig. 15(a)]
is O(z ). Hence the three internal propagators
contribute to O(z 6). The two external propagators
now contribute to O(z ). In this order, however,
the whole diagram is nondiagonal —to make it diag-
onal we require another power of z . Thus the
contribution of this diagram is of O(z ) in the off-
diagonal case and O(z ) in the diagonal case. In
terms of moments, the incorrect averaging of this
diagram causes error in Mv and p, 8. By a similar
argument errors begin to arise, due to Fig. 15(b),
at M&p and pg. Thus, it appears from these con-
siderations that the CPA is correct for all moments
up to M6 and p.z.

It will be instructive now to check out these ar-
guments by reference to the locator diagrams.
Clearly Fig. 15(c) is essentially off-diagonal (and
will affect only the spectral density), while Fig.
15(d) is diagonal (and will affect both the spectral
density and density of states). Referring to Fig.
15(c), it would appear, at first sight, that this
diagram will give rise to error at O(z 4), since
each locator line is of O(z ). That this is not so
can be understood from a more careful considera-
tion of averaging in the single-site approximation.
Taking just one of the pairs of locator lines in Fig.
15(c), it is clearly correctly averaged as (g ).
However, in the single-site approximation, the pair
is incorrectly weighted as (g); this is the weighting
the members of the pair would have in the corre-
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sponding single-site diagram obtained by breaking
the pair (associating the two locators with different
sites). Thus the correction that is required is a
second-order cumulant, viz. , (g') —(g), and this
is easily shown to be O(z 4). By a consideration
of all four locator diagrams (there are only three
that have a single-site nature since to= 0), it is
fairly easy to see that the error produced by the
incorrect averaging of the whole diagram of Fig.
15(c) is proportional to ((g )- (g) ) . This factor
is O (z ), which agrees with our earlier propaga-
tor argument.

We can understand this result in another way by
starting with a z expansion of the locator g. The
first term in the expansion is just z and contains
no randomness; randomness, and hence the source
of error in averaging, does not appear until the z
term. Thus randomness in all four locator lines,
which is what is required to give the character of
a crossed-line diagram, first occurs at O(z },
giving us the order of the error. Although one
should not be too cavalier about applying such a
discussion to other diagrams such as Fig. 15(d),
which involve three locators associated with a
single site, it is fairly easy to develop the argu-
ment in a rigorous fashion such that it can be used
quite generally.

Let us now turn to Fig. 15(d) and the moments of
the density of states. There are three single-site
type of diagrams which contain five locators and
hence are related to the diagram of the figure. By
a consideration of these diagrams, it is straight-
forward to show that the averaging error associated
with Fig. 15(d) is proportional to ((g ) —(g ) (g) )
&& ((g ) —(g) ). The first factor, which is associated
with the triplet of lines, is O(z ); the second factor,
associated with the pair, is O(z ). Hence the
whole diagram is incorrectly averaged at O(z
again in agreement with the propagator argument.

In conclusion, then, the CPA preserves the first
seven moments (Mo to M') of the spectral density,
and the first eight moments (po to p') of the density
of states. We will now try to extend these diagram-
matic arguments to the generalized theory of this
paper.

A limiting case that remains to be checked is
that of vanishing A-B hopping. An electron start-
ing on an 4 site then can hop only to other A sites.
Similarly, an electron starting on a B site must
always hop to other B sites. We must, therefore,
get two bands that are independent, although, of
course, they can overlap one another. This situa-
tion is, in some sense, equivalent to a vacancy
problem and to the extreme split-band limit of
Velicky et a/. Let us fix our attention on the A
sub-band. As far as this sub-band is concerned,
B sites are forbidden from taking part in hopping
processes and are, thus, effectively vacant sites.
Consider now the split-band limit; setting E&-
has the effect of preventing electrons from hopping
onto B sites. We would expect, therefore, that our
equations for the 4 sub-band, in the limit v - 0, are
the same as the CPA equation in limit E& -~.

Let us, then, set v equal to zero in our equations.
From (5. 4) it is seen that UB- 0. The denominator
in (5. 5) then factors,

&a= 8 —&We) P —&Wa).

Hence from (5. 5) and the definitions (3. 19)

(6. 1)

occupation indices, the locator has implicit ran-
domness inthefirst term, i. e. , O(z ). Itis thus
immediately apparent that the orders at which
errors begin to appear due to single-site averaging
are O(z ) for Fig. 15(c) and O(z ) for Fig. 15(d).
In our generalization of the CPA, therefore, the
lowest moments not treated exactly are M3 and p, 4,
i. e. , our approximation preserves the first three
moments (Ma to Mz) of the spectral density, and the
first four moments (po to ps) of the density of
states. That the single- site approximation pre-
serves fewer moments when the hopping is random
is, of course, not surprising. It is, however,
satisfying to note that we have more exact moments
of the density of states than do other (pre-CPA)
approximations for diagonal randomness only (cf.
Ref. 4).

C. Independent Band Limit

B. Moment Preservation for Random Hopping Integral

The arguments of Sec. VI A can very easily be
extended to the case of a random hopping integral.
Again it is Figs. 15(c) and 15(d) that we have to
consider, but now the vertical and horizontal lines
represent 2 &2 locator and interactor matrices,
respectively. To ensure that the randomness still
has a single-site form, we introduced occupation
indices and included them in the definition of the
locator. To see the effect of this device on the
moments, one has only to expand the 2 &2 locator
in powers of z . Because of the presence of the

=—Z1 1
N &

E —E~+cJy —pW&

(6. 2)

Clearly we now have a pair of self-consistent equa-
tions that are independent. We can, if we wish,
define two k-independent self-energies

ce/r", (6. 3)

Now the CPA equation (setting the averaged t ma-
trix equal to zero; cf. Refs. 3 and 4) may be written

E~- Z E~ —Z
I - ~o(EA- ~) ' I- GO(EB - ~)
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where G and Z are the Green's function and self-
energy of the CPA, respectively. Setting E& - ,
we obtain

Z = Eg —cs/Gp, (6. 5)

which is of just the same form as the first of Eqs.
(6. 3), as was anticipated.

We can now check a further limiting procedure,
viz. , setting p. -0. In this case the second of
Eqs. (6. 2) becomes

D. "Effective" Lattice and Some Concluding Remarks

In any averaging process the actual alloy is re-
placed by an "effective" lattice, whose nature be-
comes more apparent if the Green's function G~
(taken to mean G,""+G, + G," + G» ") is expressed
in the form

G~(E)= (E —H,») (6. 7)

where 0,« is the effective-lattice Hamiltonian and
generally is energy dependent. In our case, let
us assume the nearest-neighbor model [Eq. (5. 1)]
for simplicity and then sum the four elements of
the matrix (3. 16). We can then make the identifi-
cation

P —q Wq+ re~
(A+B —2US)- (X+ p —2v)W, ' (6. 8)

where all quantities have been defined earlier in
the text. At present we have been unable to reduce
(6. 8) to a more convenient form We note, .how-

ever, from this expression, that H,«can be ex-
pressed as an infinite series in powers of 8'~. It
will, thus, be realized that although hopping in the
real lattice connects only nearest-neighbor sites,
the "effective" lattice Hamiltonian of the averaged
alloy connects all sites. There are exceptions to
this in special cases; for example, in the CPA
limit (&= p = v) only nearest neighbors are connec-
ted and, in the case &+ p, —2v= 0, coupling exists
only out to twice the lattice constant.

Generally, then, we are using a single-site
approximation and obtaining an "effective" Hamil-
tonian that couples all sites. This provides fur-
ther indication of the nature of our approximation.
It will be remembered from our introductory re-
marks that the CPA may be regarded as a one-
impurity problem in which a single real atom is
placed in an effective lattice. This real atom
produces, in the single-site approximation, a
perturbation at the impurity site only. The solu-

(6.6)

describing completely localized levels at energy
E& and with weighting e&. With this, the satisfac-
tory behavior of the theory in the limit of indepen-
dent bands is established.

tion of this one-impurity problem provides us with
an equation that describes the effective lattice.
The present generalization suggests that the sub-
stitution of a single real atom into the effective
lattice produces a perturbation that, instead of
being localized to the impurity site, extends to all
neighbors. This in turn would indicate the need,
in an effective medium approach, to introduce
appropriate parameters not only for the hopping
between effective atoms but also for the hopping
between real and effective sites.

We have demonstrated in this paper how, in a
very natural way, the locator formulation allows
us to generalize the alloy Hamiltonian to include
site dependence in the hopping integral. Physi-
cally we are observing the delocalization of elec-
trons from A and 8 atomic states, and a feature
of the theory is the retention of the distinction
between the two species throughout the averaging
process. As yet we have been unable to express
our theory in the more commonly used propagator
language-this may indicate that there are certain
inherent advantages in a locator approach. The
theory, as expressed here, is in a form that is
immediately suitable for certain extensions: (i)
Although we have been concerned with the elec-
tronic problem here, a lattice-dynamics problem
involving force-constant changes may be treated
in an exactly analogous way. (ii) The theory may
easily be extended to a multicomponent alloy,
e. g. , for an n-component alloy our 2&&2 matrices
would become n ~n matrices and we would have,
instead of three, m~(n+ 1) simultaneous equations
to solve. (iii) Any developments of the "diagonal
randomness" problem to include the effects of
higher-order clusters by a multiple-scattering
or hopping technique should be readily generalized
in terms of our formalism.

APPENDIX A

In Sec. II the problem at hand was the explicit
summation of the restricted Green's-function se-
ries of Fig. 1(a). There we showed how the intro-
duction of a new argument into the locator function-
al caused the restricted series to degenerate into
the completely unrestricted series (ignoring the
effect of crossed-line diagrams) which is easily
summed. We present here an alternative approach
that does not require the use of functionals.

Again we denote the averaged Green' s function
of Fig. 1(a) by G«. . Let us also define a quantity
6»., which is the unrestricted series associated
with G»., i. e. , G». is represented by Fig. 1(a)
but with the removal of the restriction on repeated
site indices. It is this quantity that is easily
summed (in the k representation) to give

(Al)
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It is clear that it is necessary to subtract an
infinite set of terms (diagrams) from G to obtain
the desired Green's function G, and that this in-
finite set of diagrams must be expressible in a
summable form to provide a useful relationship.
By a systematic inspection we find that, except
for crossed-line diagrams, the following relation
exists:

o T oG)r =G r, .—~fftG)fft UfftGfft (A2)

G» = [(G») '+ Uo] ', (A3)

and substituting G» from (A1), we obtain

U„ is the renormalized interactor of Fig. 1(c)
here labeled explicitly for clarity. Equation (A2)
has the form of a Dyson equation, except that it
is constructed to subtract, rather than add, dia-
grams. Since U„ is independent of site index, it
can be pulled out of the summation as Uo. Note
that all the quantities in (A2) are functionals of
y. We have not exploited their functional depen-
dence here, however, and so do not display it ex-
plicitly. Now going over to the k' representation,
we can rearrange (A2) to obtain

REAL

FIG. 16.. Three regions of complex g plane. Figures in
parentheses refer to equation numbers in the text.

The calculations were done on a CDC 6600 ma-
chine, the pair of equations (5. 5)—expressed in the
form (B4)—being solved for p" and P by a Newton-
Raphson technique. The procedure for calculating
Fo (z) will be summarized briefly here. Three ex-
pressions for it were used, the appropriate one
being determined by the value of z. They are

P»= (y + Uo- t»}

which is just Eq. (2. 13).

APPENDIX B

Fo(z)=3t J,
'

dt e ""[Zo(t)]',

F, (z)= 3f, dte '"[f,(t)]',

(B5)

(B6)

F»(z) = (z —II'») ' Fo(z) = (I/&)~»F»(z), (B2)

g~=q/2y, n = (q'/4~'-P/~)'" .
Our Eqs. (5. 5} can then be written (with g'= qq

+go)

p, k
[q F, (g ) —r/'F, (q')] . (B4)

The reason for expressing our equations in this
rather more cumbersome form is to take advantage
of numerical methods available in the literature.
Well-established techniques exist for evaluating
functions such as Fo(z}.

The numerical calculations of the k sums of (5. 5}
are simplified by the use of the following (easily
derived) relations:

1 1

p ~,„~ =
2 IF»(&~-&o)-F»(&i+&»)]

P —~ a+& a ~2

1 1 15 155 2485
z 6z o 216z 3888z 93312z

The series (B7) is just the first few terms in an ex-
pansion in z and must be the correct limit for
large Iz I; we find, in fact, that it is the best ex-
pression for I~ I greater than about 2. Expressions
(B5) and (B6) involve Bessel functions of zero or-
der and with real and imaginary arguments, respec-
tively (see Wolfram and Callaway ). The ranges
of ~ where each of the three expressions is used are
shown in Fig. 16. We show just one quadrant-sym-
metry considerations determine the behavior in the
other three quadrants. The figures in parentheses
refer to the equation numbers. For the calculation
of the integrals in (B5}and (B6) we used the
Gaussian-quadrature method, based on Legendre
polynomials, as described in the appendix of Hone
et af. oo The agreement between values of Fo (z),
calculated by the alternative expressions appropriate
at a particular boundary of the regions in Fig. 16,
was for all practical purposes exact (better than
1%). It was, in fact, with such considerations that
we determined the positions of these boundaries.
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