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Electron-Phonon Umklapp Scattering Processes in the Low-Temperature Ultrasonic
Attenuation and Electrical Resistivity of Potassium*
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The theoretical treatment by Rice and Sham of the electron-phonon contribution to the atten-
uation of ultrasound in the local limit and the ideal (phonon-limited) electrical resistivity of po-
tassium is extended to include a careful evaluation of the role of umklapp scattering processes
at low temperatures. The results have been explicitly separated into normal and umklapp scat-
tering components and the rapid decrease of the umklapp components, and hence the total, at
very low temperatures, is emphasized for both the attenuation and resistivity. The results ob-
tained from a realistic phonon model are compared in one case with those from an isotropie
Debye-like model with a quadratic dispersion relationship and purely longitudinal and trans-
verse polarization vectors.

I. INTRODUCTION

Several recent developments in the study of the
ultrasonic attenuation due to electron-phonon inter-
actions and the ideal electrical resistivity at low
temperature have suggested a more thorough exam-
ination of the role played by electron-phonon normal
and umklapp scattering processes in potassium.

In a recent paper, Rice and Sham' calculated the
amplitude attenuation constant by the pseudopoten-
tial method for a longitudinal ultrasonic wave in po-
tassium in the local limit where the phonon-limited
electron mean free path is short compared with the
impressed ultrasound waveleng th. They compared
their calculations (corrected to account for sample
dimensions as opposed to the infinite medium, and
for the poiycrystaliine nature of the samples) to the
experimental data taken by Natale and Rudnick on
polycrystalline potassium samples at three ultra-
sonic frequencies in the temperature region
T= 2-20'K. Rice and Sham found that the theoreti-
cal values underestimated the measured attenuation
constant by a factor approaching 2.

In recent years, measurements of the electrical
resistivity of potassium at very low temperatures
have indicated that there are deviations from the
T' temperature dependence predicted by the Bloch-
Gruneisen formula which neglects electron-phonon
umklapp scattering processes. Similar effects have

been observed in sodium by Woods; the interpreta-
tion in sodium, however, is somewhat obscured by
the martensitic phase transformation. Very re-
cently a quantitative comparison of accurate resis-
tivity measurements with accurate theoretical cal-
culations (whose details are presented in this paper)
has shown that the complicated temperature depen-
dence in potassium at low temperatures can be
completely accounted for in terms of a "freezing
out" of umklapp processes.

Peierls was the first to point out that for a metal
in which the Fermi surface does not touch the Bril-
louin-zone boundary there exists a minimum phonon
wave vector required for umklapp processes to be
possible. At a temperature below the energy cor-
responding to this minimum wave vector, the um-

klapp component of the resistivity will decrease
nearly exponentially owing to the effect of the Bose-
Einstein distribution function for the thermal pho-
nons. The relative importance of normal and um-

klapp processes has been estimated in the past.
In particular, Bailyn pointed out that owing to the

anisotropy in the sound velocities the effect sug-
gested by Peierls would occur at rather low tem-
peratures in potassium.

In this paper a thorough analysis of the relative
importance of electron-phonon normal and umklapp
scattering processes in determining the low-tem-
perature behavior of both the ultrasonic attenuation
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The early experiments of Bommel on the ultra-
sonic attenuation in single crystals of lead and those
of MacKinnon and Bommel on polycrystalline and
single-crystal samples of tin spurred several theo-
retical analyses' of the attenuation in normal
metals in addition to the earlier work of Akhiezer. "
The essential idea involved is that the local electron
distribution is not in thermal equilibrium. The dis-
tribution is relaxed via electron-ion collisions. In
addition an internal electric field is established.
For longitudinal waves the field is due to the out-
of-phase motion of the electrons and ions; for shear
waves the field is an inductive one. A wave propa-
gating through the metal is damped owing to the
combined effect of the collisions and the field. A
wave moving through an infinite medium in the z
direction takes the form

-N g f (Ec-~t )p8

with phase velocity c = ar/K, where &u is the angular
frequency, K is the wave number, t is the time, and
e is the amplitude attenuation constant.

In this paper only the local limit will be consid-
ered. For longitudinal waves in the local limit the
attenuation constant a ~ is

Hg —
gg n Ey (d 'r/$ cj4 2 3

(2)

where n is the valence-electron density, ( is the
density of the metal, E& is the Fermi energy
(E~ = E kF /2m, where k is Planck s constant di-
vided by 2m, k& is the Fermi wave number, and m
is the electron mass), ' c~ is the phase velocity of
the wave, and 7 is a relaxation time for the elec™
trons. The corresponding expression for the atten-
uation constant e~ for shear waves is

o.r = -, n E~ (u v/& cr,1 2 3

where c& is the phase velocity of the shear wave.
In early comparisons with experiment, 7 was iden-
tified with the relaxation time appropriate for the
electrical resistivity 7, . It was pointed out by
Bhatia and Moore" that in the local limit (KI, « I,
I, = uzi', , where cz is the Fermi velocity) the relax-
ation time 7' appropriate in Eqs. (2) and (2) is not
the same as that for the electrical resistivity, but

and the ideal electrical resistivity of potassium is
presented. With various model pseudopotentials and
a realistic phonon spectrum the contributions due
to umklapp processes are accurately evaluated down
to temperatures less than 1 K. This work goes
beyond that of Hasegawa, ' whose tabulation of the
normal and umklapp separation for the electrical
resistivity is given only above 8'K; Rice and Sham
present only the total components for the attenuation
and resistivity.

II. THEORY

is an effective relaxation time w2.
Potassium occurs in a body-centered cubic struc-

ture with a valence of one electron per atom. The
Fermi surface is believed to be very nearly spheri-
cal and not to touch the Brillouin-zone boundNry as
is shown, for example, by studies of th&66 Haas-
van Alphen effect. ' Thus, a one orthogonalized-
plane-wave treatment should be sufficient to de-
scribe the electron-phonon interaction. In the ap-
proximation of a local pseudopotential W(q) and a
spherical Fermi surface, the relaxation times 7,
(I =1, 2) are given by'"'"

1 QON(0) PS g
7', 4k~ M ~ J

le(q;X). qi ~ W(q) ~

where Qo is the volume per ion, N(0) is the single-
spin electron density of states per unit volume at
the Fermi surface, N(0) = mk~/2w S, M is the ion
mass, and P= 1/kBT, where k~ is Boltzmann's con-
stant. The vector Nq is the momentum transferred
to an electron scattered from the initial state k& to
the final state k& (both on the Fermi surface), q =

k& -k&. The P, are the Legendre polynomials and
cos&=k~ k~/k~. The phonons are described in a
repeated zone scheme; they are specified by their
frequencies &u(q; X) and polarization vectors t(q; X)
for wave vector q and polarization branch X (one
longitudinal, two transverse). The integral extends
over a sphere of radius 2k&.

The vector q in the phonon variables may be read
as q reduced to the first Brillouin zone by a recip-
rocal-lattice vector. That part of the integral for
which q lies in the first Brillouin zone with no re-
duction is classified as the normal contribution; for
q values outside the first Brillouin zone the contri-
bution is the umklapp component. For the realistic
phonon model the phonon frequencies and eigenvec-
tors were generated from a five-nearest-neighbor
force-constant model as fitted to the inelastic neu-
tron scattering and sound velocity data of Cowley,
Woods, and Dolling. ' The numerical work was
lessened by evaluating the frequencies and eigen-
vectors in the irreducible I8 of the first Brillouin
zone' and transforming these values outward in a
cone subtended by the basic 4'8 to a radius 2k&. The
lattice parameter a for the conventional cubic cell
was taken to be a = 5. 225 A throughout. '

As a test of the effect of the phonon model, the
relaxation times were also calculated with a Debye-
like model. A quadratic phonon-dispersion rela-
tionship was used with one purely longitudinal and
two degenerate purely transverse branches. The
phonon parameters for this model are those given
for potassium by Allen and Cohen. '
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uation and (b) the resistivity-relaxation times are
presented for the case of the well-known and easily
reproduced Ashcroft pseudopotential; the purpose
of Fig. 2 is to explicitly depict the manner of addi-
tion of the normal and umklapp components to pro-
duce the total for both the resistivity and attenua-
tion. In order to graphically illustrate the role of
umklapp processes in the attenuation relative to the
resistivity an effective (for purposes of comparison
only) resistivity calculated using 7'3 is defined:

p, =m/ne 7,2

FIG. 1. Pseudopotentials of Bardeen (Ref. 20), Ash-
croft (Ref. 21), and upper and lower pseudopotentials of
Lee and Falicov (Ref. 22).

III. RESULTS AND DISCUSSION

In Fig. 1 the Bardeen, Ashcroft, ' and two other
pseudopotentials relating to the work of Lee and
Falicov are shown for comparison. The essen-
tial points to note are the low-wave-number behav-
ior and the behavior near 2k+. At low wave num-
bers all the pseudopotentials are nearly degenerate;
this is the region that determines the normal com-
ponent and hence the low-temperature behavior of
the relaxation times. The region near 2k~ is the
important region for the umklapp processes.

In Fig. 2 the results for (a) the ultrasonic-atten-

for l=1, 2, where 8 is the electronic 'charge. The
results are presented as coefficients of the 1"' de-
pendence. As can readily be seen, the total ultra-
sonic attenuation is affected far less by umklapp
processes than is the total electrical resistivity.
In the ultrasonic attenuation the umklapp component
lies well below the normal component and the total
is only slightly enhanced over the normal compo-
nent. The total resistivity, however, is strongly
influenced by the umklapp component with the um-
klapp component becoming dominant above = 2. 5 'K.
In fact, although the normal component of the atten-
uation exceeds that of the electrical resistivity, the
umklapp component of the attenuation is smaller
than that of the electrical resistivity. As will be
seen shortly, these considerations apply with only
a few modifications to the other pseudopotentials.

The relatively weak influence of the umklapp
component in the attenuation is explained' by the
angular weighting factor 1 —P, (cos8) of Eq. (4).
For the resistivity it is 1 —P, (cos8) = 1- cos8
= Iq I /2k~; for the attenuation 1 —P, (cos8) = —,

'
& (1+cos8) (1 —cos8) = 3(1 —Iql /4k„)(lqi /2k~').
The additional factor is 3(1 —

I q l /4k+ ) for the at-
tenuation; this factor is small at I q I

& 2k& which is
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FIG. 2. Relaxation times
plotted as the coefficient of
the T5 power of resistivities
for (a) ultrasonic attenuation
and (b) electrical resistivity
for the Ashcroft pseudopoten-
tial. The normal, umklapp,
and total components are given
in each case.
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FIG. 3. Normal anal um-
klapp components of t6e re-
laxation times plotted as co-
efficients of the Ts power of
resistivities for (a) ultrasonic
attenuation and (b) electrical
resistivity. In both (a) and

(b) the umklapp components
refer to the Bardeen, upper
and lower Lee-Falicov, and
Ashcrof t pseudopotentials
(represented as in Fig. 1).

the important region for umklapp processes.
It is interesting to note that the normal component

itself shows a decrease steeper than T in the low-
temperature region = 4-2 'K. This dependence is
due, to the dispersion in the phonon energy-versus-
wave-number relationship.

In Fig. 3 the normal and umklapp components for
(a) the ultrasonic attenuation and (b) the resistivity
of all four pseudopotentials are depicted. As pre-
viously mentioned, the normal component depends
on the small-wave-number-part of the pseudopoten-

-tial and is virtually identical for all four forms.
The umklapp components are directly related to the
behavior of the pseudopotentials at iql & 2hz [com-
pare the sizes of the umklapp components to the ab-
solute value of the pseudopotentials at Iq j = 2k~ re-
membering that it is the square of the pseudopoten-
tial that determines the resistivity through Eqs. (4)
and (5)]. Thus it is the sensitivity of the umklapp
component to the form of the pseudopotential that

is responsible for the difference between the low-
temperature resistivity values calculated with dif-
ferent pseudopotentials; the same statement holds
for the attenuation.

In Fig. 4 the total coefficients of the T' depen-
dence are shown for (a) the attenuation and (b) the
resistivity. The solid curve in Fig. 4(b) represents
the experimental data of Ref. 5. The agreement be-
tween theory and experiment both in the tempera-
ture dependence and the position of the maximum is
excellent. It is reemphasized that the different
low-temperature dependences for the different
pseudopotentials result entirely from the difference
in the umklapp components. If theory is to be cor-
rect, then the ultrasonic attenuation from experi-
ment should show a behavior similar to that of the
resistivity in the range 5-2. 5 K. The .effect calcu-
lated in the attenuation, however, is visibly less
pronounced.

To point out the importance of an accurate phonon
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FIG. 4. Total relaxation
times plotted as coefficients
of the T5 power of resistivities
for (a) ultrasonic attenuation
and (b) electrical resistivity.
In both (a) and (b) the refer-
ence is to the Bardeen, upper
and lower Lee-Falicov, and
Ashcroft pseudopotentials
(represented as in Fig. 1).
The solid curve in (b) repre-
sents the data of Ref. 5.



2396 P. N. TROF IMENKOF F AND J. W. EKIN

100

70-
I I I

(a)

100

70-
I I I

(b)

40— 40-

!',) c fryer f
20 20

10 10

7
hC

0

E 4

7

hC0

E 4
O

2

0.7-

04

0.2—

0. 1

I

I
I
I
I

I
I

I
I

I

I
I

I
I
I

I(

2 4 7 IO

TEMPERATURE ( K)

I I I

20 40

0.7

04- I
I

I
t
I

0.2—
I
I

t
I

0. 1

I 2 4 7 10 20 40
TEMPERATURE ( K)

FIG. 5. Relaxation times plotted as the coefficient of the T5 power of resistivities for the Debye-like phonon model
for (a) ultrasonic attenuation and (b) electrical resistivity for the Ashcroft pseudopotential.

model in the calculations, Fig. 5(a) depicts the re-
sults for the attenuation and 5(b) the resistivity with
the Ashcroft pseudopotential and an isotropic Debye-
like phonon model with quadratic energy dispersion
and one purely longitudinal branch and two degen-
erate purely transverse branches. ' Figure 5
should be compared with Fig. 2. The normal com-
ponent in Figs. 5(a) and 5(b) is underestimated, but
this is not unexpected since it is very sensitive to
the elastic constants. In addition, the "transverse"
phonon modes in the realistic model are not actually
purely transverse throughout the first Brillouin
zone; the factor Ic(q;X) ~ qi in Eq. (4) for the
"transverse" modes is not identically zero through-
out the zone and there is a significant contribution
to the normal component from transverse modes.
The umklapp components in Fig. 5 are in excess
by a large amount over those in Fig. 2; this is due
to an underestimation of the sound velocity of the
transverse modes in the Debye-like model.

IV. CONCLUSION

A thorough analysis of the relative importance of
normal and umklapp scattering processes in the
low-temperature ultrasonic attenuation due to elec-

tron-phonon interactions in the local limit and the
ideal electrical resistivity has been presented.
Calculations with various pseudopotentials have
shown that the umklapp scattering processes play
the determining role in the complicated temperature
dependence observed in the low-temperature ideal
resistivity of Ref. 5. Umklapp scattering processes
play a less pronounced role in the ultrasonic attenu-
ation but, nevertheless, the attenuation is enhanced
over that due to normal scattering processes alone.
In particular, a dependence more rapid than T is
found in the region 5—2. 5 'K and is attributed mainly
to the umklapp processes.

As pointed out by Rice and Sham, there is a dis-
agreement between the measured and calculated val-
ues of v2/r, ; this seems to call for further mea-
surements of the ultrasonic attenuation in the local
limit since the resistivity results are in excellent
accord.

It should be pointed out that phonon-drag effects
have not been taken into account in the calculations
of the resistivity and that the trial function' used
is not necessarily the optimum in view of the moder-
ately dominant role played by umklapp processes.
Scattering due to umklapp processes alone is ex-
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pected to be highly anisotropic at low temperatures.
Yet the agreement with experiment seems not to be
appreciably affected by these approximations at
temperatures above 1.5 'K.
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