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TABLE I. Experimentally determined parameters.

Alloy
conc

90/10
50/50
10/90

Belly
radius
(mrad)

5.35
5.2

4. 95

Neck
radius
(mrad)

1.0
1.0
1.0

Peak
co inc idence

(counts/point)

42 000
30 000

5 700

in the relative concentration of the constituents.
As the percentage of nickel increases, the belly
radius decreases. This is to be expected from the
fact that the number of conduction electrons is de-
creasing as nickel atoms are substituted for copper
atoms. The values for various dimensions of the
Fermi surface are shown in Table I.

The lack of a sharp discontinuity in the slope of
the angular-correlation curves at the Fermi mo-

mentum has been observed by others in other met-
als. The smearing at the expected Fermi mo-
mentum has been variously attributed to break-
down of the free-electron behAvior near the zone
boundary, ' to a broadening of the wave number in
an alloy, ' and to the existence of annihilations
with high-momentum components due to conduction
electrons in the second zone. " Our data do not
give any new information on the cause of the
smearing as we did not concentrate on the region
around the Fermi momentum.
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The magnetic susceptibility of alkali metals is evaluated by a systematic development of the

grand partition function for small magnetic fields. The results are expressed in powers of r~
(the interparticle spacing divided by the Bohr radius) and compared with recent experimental
and theoretical results. The evaluation is made to order r~, improving the previous calcula-
tions. The polarization parameter, which has been used in the previous evaluation of the para-
magnetic susceptibility as an adjustable parameter, is not used. Comparison of our results
with the recent experiment by Collings is satisfactory.

I. INTRODUCTION

Recently we have considered the effects of Cou-
lomb interactions on the diamagnetic susceptibility
of an electron gas. We found at high temperatures
a small increase in the susceptibility that is pro-

portional to the plasma parameter' and at low tem-
peratures a much larger increase due to an ex-
change effect. A similar increase in the diamag-
netic susceptibility has been observed by March and

Donovan and by Kanazawa and Matsudaira. S

In this paper we shall extend our previous consid-
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eration to the evaluation of the paramagnetic sus-
ceptibility. The feature of our calculation is in the
use of a propagator method: We shall calculate the
grand partition function in powers of a = eH/c taking
into consideration the ring and exchange graphs.
The total magnetic susceptibility is given at once
by the grand partition function. The paramagnetic
part can be separated out from the diamagnetic part
by picking up all terms involving Landb's g factor.
That is, we shall evaluate the grand partition func-
tion for an arbitrary g. Therefore, our method is
completely statistical mechanical in comparison
with related theories to be discussed later. This
method enables us to evaluate both the paramagnetic
and diamagnetic susceptibilities at the same time.
Our results on the diamagnetic susceptibility im-
prove the previous results since the evaluation is
made to order r, r, is the interparticle spacing divid-
ed by the Bohr radius. The paramagnetic suscep-
tibility shall be evaluated without the polarization
parameter used in the previous theories as an ad-
justable parameter.

Comparison of our results with experiment. . re-
quires the effective mass of the electrons. While
there are several choices, we have used the effec-
tive mass determined from the specific heat. Since
this effective mass is completely free from our
steps for the susceptibility, the choice seems to be
advantageous. Comparison with experiments shows
that our results evaluated from first principles are
satisfac tory.

II. SUSCEPTI BILITY

We shall adopt in this paper the units such that
5=1 and 2m =1. The susceptibility is given by

—ln[1+u(q)X~(q)]], (2. 2)

—(q, +q„)
sinh(jp+ o) sinh[(l —j)p —n]a '

a'sinhl ga

(2. 8)
In the absence of the magnetic field H this eigen-

value reduces to the correct limiting expression.
In the small-q approximation it is

X,"'(q)=, (1-utan 'u ')=- ~, R(u), (2. 4)

where if q, is the momentum in the direction of the
magnetic field then

u=mk/PPpq, . (2. 6)

For a finite magnetic field one can expand X,(q) in
powers of a = eH/c,

X,(q) =Z,' '(q)+a Z~"'(q)+O(a'); (2. 6)

for the purpose of evaluating the susceptibility,
terms higher than a are not needed.

The grand partition function given by Eq. (2. 2) is
not sufficiently accurate, as in the case of the eval-
uation of the correlation energy: One needs to take
exchange graphs into consideration. Then the first
term u(q)X~(q) in the integrand of Eq. (2. 2) becomes
u(q)D(q), where

where "0 is the grand partition function in the ab-
sence of interaction, u(q) is the Fourier transform
of the Coulomb interaction, and

/1 ' ~ ~', ,+» w
' 2a coshglpa /2

(2w ~ g y p fp sinhlga

VPH 8H (2. 1)
Pa ~ ( )„, , ill )~' coshglPa /2

4~3~2

where V is the volume, P = 1/kT, H is the magnetic
field, " is the grand partition function, and z is the
absolute activity. In the ring diagram approxima-
tion the grand partition function is given by

i1 V
lnl = =

l

—— d q & (u(q)& (q)k"0 k

(2. 7)

D(q) =D '(q) +a D '(q). (2. 8)

As a result, the grand partition function becomes

As Eq. (2. 6) this can be expanded in powers of a,

Ve~ ~(2q2't Vpe4pe3p(2) ( 2e~ p'(2) 1)
8w p ( r jl 2m l( ~pp y(2)

Vpa 2 2 1p e' e e 4e (g 1
1&@' 9 9 2vPp 18vPp v Pe l&4

2 2 'o 00

x ln du G(u)R(u)+ du G(u)R(u)lnR(u) +O(e ), (2. 9)
7TPp p 0
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where

$(2) = —,'w(1 —ln2},

y'(2)= fo du R (u)lnR(u),

G(u) = (u' —1)/(1+u')' .

(2. 10)

From this result one finds the susceptibility as follows:

X= Xg+ Xp~ (2. 11)

2ar, ar, ar, (ar, )~ 3$(2)(ar, )2 f 4ar, p'(2) 5 m 4(ar, )~

x ~ln
' du G(u)R(u)+ du G(u)R(u) lnR(u)

~

+O(a'r', ), (2. 12)
& 4er,

r
0 0 )

a~. 3$(R)(ar, )' (~ 4nr, 0'(2) 5
w)Xp= Xp &+ +

w y(2) 6 3

4(ar, )' ( 4ar, ]"
~ln

' ' duG(u)R(u)+ duG(u)R(u)lnR(u) +O(a r,) . (2. 13)

The integrals and constants appearing in these re-
sults are

rfgee 7l k +o/2~r (3. 2)

a = (4/9~)"',

A(2) = 0. 3213,

Q'(2)/Q(2) = —0. 5511,

f"du G(u)R(u} = —0. 6961,

f du G(u)R(u) lnR(u) = 0. 0717.

(2. 14)

Introducing these numbers, we arrive at our final
results:

g& = (2. 5882/r, )(m /m)+0. 4289 —0. 2265r,

+ 0. 1312r,lnr, + O(r, ), (2. 15)

—
X~ = (0. 8627/r, )(m/m )+0.0525+0. 02381nr,

—0. 0677r, + 0. 0437r, lnr, + O(r', ), (2. 16)

where the asterisk indicates that an effective mass
m of electrons has been introduced.

Here N0 is Avogadro's number.
The effective masses in Table I are experimental

and differ from those determined by some other
methods. It is worthwhile to use these effective
masses in the susceptibility results because they
are accurately determined, completely independent
of theoretical assumptions and of the susceptibility.
In Table II we have listed our final results on the

paramagnetic susceptibility and compared them with
experimental results and the values predicted by
Pines and Silverstein. ' The experiment values
are due to the recent paper by Collings. '

In obtaining the values in Table II, Pines con-
sidered the energy change due to the variation in the

population of electrons of different spins in the way
Sampson and Seitz did. He improved the calculation
greatly with a more reliable correlation energy than

that employed by Sampson and Seitz. The suscep-
tibility is obtained in terms of the polarization pa-
rameter thus determined. In the determination a

III. DISCUSSION

To compare our results with experiments it is
necessary to know the effective mass of electrons.
While there are different ways ef determining the
effective mass, we list in Table I those determined
from the specific heat at low temperatures. From
the electronic specific-heat constant y, one obtains

Li Na K Rb Cs

eF (eV) 4. 7

ffpen (p cal/" K mole) 179. 89
y~»&(p cal/' K mole) 390+ 4
m'/m 2. 168

3. 1
272. 73
330+ 5
1.210

2, 1
402. 61
497.~ 20
l. 234

1.8
469. 71
r 76+70

-40
l. 226

1.5
563.65
764 + 2S0
1.3GG

TABLE I. Effective mass of electrons in alkali metals.

m*/m =r.~/rg. .. ,

where

(3. 1) C. Kittel, Introduction to Solid State Physics, 3rd ed.
(Wiley, New York, 1966).

D. L. Martin, Phys. Rev. 139, A150 (1965).
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further assumption was made on the spin-alignment
independence of the screening constant.

In comparison with Pines's intuitive determination
of the susceptibility ours is more straightforward
and free from assumptions. To compare our nu-
merical results with Pines's it was necessary to re-
calculate Pines's values in terms of the new experi-
mental effective masses which we adopted. The re-

suits show that our values are closer to the data by
Collings. Our theory does not include any adjust-
able parameter except for the effective mass, but
it was determined independently of both Pines's and

our theories. Therefore, the results in Table II
are free from artificial adjustment to achieve closer
agreements.

The theory of Pines has been further pursued by

TABLE II. Susceptibility of alkali metals (& 10 cgs volume units).

Expt (Collings)

Theory (Ishihara and Tsai)

Theory (Pines and Silverstein)
Expt (Collings)

Li

p (g/cm3)

Xenon

XQ

X tot
X tot
X tot

3.22
0.53

—0. 053
-0.150

1.936
l. 773
1.95
1.789

X tot = Xp+ Xq+ X qm

Na

3.96
0. 97

-0.291
—0. 235

1.038
0. 511
0.43
0. 583

4. 87
0.85

-0.372
-0.241

0.993
0.380
0. 21
0.389

Rb

5. 18
1.48

—0. 398
—0. 249

0. 986
0. 339
0. 25
0. 310

Cs

5.57
1.89

—0.487
—0.249

1.052
0.316
0.52
0.398
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Shimizu. Independently, Silverstein obtained the
spin susceptibility using the theory of Brueckner
and Sawada. These two theories are both based
on random-phase approximation (RPA) but differ
from each other in detail. For instance, for small
q the spin stiffness expansion differs in the second
term due mainly to the dubious assumption made by
Shimizu concerning the independence of the summed
series of spin polarization. Further differences ap-
pear in higher-q terms because while Shimizu con-
sidered the second-order exchange terms Silver-
stein used only the second-order nonexchange per-
turbation for antiparallel spin configurations.
While our calculation is closer to Silverstein's than
Shimizu's, there are several important differences.
First, we have not used the polarization parameter
I' used by these authors but rather evaluated the
parameter from the grand partition function. Sec-
ond, we have included the exchange interaction and
improved the RPA calculation by expanding the

eigenvalues in powers of a rather than P . The
polarization parameter can be determined as a func-
tion of a and r, from our grand partition function.
It is not an adjustable parameter.

For explicit results, Silverstein took into consid-
eration the effects of the lattice by using the lattice
effective mass in the kinetic energy. Because the
electrons in the immediate vicinity of the Fermi
surface contribute to the susceptibility, effective
masses based on a band theory were adopted.
These effective masses are different from those de-
termined from the specific heat which is also due to
the electrons at the Fermi surface. The specific-
heat effective mass can be ascribed to various
sources such as band structure and electron-phonon
interactions. The importance of electron-phonon
interactions has been stressed by Ashcroft and

Wilkins, ' and the considerations only of the band-
structure corrections by Shimizu and Silverstein
seem not to be sufficient. Moreover, judging from
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the recent data of Collings, the paramagnetic sus-
ceptibilities for Li and Na can be much less than
those used by Silverstein for comparison. Since all
theoretical results depend on effective mass a pre-
cise comparison of theoretical results is difficult.
However, in Fig. 1, we have compared our result
on the paramagnetic susceptibility with Silver-
stein's.

In our numerical results we have chosen g= 2,
but our theoretical formulas were derived for arbi-
trary g. In the past several years, accurate mea-
surements of the electron g value have been made
by conduction electron-spin resonance. " For alkali
metals it has been found that g value is very nearly
that of the free electron. The largest difference of
1.07&10 has been found for He while in Li the dif-
ference is (- 2+ 2) & 10

The diamagnetic susceptibility reported by Kan-
azawa and Matsudaira needs two corrections.
First, in their notation the correct ratio of the sus-

ceptibility to that of an ideal electron gas is

ax, o—=1+ ' lnr, +4+ln—.
6m

'
m

The extra term ln-,' appearing in the bracket in their
result is due to the effect of spin missing in their
expression for the screening constant. Second,
their numerical value 1.12 is correctly 0. 86. This
value is then not close to that which March and Don-
ovan obtained, i. e. , 1.51.

Figure 2 illustrates our results on the diamagnet-
ic susceptibility in comparison with that of free-
electron gas and also March and Donovan. The
theoretical susceptibility curves for an interaction-
electron gas cross with that of free electrons at
x, = 2. 75 and the deviation becomes larger for larger
r, as expected Ou. r result (2. 12) improves what
Kanzawa and Matsudaira reported. It gives terms
to the second order in x,.
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A theory is developed for the exchange core-polarization (ECP) contribution to spin density
S~ in liquid metals in the framework of moment-perturbation (MP) procedure and pseudopo-
tentials. The zero-order contribution to S~~ has been shown to be temperature independent
while the first-order term depends on the temperature through the liquid-interference func-
tion. The results give a definite trend for convergence of the perturbation theory. In the
specific case of liquid Mg the ECP contribution to the Knight shift K~~ is about 25% of the direct
shift K~ and varies rather slowly with temperature in comparison to that of K~. From the
present results it seems that the Fermi-contact term is the most dominant term and deter-
mines the major change of the Knight shift with temperature in agreement with what has been
predicted previously.

I. INTRODUCTION

Recently Rossini and Knight' have investigated a

number of liquid metals to understand the various
contributions to the Knight shift K, and nuclear-spin
relaxation rate, but in the absence of any theory


