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In this paper a model is presented which exhibits a so-called electronically induced crystal-
lographic transition. The model consists of two interpenetrating one-dimensional identical
lattices of attractive 6 potentials. Shifting one sublattice with respect to the other defines a
distortion, where the nondistorted system is assumed to have a periodicity which is half the
periodicity of such a sublattice. The model is closely related to one discussed by Adler and
Brooks. It is shown by a computer calculation that the competition between the lattice and
electronic energies results in a second-order phase transition. The narrow band limit is dis-
cussed in terms of a two- and four-level scheme. It appears that only a second-order phase
transition can occur, unless the repulsive term in the lattice energy is too weak. In that case
the two sublattices will coincide at zero temperature, which is an unphysical situation.

I. INTRODUCTION

During the last 10 years a great deal of work
has been performed in the field of the metal-non-
metal transition, a phenomenon which appears in
the oxides and sulfides of the transition metals.
These materials are semiconducting at low tem-
peratures but suddenly become metallic at a certain
temperature or over a small temperature range.
The conductivity can change by a factor 107, e.g. ,
V~O„at these critical temperatures.

The metal-nonmetal transition can be explained
in several ways (see review articles by Adler'~).
One of these explanations is in terms of the elec-
tronically induced crystallographic transition.
The mechanism of this type of transition is based on
the competition between the lattice energy and the
energy of the electrons. The total energy of the
electrons in a half-filled band is lowered if that
band is split up by some crystalline distortion,
while the lattice energy increases by this distor-
tion.

Adler and Brooks demonstrated this effect by
calculating the free energy as a function of the dis-
tortion parameter for the case of a linear chain of
& potentials in the limit of extremely narrow bands.
As a result, they obtained a first-order phase tran-
sition. They also considered a model with bands
which are spherical around the conduction- and
valence-band edges. It appeared that a spontaneous
distortion at T = 0 could only occur if the bandwidth
was less than half the energy gap between the bands.
Labbd and Friedel ' calculated the change in free
energy for a linear-chain model of V,Si under the
assumption of a tetragonal distortion, which in-
creased the lattice parameter in one direction but
decreased this parameter in the other two direc-

tions. In this way a first-order phase transition
was obtained. I.abbe and Friedel ' also considered
the stability of the system against a periodic dis-
tortion in a tight-binding approximation; they con-
sidered the influence of the filling of the bands and,
qualitatively, the influence of the temperature.

In this paper a linear chain of & potentials is
considered. The free energy of the system is cal-
culated as a function of both the distortion param-
eter and the temperature. It will be shown that a
second-order phase transition occurs.

This paper is organized in the following way:
In Sec. II the free energy of the system is given.
Both the lattice and electronic contribution to the
free energy are discussed. In Sec. III the results
of a computer calculation are presented. In Sec.
IV the narrow band limit is treated in terms of a
two- and four-level scheme. Finally, the results
are discussed in Sec. V.

II. FREE ENERGY OF MODEL

Consider a one-dimensional crystal. with period
—,'d. The system can be regarded as composed of
two interpenetrating l.attices of period d. Shifting
one sublattice with respect to the other doubles the
periodicity of the one-dimensional crystal. In this
way a distortion of the original lattice is obtained.
Calling the nearest-neighbor distances b, and b2,
a distortion parameter q can be defined as

q= (h, —b,)/d,
where b, + b2= d. The interaction between the elec-
tron and the ions, whose equilibrium positions are
situated at the lattice sites, is assumed to be an
attractive & potential of strength A. The resulting
periodic potential for the electrons is drawn in
Fig. 1. The total Hamiltonian of the system reads
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where r, and p, denote the position and momentum
operators of the electrons and R; and P, those of
the ions.

A. Electronic Contribution

Neglecting the electron-electron and electron-
phonon interaction, the energy spectrum of the
electrons can be calculated from the following part
of the Hamiltonian;
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FIG. 2. Band energies as a function of q in case Qp=6
and Ep=4 eV.

where ~f denotes the equilibrium position of the
jth ion. Def ining

and

xo = (m/ko) Ad (2. 3)

E=-(5 /2md') x

the secular equation reads

(2. 4)

xQ xQcos kd= 1+ '~ cosh x- 'z cosh qx

—2 ~ sinh x . (2. 5)
x
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FIG. 1. Periodic potential. (A) for the case q=0,
(B) for q & 0.

The energy of the electron E(k, q) as a function of
the wave vector k and the distortion parameter q
is obtained by solving this transcendental equation,
which has to be done numerically in most cases.
In Fig. 2 it is shown by a computer calculation in
which way the original band changes with increasing
q in case xQ = 6 and EQ=+ 4 ep, where EQ is the ab-
solute value of E for x= xQ. The calculations have
been performed up to distortions of about 50%%uo.

In case q 0, a gap appears between the two

branches of the dispersion curve due to the fact
that the periodicity is doubled. The gapwidth in-
creases with increasing q, the upper band shifts

where E'(k, q) denotes the energy spectrum in the
upper band and E-(k, q) the energy spectrum in the
lower band. NQ is the total number of electrons
or ions present, and P= I/kT. The Fermi energy
p, is determined by

Z Z 1+ exp[P[Z'(k, q) —p,]}
=No (2 7)

In the limit No-" expressions (2. 6) and (2. 7) are
equivalent to

~.&(q, T) = l'-,1

and

x g ln(1+ecru-. (o'a&~)d(k@
(f s+om Q

(2 6)

1
1+ exp [P[E'(kd, q) —p]}

d(kd) = m.

(2. 9)

B. Lattice Contribution

Neglecting the electron-phonon interaction, the
lattice energy results from

upwards, and the lower one downwards.
In the following, the case of one electron per ion

is considered. Clearly the electrons favor a situa-
tion with a distortion which is as large as possible.
Neglecting the effect of the higher-situated bands,
the expression for the free energy per electron
reads (see Huang')

2 rid
ln(1 Pfs-E &o, a&])

NoP .... a= .Iu
(2. 6)
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(2. io)

Expanding this Hamiltonian around the new equi-
librium positions R'„of the ions (assuming that the
distortion is already a fact) and neglecting phonon-
phonon interactions, the following Hamiltonian is
obtained:

2M

s V(Rf R—',)
8R ]8R~

s V(R( —R', )
8R2 2

1+q
IR; RI -=b, =

2
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(2. iS)

+Q A(ORE+ —Q BusR, 5R~, (2. 11) +V(Rf R',)— &V(Rf —R;)

where &R&=R&- R,' and

sV(R', —R;)
eR

The free energy per ion of the phonons is given by

E,„(q, T)= 1

for j wj, (2. 12) x Z ( in(i —exp[-Pk&u,'(kd)]]d(kd).
fy +y~ 0

8 V(Rf —Rg)

(see Pines~).
For small values of the distortion parameter q

the static term results in the following energy per
ion:

V(Rf —R~) = Q V(R, —Roq)+ Boq
Off/ 0&&2

(2. iS)

Hg, = Q ' + Q A, &R, + — Q B,)6R, 5R) .
2M

(2. 14)
Because of the expansion around the new positions
R'„, the term A, does not equal zero. This term,
however, is exactly canceled by the indirect ion-
ion interaction via the electron gas. In case the
indirect ion-ion interaction does not exist, the
effect of A& would simply be to cancel the increase
in the static energy, i. e. , to cancel the term
N0B0q . In the case of nearest-neighbor inter-
actions, the phonon spectrum reads

[&', (k)] = —[C, + Cz+ (C, + Cz +2C, Cz coskd)" ],
(2. is}

where

s'V(R;-R;)
eR~ BR) 1

s V(Rf R',)—
gR8 1

where R„denotes the equilibrium position in the
nondistorted case.

In order to obtain the phonon energies the follow-
ing Hamiltonian has to be diagonalized by means of
a Bogoliubov-Valatin transformation:

(2. 17)
In order to obtain the free energy per ion of the
lattice the static term (2. 13) has to be added to
F». Clearly the lattice favors a situation where
the distortion is as small as possible.

III. RESULTS OF NUMERICAL CALCULATIONS

The free energy per ion reads

E(q, T) = E.,(q, T) + E,„(q, T)

+ g V(R& —R&~)+ Boq~ . (3. I)
0 ill

In order to study the eventual appearance of a phase
transition the following quantity has to be consid-
ered:

~E(q, r)=E(q, r)E(o, r)

=E„(q,r)-E.,(o, r)+E,„(q, r)-E,„(o,r)+B,q'.
(3.2)

In this paper the following values of the parameters
have been used:

xo= S, Eo= (k~/2md ) x() =+4 eV

(Co/2M)' = 10"rad/sec, Bo = 8. 5 eV/ion,

where it is assumed that C, = C0+Dq and C2= C0 Dq.
In Figs. 3(a) and 3(b) b.E(q, T) has been plotted
as a function of the distortion parameter q for,
respectively, widely spread temperatures and for
temperatures in the neighborhood of 384 'K. Using
the well-known thermodynamical argument that
the free energy of a system in thermal equilibrium
assumes its lowest value, one may easily deduce
from Figs. 3(a) and 3(b) the way in which the dis-
tortion parameter q depends on the temperature.
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of about 15% and higher.
(ii) In the relevant region of the distortion pa-

rameter q the gapwidth changes as E~=4. 9q. The
total bandwidth in this model is about 1.7 eV. The
gap at zero temperature is 0. 12eV while the zero-
temperature distortion is 2. 4%. In this case the

gap is much smaller than the bandwidth.

(iii) The transition temperature and the zero-
temperature distortion depend strongly on the co-
efficient Bo. A value of Bo= 10eV/ion results in

a transition temperature of about 200 K and a
zero-temperature distortion of about 1.2%, while
a value of Bo = 5. 5 eV/ion gives rise to a transition
temperature of about 1360 K and a zero-tempera-
ture distortion of about 10%. This last case is
shown in Fig. 5. Clearly the nature of the transi-
tion is not affected by the magnitude of Bp.

(iv) The same calculations were performed for
a model with a bandwidth of about 0. 2 eV. In this
case the gap changes as Eg 1 9q in the relevant
region of the distortion parameter q. It was found
that this model exhibits a second-order phase tran-
sition as well.

0.5-

0.4-

0.3-

0.2-

=383 K

=38O K

IV. NARROW BAND LIMIT

The dispersion relation (2. 5) can be approxi-
mately solved in an analytic way for large values
of xp, i. e. , for narrow bands. For instance if xp

is larger than 10, the bandwidth is smaller than

0. 1eV. Rewriting the dispersion relation (2. 5) in

the form
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x= x, + [2x'e-'cos kd

+ 2xo e-" cosh qx —e 2" (x+ xo)2]"2, (4. 1)

it becomes obvious that in the narrow band limit
(i. e. , xo- ~, qxo —~, x- xo) the electron levels
are given by

B(/p, q) = —Eo+ G[ —,'(cos kd+ cosh qxo)]', (4. 2)
FIG. 3. (a) Change of the free energy as a function of

q at several widely spread temperatures. (b) Change of
the free energy as a function of q at temperatures around

Tc =384'K

where G=4Epe " '"pand Ep is the absolute value of
E [defined in expression (2. 4)] for x= xo. It follows
immediately from expression (4. 2) that the original

A plot of this relation is presented in Fig. 4. It
directly follows that the system exhibits a second-
order phase transition at T, = 384 K. The peri-
odicity of the system below T, is different from the
one above T,.

In connection with these results the following
remarks have to be made:

(i) The main contribution to the change in the
free energy of the lattice is due to the term Bpq~.
The free energy of the phonons can be neglected.
This term only becomes important at large distor-
tions. If D is of the order of Cp, the phonon free
energy has to be taken into account at distortions
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FIG. 4. Equilibrium value of q as a function of
temperature.
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It follows in a trivial way that the condition of one
electron per i.on, which is the case considered in
this paper, results in a, chemical potential p, which

equals —,'(&'+& ) = Fo. -Therefore, the free ener-
gy of the two-level system per ion is given by

E„(q, T) = —Eo —(1/p) In[2+ 2cosh(p Gsinh-', x,q)] .
(4. V)

The total free energy per ion is obtained by adding
to ~„the free energy per ion of the lattice. Ne-
glecting the phonon contribution, the total free en-
ergy per ion reads

E(q, T) = F„(q, T) + Q V(R &
—R &) + Boq

(4. 8)

FIG. 5. Change of the free energy as a function of q
at several temperatures for 8()=5.5 eV/ion.

band is split up by the distortion and that both sub-
bands shift an equal amount in the narrow band
limit. In the following, the thermodynamical be-
havior of the narrow band limit system is approxi-
mated by a two- and a four-level scheme.

It should be stressed that this expression for the
free energy only holds for small distortions. It
is true that the electronic part is correct but the
lattice contribution only behaves this way for small
values of q. Assuming qx0& 1, the total free ener-
gy per ion reads for small values of q

E(q, T) = -Eo- ln(2+ 2 co—sh-, PGxoq)
1 1

A. Tvyo-Level Scheme + „~V(It 0-Ito)+a,q'.
0

(4. 9)

In this scheme the energy levels of each subband
are assumed to be melted together in one N0-fold
degenerate level. Taking cos kd= -1, the energies
of both levels are given by

E' = -E0+ G sinh ~ x0q,

E =-E0 —Gsinh 2x0q. (4.3)

g (1 -8(B -s j)NO(1 -8(E=ga))NO (4 4)

where p, denotes the chemical potential or Fermi
energyy which 18 detel mined by the numbex' of
electrons present. The thermodynamical potential
0 of the system is given by

&= —(1/p) In Z = - (N, /p)ln(1+ a-'"'-")

—(80/P) ln(1+ e ~w " ') . (4. 5)

In case there are N electrons present the chemical
potential p, is determined by the relation

In this case the band-gap-to-bandwidth ratio is
infinite, while the energy gap between both bands
is approximately an exponential function of the dis-
tortion parameter q. The grand canonical pa, rti-
tion function of this two-level system reads

Minimizing expression (4. 9) with respect to q
yields

slnh2PGÃ0 q
0 1+cosh~PGxoq

(4. 1O)

This transcendental equation has to be solved
graphically. Above a certain temperature T, & 0
only one solution is obtained, namely, q= 0. Below
T„however, two solutions are obtained, namely,
q=0 and q+0. It appears that q+0 results in the
lowest free energy. The q + 0 solution is a continu-
ous function of the temperature and approaches q

0 lf ~ goes to ~c' Clearly the system exhlblts a
second-ox'dex' phase transition. The tl ansltlon
temperature 'E, is determined by

G x0

16B0
(4. 11)

It follows immediately from expression (4. 10) by
a self-consistency argument that there has to be
a relation between the constants B0, G, and x0.
This relation is given by

(4. 12)

The importance of the type of relation between
B~ G, and xo follows by noting that
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ln4—G sinh 2xp q — + B0 q
p

& F(q, T)+ED — Q V(R ) —R ))
0 jtg

xoq+Bpq (4. 18)

It is immediately clear from this relation that if

Bp ~ 4Gxp, (4. 14)

both sublattices coincide undoubtedly at zero tem-
perature, which is not a physical situation at all.

8. Four-Level Scheme

In this approximative scheme only four energy
levels are considered, namely, the top and bottom
levels of the upper and lower band. The top and

bottom levels are chosen in order to incorporate
the effect of the bandwidth. Assuming qxp & 1 the
following four levels are obtained:

6 8
I i

10 x)0

Et„= Eo+ G(1+-—,'xo q ) =E, , —

+ 1
Ebot= —Eo+ &Gxoq-=E2 ~

1Et,y= —Ep —2Gxo q
=—E3,

Eb,g- -Eo —G(1+,xo q ) =E4.

(4. 16)

FIG. 6. Graphical solution of Eq. (4. 19).

transition. By a self-consistency argument it fol-
lows from (4. 19) that

2 g (1 e 8(E» u&)N01--2

j -"1
(4. 16)

and the free energy per ion reads

F,&(q, T) = Eo —(1/2P) ln-[2+ 2 coshPG(1+ —,'x02q2)]

—(1/2P) in[2+ 2 cosh2PGxoq], (4. 17)

Taking the degree of degeneracy of each of the lev-
els to be 2N0, the grand canonical partition function
of this four-level system reads

0 16 0
2 (4. 20)

The transition temperature T, is determined by

sinhPqG
Gxp +~~c4' xp 2B0 '1+coshP, G

(4. 21)

Comparing this equation with expression (4. 11) it
follows that the transition temperature is lowered

by taking the effect of the bandwidth into account.
An important difference between the four- and

the two-level scheme is the fact that the band-gap-
to-bandwidth ratio, which equals

where it is assumed that there is one electron per
ion present, i. e., p. = -Ep. The total free energy
per ion is obtained by adding to I',

&
the free energy

per ion of the lattice. Neglecting the phonon con-
tribution the following expression is obtained:

4xoq/(8+xo q ),
is smaller than 1 instead of infinite.

V. DISCUSSION

(4. 22)

sinh2 pGxp q+ 4Gxo, =2Boq . (4. 19}

This transcendental equation has to be solved

graphically as shown in Fig. 6. As in the previous
case, the system exhibits a second=order phase

F(q, T)=F'„(q, T)+ g V(RO-R,')+f3,q'.
0

(4. 18)

Minimizing expression (4. 18) with respect to q

yields

sinhPG(1+ —,'xo q )
1+coshPG(1+-,'xo q')

The model, which is presented in this paper,
exhibits a second-order phase transition. This
phase transition is caused by the competition be-
tween the free energy of the electrons and the static
repulsion term of the distorted lattice. Obviously
this electronically induced crystallographic transi-
tion can be connected with the metal-nonmetal
transition. It has to be remarked, however, that
this model does not explain a sudden jump in the
conductivity because the distortion parameter q is
a continuous function of the temperature. The
model only gives rise to a continuous change in the
conductivity. This change may be rather strong
near the transition temperature 7.', because the oc-
cupancy of the energy levels in the upper band may
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strongly increase near T,.
As has already been remarked, the underlying

model was partially discussed by Adler and Brooks.
They expressed the positions of the top of the va-
lence and the bottom of conduction bands at T = 0 in
the following form:

E„=—Ep
—rE, ,

E,= —Eo+ (1 —r)E~,

0.25

0.20

0.15

0.10

where -Ep is the common energy of the band edges
in the absence of distortion, E, denotes the gap en-
ergy, and 6 is a parameter which gives the devia-
tion of the splitting from the symmetric case. In
the narrow band approximation the Fermi energy
for this system reads

0.05

10 20 30 40 50 x10

p= —,(E, +E„)= —E, + 25E, . — (5. 2)
FIG. 7. The asymmetry parameter 6 as a function of

q in case xp=6 and Ep=4 eV.

Clearly, the total free energy per ion of this sys-
tem is given by

F= —Eo+ ,5E ——-ln(2+ 2 cosh-,' pE )Q 2 g
p

2 g

V(R( —R) ) + Boq
2Np

5(q) = xae 'o (sinh —,'qxo —q cosh —,'qxo), (5.4)

i.e. , for small values of the distortion such that
qxa & 1, 5E will be proportional to q resulting in
a second-order phase transition. The numerical
calculations presented in Sec. III also result in a
second-order phase transition. In order to dis-
cuss that result in terms of the scheme mentioned
above 5(q) was also calculated numerically. In
Fig. 7 5(q) is presented for the band structures
given in Fig. 2. It appears that 5 is a nearly

From this expression it follows immediately that
if the product 5E, depends linearly on q the system
exhibits a first-order phase transition. Taking 5
to be a constant and E, a linear function of q, Adler
and Brooks arrived at the first mentioned result.
In the narrow band limit discussed in Sec. IV it
follows that the asymmetry parameter ~ goes to
zero in the case of 5 potentials. This results in
a second-order phase transition, which is in agree-
ment with the Adler and Brooks 5 =0 result. For
narrow bands the asymptotic behavior of 5 as a
function of the distortion parameter q can be cal-
culated. It follows that

linear function of q. This gives rise to a product
5E, consisting of quadratic and higher-order terms
in the distortion parameter q, resulting again in
a second-order phase transition.

If the coefficient Bp of the repulsive term in the
lattice energy is too weak, both sublattices coincide
at zero temperature. This case represents a high-
ly unphysical situation. In order to bring about a
proper phase transition, higher-order terms in the
distortion parameter q have to be taken into account.
In this way the lattice energy can be sufficiently in-
creased in order to override the electronic terms
and thus to obtain a proper competition between
the electronic and lattice contribution.

Finally, it should be repeated that the electron-
electron and electron-phonon interactions are ig-
nored in the model under consideration and that
the model is one dimensional. The effect of these
interactions on the phase transition is unknown.
What type of transition might occur in three-dimen-
sional lattices is also m9cnown.
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Electrons in Crystals in a Finite-Range Electric Field
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The problem of an electron in a finite-range constant electric field is treated; energy levels
and eigenfunctions are calculated for the "empty crystal" and for a Mathieu-type model crys-
tal. It is shown that the addition of boundary conditions may change the solution drastically.
The influence of different boundary conditions on the eigenvalues and eigenfunctions is dis-
cussed and it is found that the former are relatively insensitive while the latter are sensitive
to a change in boundary conditions. The result for the eigenvalues is shown to be consistent
with an extension of the Born-Ledderman theorem to electronic states in finite crystals. The
effective-mass approximation is shown to hold for this model even for moderate fields and use
is made of it to explain the complex behavior of the wave functions near thebands' edges. All
in all, a clear detailed picture, although limited in scope, is presented of properties of elec-
trons in crystals under the influence of external electric fields.

I. INTRODUCTION

For many years the fundamental problem of a
crystal in an external electric field has attracted
much attention. ' Some features of the issue, e.g. ,
the behavior of the optical absorption in the pres-
ence of the field, ' 8 are still in dispute. For this
effect, instead of a sharp absorption edge above
the frequency connected with the band gap in the
absence of the field, one gets an "exponential tail"
of absorption in longer wavelengths, or smaller
energies (the Franz-Keldish effect). Superposed on
this absorption curve is a structure hitherto ex-
plained to be due to a "Stark ladder" effect. But
the existence of the Stark ladder~' and the details
of the Franz-Keldish7 effect are subjects far from
being agreed upon. Several pictures have been sug-
gested to describe this problem, but all of them
treat the infinite crystal case in an infinite-range
electric field.

In this paper we show how the introduction of
boundaries into the problem influences the results
obtained, bearing in mind that in physical reality
the crystal's range and the range of the electric
field are finite. We limit ourselves to the case of
zero current and we treat the one-dimensional case
as it contains the essential physical problem.

In Sec. II we treat analytically the case of an

empty lattice in an electric field with appropriate
boundary conditions. The energy eigenvalues and
the eigenfunctions are calculated. For high energies
the solutions have the known correct simple poten-
tial-well behavior. The applicability of this model
to the case of a crystal in an applied electric field

is discussed.
However, to get a more accurate picture (includ-

ing the periodic potential and its effect), we have
treated a model —a one-dimensional Mathieu-type
finite crystal in an electric field —which incorporates
enough real crystal properties to give us a clear
picture of the main features, albeit only numerical-
ly. Changes in the enex'gy distribution and in the
eigenfunctions in the presence of the field are cov-
ered in detail, as well as side issues dealing with
the finiteness of the crystal and with the influence
of the boundary conditions. In Sec. III the problem
is stated and discussed, and the different types of
boundary conditions with which we deal are com-
pared, using an extension of the Born-Ledderman
(BL) theorem (Appendix D). The picture of the be-
havior of the crystal in the presence of the field is
clarified using the numerical results. The decrease
of the forbidden gap between two energy bands is
shown as a function of the field. No Stark ladder is
obtained in the energy spectrum. The two limiting
cases of zero field and a strong field are considered
and are shown to agree with the expected results.
Wave functions for several field values are com-
pared. In Sec. IV it is shown that for this finite
model the effective-mass approximation (EMA) is
really a very good approximation even for relative-
ly high fields.

II. EMPTY LATTICE

Let us begin by solving the case of a semifree
electron in an electric field; i.e. , we take a poten-
tial well to represent the crystal (Fig. 1). The im-
portant point is the finite range of this well. The


