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A theory of chemisorption relevant to alkali atoms on metal surfaces is presented. The vir-
tual-impurity-state problem is modeled in the manner presented by Kjollerstrom, Scalapino,
and Schrieffer for solving the Anderson impurity problem in the low-density approximation (LDA).
It is assumed that the binding or chemisorption energy of the alkali metal is composed of two
parts, a metallic and an ionic component. Since considerable charge transfer from the alkali
atom to the metal occurs, the LDA is appropriate for describing the metallic part of the binding .
Another consequence of the large charge transfer is that the major portion of the binding results
from an ionic type of bond between the partially charged alkali ion on the surface and a polari-
zation or screening charge inside the metal. The results of the theoretical calculations indicate
that binding energies for alkali atoms adsorbed on clean single-crystal faces of metals generally
fall with in the range of 1.5-2. 5 eV, in accord with available experimental data on metals such as
W, Mo, Ta, and Ni.

I. INTRODUCTION

Since Taylor and I angmuir's' classic work in
which they studied the electronic properties of
tungsten surfaces coated with partial cesium mono-
layers, the importance of alkali adsorption on
metal surfaces has gained widespread recognition.
It was found that the formation of roughly 0.6-0.7
of a monolayer of cesium on the tungsten surface
caused the work function of the system to be re-
duced by as much as 3 eV. Subsequent experi-
mental studies using various techniques (for ex-
ample, thermionic, photoelectric, contact poten-
tial, and field emission) have both substantiated
the original findings and built up an increasing
quantity of reliable data on the electronic properties
of single-crystal metal surfaces covered by ad-
sorbed alkali-metal monolayers. ~ 7 With the en-
hanced production of experimental data on these
systems it has become increasingly important to
have an acceptable theoretical framework in order
that the data can be understood in a systematic
manner

A critical review of most of the theoretical work

on chemisorption prior to 1967 has been given, ' '
Since this review, additional work has been done on
chemisorption which is of importance to the pres-
ent study "~'

The basic ideas which seem most relevant to
alkali-metal. chemisorption are those pioneered by
Gurney, ' extended by Gomer and co-workers, ' and
developed further by others. " Within this school
of thought, an alikali adsorbate is viewed as an ion
with a virtual state, derived from the valence 1.evel,
broadened and shifted by a configuration type of
interaction with the continuum of metal states. The
position of the virtual level on an energy-level
diagram, relative to the occupied portion of the
metal conduction band, determines the charge state
of the impurity'0 or, equivalently, the type of chem-
ical bond formed between the alkali and the metal. "
This is analogous to the Anderson impurity, which
may possess a localized m~netic moment 22~5 In
Fig. 1 the effective metal and virtual-impurity-
level density of states are shown, both for the
Anderson magnetic impurity and a hypothetical mag-
netic chemisorbed alkali adatom. The localized
magnetic moment can occur if the splitting between
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FIG. 1, (a) Density-of-states distribu-
tions for a magnetic impurity. The mono-

tonic parabolic curve is a free-electron
metal density of state. {b) Density of
states for an electropositive adsorbate.
The area in the cross-hatched section
is the amount of electron charge on the
adsorbate. The case of a low-density
magnetic impurity is shown. Anonmag-
netic impurity has (n+) = (n-), so the
two bell-shaped curves would then coin-
cide in energy.

(0) (b)

a spin-up and a spin-down level is suff' '
nt to

cause one level to be mostly below the Fermi en-
ergy and the other level mostly above. On the
other hand
b both

and, alkali chemisorption is characte ' drlze
y o spin levels lying sufficiently above the

Fermi level, so that the alkali adatom has lo t tos mos
o i s electron charge to the metal energy t t tsaesa

e ermi level, and hence a fractionally charged
ion results, in analogy with a localized magnetic
moment whose magnitude is a fraction of a Bohr
magneton. As a result of the low net electron
charge on the adatom, past theory has been content
to neglect any magnetic effects that might be as-

f
sociated with the alkali surface impurity and

ormulated within an effective single-electron ap-
proximation in which spin properties were not in-
troduced. ' "

The picture adopted in the present work is the
followi ng. The alkali surface impurity is regarded
as an ionic impurity of nonintegral charge number
due to the broadening and shifting of the ' tu 1

level. The effective adatom density of states has
been observed in resonance tunneling experiments
and has been interpreted in terms of the parameters
characterizing the virtual impurity level (or scat-
tering resonance), the position and width of the
state on the atom-metal energy-level diagram ~
Although, for experimental reasons, the measure-
ments have been done on alkaline-earth rather than
alkali-metal atoms, we feel that there is sufficient
resemblance to allow certain rather general con-
clusions to be made concerning the alkali atoms
based on both the experimental results in the alka-
line-earth studies and past theoretical calculations
on the alkali adsorption problem io, i~, a~ The major
conclusion we shall use from these studies is that
for chemisorbed atoms, such as Na, K, and Cs on
metal substrates, the valence level of the atom is

shifted upwards by 0. 5-1.0 eV and achieves a width

of about 0. 3-1.5 eV. Considering that most metal
surfaces have work functions between -4. 2 and

5. 0 eV and that the ionization potentials of the cited
alkali-metal atoms are in the range 3.9-5. 1 eV,
it is seen that the shifted level of the alkali atom
will tend to be above the Fermi level of the metal.
Only a small amount of overlap (or shared electron
bonding) between the virtual state and the metal
conduction band will occur owing to the f' 'te 'dth

of the impurity level. Thus a small fraction of an
electron charge will reside in the immediate neigh-
borhood of the ion core (& Q. 25e) and an ion with an
effective charge number Z,«&0. 75 will exist on the
surface polarizing the electrons in the conduction
band. A spin-independent formulation of this model
has been successful in providing numerical results
of dipole moments for various combinations of
atoms, metals, and crystal faces which are in rea-
sonably good agreement with the experimentall de-
termined values. '" Here we wi11 set up the pro-
cedure for calculating binding energies for alkali-
like atoms on metal surfaces. The expressions
will be obtained as a function of some undetermined
hopping and overlap matrix elements. These for-
mulas will be numerically evaluated for some rea-
sonable choices of these parameters.

The plan and goa1s of the present paper are as
follows. In
t

ec. II the self-consistent solutions t
he Anderson Hamiltonian are obtained. The im-

0

purvey- charge is such that the appropriate solutions
to the Anderson Hamiltonian tend to the nonmagnetic
low-density-approximation (LDA) solutions given by
Schrieffer and Mattis. ' In Appendix A some prob-
lems associated with the utilization of an Anderson
type of Hamiltonian for surface impurities are dis-
cussed. With LDA solutions and the results de '

ed
in Appendix A, the procedure of Kjollerstrom,
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Scalapino, and Schrieffer (KSS) ' is used to obtain
an expression for the nonionic part of the binding
energy of the surface impurity in Sec. III. A meth-
od for treating the ionic part of the binding energy
based upon the results of detailed microscopic
theories of dielectric screening in the surface re-
gion of an electron gas is provided in Sec. IV. "-"' '
The results of model calculations for binding en-
ergies as a function of various combinations of
system parameters such as the virtual-impurity-
level position and width, the substrate work func-
tion, the electron affinity of the impurity atom, and
the electron density in the conduction band are
given in Sec. V together with a general synopsis
and conclusions,

II. ANDERSON MODEL

The type of surface impurity or adsorbed atom
and metal combination we shall consider is that
system which is adequately described by the model
Hamiltonian

H=Z e, n +pe„n„

+ Q (V„, c~~, c„+H. c.) + Un„n, , (1)
X,e

where e and c are the Fermi creation and destruc-
tion operators, H. c. is the Hermitian conjugate,
and n„, = ct, c„, and n„= c~, c„. Since Eq. (1), often
referred to as the Anderson Hamiltonian, has been
discussed at length in the literature, ' ' ' we will
only explain here the notation and quote the end re-
sults in the cited papers which will be required in
the present description of alkali chemisorption.
In the occupation number representation, Eq. (1)
describes a continuum of metal states specified by
the set of quantum numbers X and spin o with un-
perturbed eigenvalues e'~, . For example, in semi-
infinite jellium, the quantum number A. = (kr, I k, I)
with k& the k vector transverse to the surface nor-
mal and l k, j the magnitude of the k vector normal
to the surface. (This point is discussed in detail
in Appendix A. ) The alkali atom is characterized
by a ground-state energy &„which may include
static-potential-induced shifts in the energy level.
All energies are measured relative to a zero at the
Fermi level of the metal. The strength of the cou-
pling between the discrete atomic state and the con-
tinuum of metal states is determined by the hopping
integral

would be similar to previously calculated surface
potentials for perfect surfaces ~ modified to ac-
count for the presence of the impurity ion core.
The last term in Eq. (1) represents an approxima-
tion to electron-electron correlation effects on the
impurity site. Within the Hartree-Fock theory,
this term is given by the Coul. mob repulsion between
spin-up and spin-down electrons,

U»- f d'r, d rmg, +(r,)(j, (rz)

For an isolated single-electron-like atom, Eq. (3)
represents the amount of energy in excess of the
ionization potential needed to add a second electron
to the atom in the Hartree-Fock approximation, and
as such should be simply related to the electron
affinity A and ionization potential V, through
U= V, —A. " A direct calculation using Eq. (3)
gives too large results, at least for hydrogen
chemisorption, so Newns chose to redefine an ef-
fective Coulomb integral. '6 One would expect a
somewhat smaller value of U for the "impurity
problem" compared to the "atom problem" owing
to screening effects in or on the solid. Because
of the usually assumed properties of alkali-metal
chemisorption on transition-metal surfaces (sub-
stantial charge transfer from the atom to the metal
occurs), we consider that the LDA of Schrieffer
et al. 5 most realistically treats the impurity-
state correlation effects. As will be seen shortly,
the LDA is used to define an approximate correlated
Coulomb integral called U,ff.

In either the Hartree-Fock or Schrieffer-Mattis
treatment, the correlation term is treated as an
average self-energy in the sense that

so that the possibly spin-dependent unperturbed
impurity eigenvalue is e„+Z'"(&). Allowing an
impurity electron characterized by this energy to
couple with the continuum of metal states via the
hopping integral of Eq. (2) and treating this coupling
in the manner prescribed by Anderson~ and by
KSS, 24 we can identify a spin-dependent virtual im-
purity Green's function

Vx = f d r 6 (r) V (r)0 (r), (2) = [(0 —e ~
—Z ((d) + W sgn(d]

with /~* being a metal eigenfunction, g, an atomic
wave function, and V an effective single-electron
potential for the entire system of the metal plus
atom, determined self-consistently. In the surface
region, the single-electron potential of the metal

The half-width of the virtual level is given by
6 = vg„5((d —e„) I V~ I . As a result of the perturba-
tion of the metal on the atom, the center of the
atomic band is shifted such that &~ = &„+&e . To
the order we are working we have
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TABLE I. Impurity energy-level nomenclature.

P~ = c~+ Qc~,

~e = +e + Usaf ~~~~:

Atomic state energy relative to
Fermi level
Static-potential-induced shift in
atomic energy level due to such
forces as the image charges
Shift in real part of the atomic
level due to the V~ mixing; equal
to zero if 4 & b, (&)

Impurity energy level before
correlations at impurity site
have been taken into account
Impurity-virtual-state center of
gravity including on-site correla-
tions
Correlations self-energy at im-
purity site

The first-order shift in the energy 4&, resulting
from placing the atom in the self-induced field at
the metal surface has been absorbed into e„. This
term has been expl. ained in detail previously. "' '+
The term ~& is a shift due to the real part of the
self-energy and is equal to zero when one assumes
that ~ is a constant. The density of states asso-
ciated with each virtual impurity level of spin o is

1
r [~ —fo —z (~)] + EL

(6)

At zero temperature, the total electronic charge
on the impurity is

= —cot-' ' + cot-' (7)

where the Fermi level has been taken as the zero
of energy. Here E,'=e„+ U(n, ,}+«with e„
given by p, —V, + ~c„p, is the metal work func-
tion, and V& is the first ionization potential of the
isolated impurity atom. For convenience, a list
of the energy-level nomenclatures is given in
Table I.

As a result of the host-induced mixing between
the "up" and "down" states, the lower-energy spin-
up state is shifted upwards an amount U(n, ) be-
cause of its repulsive interaction with the partially
occupied spin-down state as shown in Fig 1(b). .
(Note that since there are no magnetic fields, the
up and down directions are quite arbitrary. } On the
other hand, the spin-down state, whose energy is
U above the energy of the spin-up electron in an

isolated atom, is shifted downwards from the affinity
level an amount U(1 —(n„})owing to the fact that
the lower-energy level does not become totally oc-
cupied before the spin-down level begins filling.
Hence, the repulsive electron-electron interaction
felt by the higher-energy "bound" electron is not
as great as when the atom is isolated. Consequent-

ly, the energy is somewhat lowered when the atom
is adsorbed. Newns, ' Schrieffer and Gomer,
and Gomer and co-workers~ have indicated that such
an effect could result in the apparent formation of
a single virtual level in chemisorption, lying about
halfway between the electron affinity level and the

ionization potential. In the sense that the sum

p„(&)=g, p,',"(&) obtained from Eq. (6) appears as
a singly peaked distribution, this is correct. With-
in the context of the theory of Newns, "a level with

a Lorentzian shape will occur halfway between the

spin-up and -down levels only when one has a sys-
tem which is adequately represented by a nonmag-
netic (n, =n ) nonionic Hartree-Fock solution to
the Anderson model. Since recent interpretations
of oxygen chemisorption experiments, for example,
have suggested that a single level may exist mid-
way between the ionization potential and the electron
affinity, this point should be considered further. ~~

When the total electron charge on the adsorbate,
given by Eq. (7), is quite small ((n„,) & 0. 25), the
LDA of Schrieffer and Mattis~ would be expected
to describe electron-electron correlation effects
on the impurity site more accurately than the
Hartree-Fock approximation, whose physical con-
sequences were discussed in the preceding para-
graph. For a detailed discussion, the reader is
referred to the original papers by Anderson and

by Schrieffer and co-workers~~' on the LDA ap-
plication. For present purposes in the LDA, for
choices of the parameters U and 4 relevant to
alkali chemisorption, no magnetic solutions to the
virtual-impurity-state problem exist. Further-
more the intra-atomic Coulomb integral Eq. (3)
is replaced by an effective potential~~'~

U.„=U/[1+ UA(0)),

with

(E+
C (0)=, tan '~ ~ +tan '

v Eo+ Eo

and

E~ =E~

The set of equations which must be solved self-
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consistently to obtain the nonmagnetic LDA descrip-
tion of an adsorbed alkali-atom impurity is thus

-1 ~ g + Ue f f +an = —cot
m

(8)

and

Thus, although we are dealing with a nonmagnetic
solution of the Anderson problem, spin-correlation
effects do have a definite effect on the energy levels
and thus the charge state of the chemisorbed atom.
This is a definite distinction from the results of

+Uf
v(e~+ Uettne)

(9)

where use has been made of the fact that n„=n,
=n, = —,'n„, [see Eq. (f)]. Typically for alkali-atom
chemisorption, a~ falls in the range 0. 3«~ & 2. 0 eV
since the ionization potential of the alkalis varies
from =4 to 5 eV, p, =4. 5 eV, and AA =1 eV, as
noted both through calculations"' ' and through
resonance tunneling experiments. For similar
reasons, we expect the level width to fall within
the range 0. 3 «« l. 0 eV for s levels of adsorbed
alkali atoms at low surface coverage. (Note that
the level width is 4= &I", where I' is the width pa-
rameter used in some past work. '") Finally, the
electron affinity of alkali atoms is about 1 eV."
Thus, the redefined Coulomb integral U,« falls in
the range 2. 5& U,«&4. 0 eV.

Physically electron-electron correlations on the
alkali impurity result in the following situation. If
the charge state is such that the LDA is valid, then
the Coulomb self-energy Z which is proportional to
the electronic charge is not sufficiently repulsive
to keep an electron of spin o off the site if one of
spin —o is already there. Thus there is no pre-
ferred spin and a nonmagnetic state occurs in which
(n, ) = (n ). The adatom density of states for spin-
up and spin-down states occurs at the same energy
(e~+ U(n, )). The two Lorentzian curves in Fig.
1(b) line up, but not midway between e, and e, + U.
The integrated area under the "double-level" den-
sity of states will include two electrons. However,
since the energy level is raised by the U(n, ) term,
the total charge occupation on the adatom is not
necessarily larger. In the so-call. ed single-el. ectron
approximation (SE) used in the past, "'" the charge
on the adsorbate is given by

(n...)„=(1/v)cot-t(e, /a),
whereas the nonmagnetic LDA solution to the Ander-
son impurity gives the total adsorbate electron
charge as

1
/ y e-1 e+ 2 Uett(ntet)LDAi& tot /LD A Cot

the single-electron impurity theory
A useful equation is formed by combining Eqs.

(8) and (9) to yield

Z cot-'y
p-'+ y-' tan-'y (10)

The conceptual viewpoint of the present approach
to alkali chemisorption is that the bond formed be-
tween the atom and the metal can be divided into an
ionic part and a metallic part, somewhat in analogy
with Pauling's approach to chemical bonding in
molecules. The fact that charge transfer is large
in the cases considered here suggests that the prin-
cipal contribution to the binding energy of a chemi-
sorbed alkali atom arises from ionic-type bonds,
in direct opposition to either transition-metal'4 or
hydrogen adsorption' ' in which it is assumed that
strong covalent bonds are formed. Because of the
prominence of the ionic bonding, limited considera-
tions have been given to a quantitative description
and estimate of the energy associated with the me-
tallic portion of the metal-alkali bond. This part
of the bond energy, which might be called a delo-
calization energy, results from allowing the valence
electron of the alkali to spread throughout the metal
and the metal electrons to spread a, bit into the re-
gion of the alkali atom. In this way the kinetic en-
ergies of all electrons are reduced by relaxing
slightly the geometric confinement of both the metal
and atomic electrons.

In the work of KSS, ' they consider the energy as-
sociated with an impurity atom in a dilute alloy.
An expression for the energy which is related to the
metallic portion of the chemisorption energy is

with y = (e~+ Z)/&. Treating the quantity p =—U/v4
parametrically, we have drawn Eq. (10) in Fig. 2,
choosing appropriate ranges of P and y for alkali
chemisorption. This result is useful in that it shows
the manner in which the virtual-level position changes
as a result of electron correlation effects at the
impurity site. For example, we should know the
value of U from either known values of V, and A or
from independent calculations for a given alkali
atom. It is presumed that the level could be ob-
served in a resonance tunneling experiment from
which the experimental value of y and & would be
immediately obtainable. Since we know y, 4, U,
and thus p, Eq. (10) allows us to ascertain the cor-
relation self-energy. Alternatively, a completely
theoretical approach is possible. Techniques for
calculating approximate values of e~ and & have
been put forth. ' ' ' ' Thus, Eq. (10) could be
solved self-consistently to obtain the value of Z
resulting from a given set of values for e~, ~, and
U. We wil. l demonstrate in Sec. V how to use the
results of Fig. 2 to obtain an explicit calculation.

III. METALLK CHEMISORPTION
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infinite distance. The final state is an interacting
alkali adatom and metal separated by an equilibrium
distance s. Hence, using the Lorentzian impurity
density of states, given by Eq. (6), and the metal
density of states cut off at the bottom of the conduc-
tion band, the metallic chemisorption energy de-
rived from Eq. (13) can then be expressed as

E„=E„(s-)-E„( )

E,'+ &'
=a (n„,)+ —', U„,(n, ) ~ —),E @ „~.)g+ ~J +

(14)

since we are adsorbing an ion and ~ -0 when the
metal and alkali adatom are separated. No ex-
plicit mention of the metal electronshasbeen made
since they just contribute a constant energy to both
the initial and final configurations, and hence the
terms cancel in Eq. (14). Detailed numerical con-
sequences of Eq. (14) will be given in Sec. V.

IV. IONIC CHEMISORPTION

In recent work, the physical picture of a massive
point impurity inducing a screening charge within
the surface region of the metal electron gas has been
a useful approximation for ionic bonding. " ' '

In previous work, the ionic bond was described
mostly within the context of the classical image
force approximation. ' ' physically, this is equi-
valent to describing ionic adsorption on a perfect
conductor, a reasonable approximation when the
charge center is much further than a few inverse
Fermi wave numbers from the surface. However,
for ionic adsorption, the ion is about an ionic radius
(-l.0-2. 5 A) from the surface, which is the same
order of size as the characteristic screening dis-
tance. Thus, a means of treating finite dielectric
screening effects in a nonuniform electron gas
is required.

One rather useful simplification has emerged
from the detailed microscopic theories of screening
in the surface region. "-' As suggested by Gomer
and Swanson, S' the corrections to the classical
image force due to finite screening in a real metal
can be handled in a reasonably easy manner. Es-
sentially, they redefined the position of the effec-
tive image plane. The mathematical surface is de-

pressed into the metal by an amount equal to some
screening length. Hence, the classical image at-
traction of a charge Ze a distance s from the sur-
face and given by V,' = (Zs)s/4s is replaced by

V, = (Ze} /4(s+ k '}when k is defined appropriately
as the screening parameter. Newns'9 has shown

that this procedure gives a very good representa-
tion of the true potential once a satisfactory expres-
sion for the screening length is obtained. Gadzuk"
has shown how a screening parameter, based upon
a detailed microscopic theory, can be obtained.
Qn the basis of these analyses, the appropriate
screening lengths are given by k, ' "=k», k,"'""

s kFT and k, '""=0.9k». Here kFT, the Fermi-
Thomas screening length, is given by k»
= (6vse /Er)'~ = 2. 95 /r,

' ~ 2A ', n, = No. electrons/
volume = (+waar, ') ', and ao is the Bohr radius. In
using this result, the atom-metal separation s could
be less than the particle radius. "'" This arises
from the fact that an impurity at the surface of an
electron gas bounded by an infinite potential can be
considered to be equivalent to an impurity =0. 3-
l. 0 A away from the surface of an electron gas
bounded by a finite potential of depth =10 eV. Using
these screening results, a method is presented in
which the ionic part of the chemisorption energy can
be calculated when account is taken of the fact that
the effective charge on the ion is a rapidly varying
function of position due to the shifting and broaden-
ing of the alkali valence level.

In applying the modified image potential to a the-
ory of alkali-atom chemisorption, another impor-
tant point must be considered. In the preceding
paragraph the ionic binding energy associated with
bringing a unit of charge infinitely far removed from
the metal up to a distance s from the surface has
been described. It is apparent either physically or
from Eq. (8) that the amount of electron charge
centered around the impurity in a virtual bound state
is strongly dependent on the separation and thus the
energy-level spectrum. An alkali ion far from the
surface has a net charge Z,«(~) =1. However, as
the atom is brought to the surface, the sharp state
broadens and overlaps a bit with the conduction band
such that the effective charge of the ion is now a
function of separation Z,«(s) = 1 —2n, (s) with n, (s)
given by Eq. (8).

The classical image potential energy is derived
in the following manner. If a charge Z,«e is a
distance s from a perfect-conductor surface, then
the electric field of the test charge plus the induced
screening charge will be such that the s + k, ' = 0
plane is an equipotential surface. The resulting
field will be that which would result if a negative
image of —Z,«e were formed a distance s + k, '
into the metal. Consequently, the attractive force
between the test charge and its image is E(s )
= —Z,«e /4(s +k, '}s. The work or change in energy
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to bring the charge from s'= ~ to s = s is, accord-
ingly,

"
Z,'„(s') ds'
4(s'+ k ')~ (15)

Now we must examine the variation of Ze«with
s . Here we will take a reasonable but approxi-
mate approach to the dependence of Ze«on s . The
Z,« is given by

~„,(s') = (2/v) tan ' [E (s')/&(s')] . (16)

f k(z} dz =[(2m/6 )(f),]'~ s' .
0

As a simple approximation

h(s ) =h, exp{-2[(2m/ff )(f),]"~ (s -r)), (17)

where (II), is the work function of the metal and ~0
is the level width upon adsorption where s =r, .
Hence, substituting Eq. (17) in Eq. (16), we find

z„,(s )= — an (—exp 2 &I (, (s -v, )I
2m

0

(16)

This result will be used in order to evaluate Eq.
(15}numerically.

V. RESULTS AND DISCUSSION

Some numerical consequences of this theory of
alkali-metal chemisorption are discussed in this
section to illustrate the applicability of the formula-
tion. The procedure for carrying through a detailed
calculation of the binding energy is provided. Some
physical conclusions which emerge from the numer-
ical computations are presented. Some illustrative
theoretical binding-energy comparisons for sys-
tems which have been studied experimentally are
also consider ed.

The ultimate goal is the computation of binding
energy from a given set of parameters characteriz-
ing the noninteracting atom and host surface. In
the absence of a complete theory or defined set of
parameters, we must content ourselves with a the-
oretical treatment which is given also in terms of
parameters characterizing the interacting system
but whose values are accessible either through in-

Since E~(s') is a much more slowly varying function
of s' than 4(s ), we will assume that it is approx-
imately constant in the above relationship. The
broadening 4 results from electrons tunneling
through the barrier assumed to exist between the
adsorbate and the substrate. 3' " Thus, we would
expect the width or tunneling probability to be pro-
portional to an exponential of the usual WKB-type
phase integral

sE, (8)
Bs

equi 1

=0

For several reasons this procedure is not justified

dependent experiments or through alternative the-
oretical calculations. The theoretical binding en-
ergy Ee = E„+W with E„and W given by Eqs. (14)
and (15}, respectively, has therefore been refor-
mulated in terms of the following parameters: (a)
noninteracting system —P„ the work function of a
particular crystal face of the host; V&, the alkali
ionization potential; A, the alkali electron affinity;
and 0„ the host screening parameter. (b} Interact-
ing systems-b, , the virtual-impurity-level width;

4E, the level shift; U, the screened intra-atomic
Coulomb integral; s, approximately the ionic ra-
dius, but more precisely the atom-metal separation
upon adsorption.

The parameters falling in category (a) are all de-
fined. In category (b}, the level width 4 is, in

principle, calculable theoretically, although com-
pletely reliable calculations require better treat-
ments of the surface potential than are presently
available. ' '" Alternatively, 4 can be determined
through a proper analysis of resonance tunneling
data. Consequently, we feel that 4 ca,n be re-
garded as an accessible parameter. Nearly the
same can be said for the level shift 4E and the
screened Coulomb integral U. But there is one
important distinction: In both Eqs. (14) and (15}we
require knowledge of E~= ((f, —V, + DE)+ Z=e, +Z.
Past theory has suggested possible ways to calculate
4E or &~."' '~6 If the Anderson theory is a valid
model for alkali chemisorption as herein proposed,
then the self-energy term Z must be computed from
the theory outlined in Sec. II. Thus, the self-con-
sistency condition Kq. (10), which leads to the
master curve of Fig, 2, becomes necessary. By
knowing E~, 4, and U one can find the self-consis-
tent value of Z which is given by the intersection
of the curve specified by p = U/v& with the linear
curve specified by e~/4 in Fig. 2. As an explicit
example, the results in Fig. 2 have been used to
compute the self-energy as a function of &~, choos-
ing reasonable values for the parameter 4 of
0. 33-1.0 eV, and U=n eVfor convenience. The re-
sult is shown in Fig. 3. From these results we see
that the apparent position of the alkali level is
shifted upwards by about 0.3 eV because of Coulomb
repulsion between up- and down-spin electrons on
the impurity.

The last parameter requiring specification is the
atom-metal separation s which is explicitly re-
quired in the calculation of the ionic part of the
binding energy Eq. (15) and implicitly needed in
calculations of 4 and 4E. Ideally, this quantity
should be obtained by solving
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here. First, the key quantities b and &E are not
sufficiently well defined as functions of s. More
critical is the absence of a realistic strongly re-
pulsive term between the alkali and the metal as
the separation decreases. In effect we have used
a hard-core repulsion and thus dictate the "equi-
librium" separation. Fortunately, it appears rea-
sonable to take s as proportional to the ionic radius
of the particular adsorbate and, as the obvious first
approximation, to set s equal to the ionic radius.
Lastly, an excessively large computer effort would
be required to obtain the theoretical extremum and
it is doubtful that the microscopic theories providing
functional forms for b, bE, and the repulsive term
are sufficiently well defined to warrant the large
numerical efforts required to calculate s —s~
The main justification of the present theory is
therefore that, given the parameters in (a) and (b),
it is useful to calculate the chemisorption energies
directly from the graphical relationships proposed
here.

The so-called metallic part of the chemisorption
energy E„given by Eq. (14) can be written in a
convenient nondimensional manner as

vE„ i (cot 'y)~

+1
+ ln z, 19

where p= U/vd. Treating the quantity p paramet-
rically and fixing Ee/e at a value appropriate for
a typical metal, Eq. (19) is plotted in Fig. 4 as a
function of y. In effect, this graph is a master
curve for the metallic part of the chemisorption
energy. Also shown, drawn with a dashed line, is

the electron density given by Eq. (8). The informa-
tion contained by Figs. 2 and 4 should be sufficient
to calculate the nonionic contribution to the binding

energy. As an explicit example, E„ is given in

Fig. 5 for a system in which U= 3. 14 eV and E~
= V. 50 eV, values which would be reasonable ap-
proximations for typical experimental systems. A

range of relevant values for E~ is chosen. Since

U, and b are known the self-energy and hence

Eo are ascertained from Fig. 2. Going back to

Fig. 4, we determine the nondimensional metallic
part of the chemisorption energy, knowing E~ and

p. The nondimensional energy is then converted to
dimensional form and plotted in Fig. 5. It should
be noted that for a given E~ in Fig. 5, the magni-
tude of the metallic contribution to the binding en-
ergy increases as b increases, which is what one
might expect from more physical considerations.
One final point should be made. Since we are work-
ing in the LDA, care must be taken to make sure
that this theory is applied only within the valid
limits of the LDA. For instance, as b and hence
n, increase, the LDA is less valid and, in fact,
magnetic solutions for the impurity might become
energetically favorable. In this case, the present
analysis must be considerably modified.

It is also informative to consider the ionic part
of the chemisorption energy given by Eq. (15), the
modified image type of interaction. In Eq. (17),
[(2m/&') @J' = 1.09 A ' is a reasonable approxima-
tion for real systems. Having normalized Eq. (15),
we evaluate W[e /4(s+ k, ')j ' as a, function of s.
Treating

E, 2m
exp —2

0
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parametrically, we draw the results in Fig. 6. It
is seen that —although the effective charge on the
alkali, when it is at its equilibrium position, might
be a good deal less than unity —as the impurity is
removed from the surface, the level width quickly
shrinks, the charge goes to unity, and the ionic
contribution becomes very similar to the modified
image potential for a constant unit charge.

As a specific example of application of the pres-
ent theory, the binding energies are calculated for
a reasonable choice of input parameters relevant
to specific alkali atoms and metal surfaces. In
particular, the binding energies for Na through Cs
on some hypothetical jellium metal with a typical

electron density characterized by r, = 2. 5 are de-
termined. The work function was set at 4. 72 eV,
which corresponds to the (110) face of Ni. The first
three columns of numbers in Table II give the input
data characterizing the alkali atoms. By using cal-
culated values of &E and estimated values of &0
based upon resonance tunneling experiments for
alkaline-earth atoms (see columns 4 and 5), the
self-consistent solutions to the impurity-level posi-
tion are found from Fig. 2. The charge transfers
from Fig. 4 are given in column 6. The metallic
part of the binding energy is found from Fig. 5
since c~ and Ll are known. These results are in-
dicated in column 7. Obtaining the value of y as

TABLE II. Input data characterizing the metal-alkali systems and derived and experimental binding energies. The

ionization potentials and ionic radii were obtained from Ref. 34 and the electron affinities from Ref. 31. The experi-
mental values are from Ref. 5, modified to correspond to ionic desorption energies. k, =0.9k~, r~=2. 5; /~=4. 72 eV.

Na
K
Rb
Cs

5. 12
4 ~ 32
4. 16
3. 89

0. 54
0. 47
0. 42
0. 39

0. 95 0. 99 0. 5 0.33
1.33 0.66 0.5 0. 24
1.48 0. 59 0. 5 0. 22
1.69 0. 52 0. 5 0.20

0.42
0.31
0.28
0.25

l. 53
l.59
1.52
1.43

Alkali V&(eV) &(eV) r~(A) ~{eV) &(eV) |,nt, q) E~(eV) +(eV)
E(eV)
(theo r)

l. 95
1.90
1.80
1.68

E(eV)
(expt)

2. 56
2. 15

1.87

E(eV)
(cycle)

4. 19
2. 30
1.87
1.30
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previously indicated, the ionic contribution is found

from Fig. 6 and appears in the column 8. The the-
oretical total binding energies are shown in column
9, together with the experimental measurements
of Gerlach and Rhodin' for the binding energies
(these values are modified to correspond to ionic
desorption energies) of Na, K, and Cs on the (110)
face in Ni given in column 10. For purposes of
comparison, the binding energy

E„„,= V( —P,+ e /4r;,
found from thermodynamic cycle and classical
image force arguments, is presented in column 11.
The agreement between experiment and theory is
reasonably good. Both the trends and magnitude
of the binding energies are in good accord using the
theory presented here. This illustrates the basic
validity of the present analysis but does not, of
course, detract from the usefulness of the thermo-
dynamic cycle approach.

In conclusion, we have seen that theory developed
in the study of magnetic impurities in solids has
provided a basic framework upon which an approach
to a theory of alkali chemisorption on metal sur-
faces can be formulated. The present theory is
distinguished from past theories of alkali chemi-
sorption effects in that the latter have neglected the
subtle ramifications related to magnetic effects
of the virtual impurity level. ' -" These theories
are ineffective with regard to distinguishing between
virtual states with or without a net spin. Con-
sequently, effects related to the difference in energy
between magnetic and nonmagnetic virtual states
were not treated. Since these theories were most
concerned with calculating dipole moments or
charge distributions rather than energies, the ne-
glect of the magnetic effects was not serious. The
present theory, in which binding energies are cal-
culated, does include interaction terms resulting
from electron-electron interactions at the impurity
site. By regarding the charge on the alkali atom
as a function of atom-metal separation, it is pos-
sible to show that the ionic contribution to the
chemisorption energy is not as sensitive to the
virtual-level width as had been previously con-
cluded. Master curves have been provided which
enable one to calculate binding energies by knowing
the critical parameters, which can be independently
determined, characterizing the atom and the metal.

One of the significant realizations from this
study, useful to the experimental physicist, is that
the binding energies are not particularly sensitive
to the particular alkali metal that is adsorbed. For
instance, a difference in binding energy between
Na', the most tightly bound ion considered, and
Cs', the most loosely bound, was found to be only
about 0. 7 eV with 1.9&EQfggi &2. 6 eV. This is to
be contrasted with the dipole moment associated

with the metal-alkali comples. Work-function mea-
surements' for Na, K, and Cs on Ni (110) show that
the dipole moment follows the sequence p.„,= 1.85,
p,„=2. 92, pc, =4. 05 Debye units. Thus, as the

binding energy varies by about 25%, the dipole moment
associated with the bound complex varies by more
than a factor of 2, almost an order of magnitude
more. This, of course, comes from the fact that
the dipole moment results from charge distribution
associated with a distortion of the atomic and me-
tallic wave functions. Since the energy of the sys-
tern is stable with respect to a slight variation in

the wave function, there results an nth-order
change in chemisorption energy when the charge
distribution or dipole displays an n+1 order varia-
tion. Hence, it seems that it might be more ad-
vantageous to measure dipole moments since they
are more sensitive to the critical parameters of
the adatom-metal system. With the promise of
spectroscopic data obtainable from resonance tun-

neling experiments and improved theoretical for-
mulation, the microscopic factors defining the
phenomena of alkali-metal chemisorption will be-
come increasingly more quantitatively understood.
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APPENDIX A

The coupling term in the Anderson Hamiltonian

ff„,=Z (V„ct,e„+H.c.) . (Al)

V|-„=fi ' f d r +,*(r) V ( r) e'"'

= a(k)+ ib(k) (A2)

The symbol X represents the set of quantum numbers
specifying the host states and 0 is the spin quantum
number. For an infinite material, in the extended
zone scheme, X represents the three-dimensional
k vector with —~& k & ~. The hopping integral de-
scribing the coupling of the impurity orbital to a
band state in jellium is
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a(k)=II t f d r4',"(r)V (r)e' r'rcosk, z,
(A3a)

b(k}=& '~z f d'r@~(r)V (r)e"r'rsink, z,
(A3b)

and V (r) is an effective system (Hartree-Fock)
Hamiltonian. The picture which results is that of
an impurity with a level width

~ =~' «(» —».}I v"-I ' =~. «(» —"}(Iel
' +

I
bl')

(A4}

where p(»z) is the electron density of states at the

Fermi energy and (I V, -„I )„is some average value
of the hopping integral.

Next, we wish to consider an impurity in a host
of large extent in the x, y (rr) plane and of finite
extent in the surface-normal direction from
0 —z™L. If we assume infinite barriers at the
surfaces, then the appropriate "continuum" wave
functions are running waves in the transverse di-
rection and standing waves in the z direction. In
the boundary condition of vanishing wave function
at z = 0, L is satisfied by choosing

and

q, (r) = (2/&)'~' e'"r''r sink, z'

(A6)

4'„= (2/0)' ~' e' "r'r sink, ($+ z) .
Just as in Eqs. (A2) and (A3), we have

Vf„= (2/&)'~ sink, $

The quantum numbers are X = (kr, l k, l } and fall in
the range —~ & k~ & ~, 0 ~ k, ~ ~. Second quantized
operators for particles in the states specified by
X can be expressed as a sum of operators for states
specified by k, for example, the destruction opera-
tor c„=2 '~' (c,,—c,,)cf . Thus, the coupling term
in Eq. (Al} can be written as

T~tnt ~ Vhx C)te Cae ~ r keC)t. ~e Ca, e
A. ,e (kg&0) )f,e(all kg)

which is the mixing term for the impurity orbital
and the band wave functions in the finite crystal
with surfaces. The hopping integral must be given
in terms of k and any explicit dependence, due to
either surface or size effects, must be treated.
To calculate the hopping integral, imagine that the
impurity is a distance $ from the edge of the slab.
Then translating the origin of coordinates to the
impurity center, the metal wave functions are

xf d'y4, '(r) V ($+ r)e"r'r cosk, z+ (2/&)'"cosh, &

xfd'r4', "(r)V ((+ r)e'"r'r sink, z .

(A6}

The impurity wave function 4, confines the integrand
to a spatial region of the order of the impurity ra-
dius. If the impurity is further than a few times
this radius into the host, then the Hartree-Pock
potential V (5+r) is not influenced by surface ef-
fects and, at least for jellium, we can replace
V (g+ r) by V (r) since absolute position plays no
role as far as V is concerned. ~9 Then the inte-
grals in Eq. (A6) are the same as a(k) and b(k)
givenby Eqs. (A3a) and (A3b), and as a result, for
the host of finite size we have

Vf, = W2 sin(k, $)a(k)+ v2 cos(k, $)b(k), (A7)

which is somewhat different from Eq. (A2). We
will examine the consequences of Eqs. (A3), (A4),
and (A7) for a few different limiting cases.

(a) Volume imjurity in large host From. Eqs.
(A4) and (A7), the level width is

a = Q f w 5(»; —».) [2sin'(k, () I
a

I

'+ 2 cos'(k, () I
b

I

'

+ 4»n(2k 0 la

For large $, the cos and sin~ terms oscillate rap-
idly between 0 and 1 as the k, sum is performed,
compared to the slowly varying functions a and b.
Thus, we can replace the squared trigonometric
functions by their average value, which is &. Sim-
ilarly, the average value of sin2k, ) is zero. With
these steps Eq. (A8) becomes

&=&- «» -».}(Iel'+ Ibl'}

which is identical with Eq. (A4}, as it must be.
(b} Surface impurity upon large host Our mod. el

surface impurity is placed at $ = 0, directly upon
the mathematical surface. In view of the quantiza-
tion rules of Eq. (AS), the hopping integral in Eq.
(A6} becomes

Vf,""=(2/&)'~' f d'r4', *(r)V (r)e'" '~rsrink, z,
and the Anderson formalism can be simply adapted
to the treatment of surface impurities by an appro-
priate choice of matrix elements. '~ We should note
also that if the impurity was slightly removed from
z = 0, then the same types of arguments as in case
(a) could be used to eliminate the rapidly oscillating
terms. Extra complications in practice but not in
principle result from the fact that here V cannot
be replaced by a constant inner potential for jel-
lium. In fact, V (r) would be similar to already
calculated surf ace potentials '~ suitably modified
to account for the presence of the impurity.
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APPENDIX B

An alternative approach to the divergence of the
quantity where

e aa+ Ig!no+so-+

E, = E„—(s)+U„,s„n, =E, J "p,', (ru)d&o,
xe""

E~—=Q z ~z zg, dx.
x +&e (B5)

g(~) ye~a&")s (B2a)

in which an approximate but reasonable energy de-
pendence on the hopping integral of Eq. (2} is used,
as indicated. In the chemisorption problem, the
alkali valence level broadens as a result of electron
tunneling through the barrier which is assumed to
xist between the adsorbate and the substrate s,s

Thus, one could expect the width, or tunneling
probability, ~(~) to be proportional to an expon-
ential of the barrier height multiplied by the atom-
metal separation s. As a simple approximation
take

1 1 + „~(&u)z "
x2+ g(~)2 2 ) 2 (Bv}

The nth-order exponential integraL is defined as

E~ is the quantity playing the role analogous to that
of the logarithm term in Eq. (14). For the alkali
adsorption considered here, we must have b & E~
in order that charge transfer be dominant, as as-
sumed here in binding. Thus we write the denom-

inator as an infinite series:

with
E„(z)= „dt (BS)

2k(~}s= 2s [(2m/if' ) (P, —&}]'

E 1/2

(B3)

Combining Eqs. (6) and (Bl), defining a new vari-
able x= ~ —E~, and recognizing that ~=0(x+E~),
we obtain

1 x+E~ b
~m g (B4)

The second integral does not depend upon the fact
that ~ is energy dependent in the sense that

when a=2s(2m/lz)'~z. The barrier, for present
purposes, is taken to be a simple square barrier
whose height is tt} above the Fermi level. Expand-
ing the square root in Eq. (B2) and letting
b.,=ye- "-z" and z= n/2(Q, E)' ', E-qs. (B2a)
and (B2b) yield

g((g) pelf(OJ Zg)

and has been tabulated. 3' If the Lorentzian is ex-
pressed according to Eq. (BV} and inserted into Eq.
(BS), then it can be seen that the sth term in the
summation is of the form of an nth-order expo-
nential integral as in Eq. (B8) when z is suitably
defined. Performing the indicated manipulations
and solving for E~, we arrive at the final expression

2tt

E~=+ —Q ( —1) Ez„,g [(2s+ l)zEg]
a ~ n.0

(B9)

This is a very rapidly converging series whose
numerical value is -0.2 eV for values of the crit-
ical parameters pertaining to alkali-metal chemi-
sorption. In comparison, the quantity

-E~

&z dx = Q E~n„+ 2U,«n„n,x +~

(B5}

is independent of the form of &. Thus using Eqs.
(Bl}-(B5),the metallic binding energy in Eq. (14)
is

which was obtained by taking a constant matrix ele-
ment but an energy-dependent metal density of
states (Sec. III), has a numerical value -0. 3 eV.
These values are sufficiently close to each other
so that either approximation provides a reasonable
relationship to be used in the present treatment.
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The complete probability distribution of nearest-neighbor configurations has been inferred
for a number of cubic binary alloys from their experimentally determined short-range order
parameters. The probability variation method, derived previously, was used to perform the
calculations. This procedure, which is used to generate n-site probabilities from experimen-
tally measured pair probabilities, requires the physical assumption that the configurational
energy of the system can be adequately represented by pairwise interactions whose range does
not exceed the diameter of the cluster. Results are presented here for P-CuZn, Cu3Au, CuAu,
Au3Cu, Cu85 Plf4 5 Cu52Ni48, and Au60Pd4(), and the implications for ordering (or clustering)
behavior are discussed. Finally, tables of coefficients for the bcc and fcc lattice are given
to enable one to carry out this type of analysis for any cubic binary system.

I. INTRODUCTION

ln a previous paper (hereafter referred to as 1)
a systematic procedure was presented for using the
measured values of Warren short-range order

(SRO) parameters {u,) in binary alloys to make a
"best" prediction of the probability distribution of
n-site atom configurations (where n can be 10 or
more). These multisite probability distributions
are potentially important for understanding nuclea-


