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Using the thermodynamic theory of fluctuations, the expressions for the long-wavelength

(and high-temperature) limit of the three number-concentration structure factors (introduced
in Paper 0 of a binary solid alloy, having arbitrary crystal symmetry are derived.

I. INTRODUCTION

In a previous paper' (hereafter referred to as
I}, the authors discussed some structural aspects
of the electrical resistivity of binary alloys by

expressing the scattering function in terms of three
new structure factors [S»(q}, Scc(q}, and S„c(q)]
constructed from the Fourier transforms of the
local number density and concentration of the ions.
These "number-concentration" structure factors
can be quite helpful in interpreting some of the ex-
perimental data, ' since above the Debye tempera-
ture and in the long-wavelength limit (q- 0), they
are simply related to the local thermal fluctuations
in the number density and concentration of the ions
and hence to the thermodynamic properties of the
alloy.

Although the general formalism of I is applicable
to both liquid and solid binary alloys, much of the
attention in it was confined to molten alloys, and
the simple expressions for S»(q-0), etc. , given
there are strictly true for fluid alloys and only
approximately so for solids. The purpose of this
paper is to apply the fluctuation theory to obtain
expressions for the long-wavelength (and high-
temperature) limit of the structure factors for a
binary solid alloy, taking into account the full
complement of the stress and strain variables
(rather than just pressure and volume) which
characterize a solid. The method, incidentally,
provides an alternative derivation of the structure
factor S(q-0) of a pure crystal which is customar-
ily derived by expanding the displacement of the
ions from their equilibrium positions in terms of
the phonon coordinates.

II. THEORY

First we recall2 that if V is the minimum work
done (reversibly) to produce normal (small)
fluctuations sx (m=1, 3, . . . ) in the thermodynamic
variables x from their respective equilibrium
values, the probability for these fluctuations to
occur is proportional to e ~ . If x is a set
of independent variables describing the state of
the system, W can be written as (summation over

repeated indices is implied throughout)

S' =2D „Ox~5x„,

where D „(=D„„}are constants which depend on
the thermodynamic equation of state for the system,
and the averages are given by

where D ' is the inverse matrix of D.
Consider now an element (volume V in the un-

deformed state) of the solid alloy. Let N, and Na

be the number of the two types of atoms in this
volume and let N=N, +Na and c =N, /N The .rest
of the medium (volume» V) is considered as an
external medium which can exchange energy and

. atoms with this element. If we keep N constant
and allow the concentration and other thermo-
dynamic variables describing the element to
fluctuate from their equilibrium values, 8' may
be shown to be given bys

(3)2%'= 6$5T+ V5o&& 5c&&+5p.,5c,

(4}5A =- SOT+ Vo&~5&&~+ p, ,5c,

5G = —SOT —V & „Ger,~ + p, ,5c .
Taking the independent variables in (3) to be e4&,

e, and T, expanding the remainder in terms of
them, and using the fact that 5A and 5G are per-

fectt

differentials, one may obtain after some
algebra

as 2(&~} +Vc4»r «o«4i
e, c, ar

—3Vc &», e» 5e,~ 6c + D44(5c),

where c,», --(So,&/8&„, )4, , r „are the isothermal
elastic stiffness constants, e4, =(844,/Sc)r...„,

where S is the entropy, o&z (=o&,) (4,j =1, 2, 3) is
the stress tensor, e,& (=e&,) is the strain tensor,
and i4, =N(i4q —i44), where i4, and i44 are the chem-
ical potentials (per atom) of the two species of
atoms in the alloy. At constant N, the expressions
fop the differential changes in the Helmholtz and
Gibbs free energies A and G are, respectively,
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and

which follows from (5). The reason for the nota-
tion D,4 will become clear presently.

From (6) and (2) one sees that the fluctuations
in temperature occur independently of those in c
and c;&. The temperature fluctuations do not
concern us here and the first term in (6}will be
ignored in the following.

To evaluate the structure factors we have to
consider 5m&& and 5c as smoothly varying functions

of the position coordinates r, for which case 5'

may be written as'

II' = 2 Jz [c;», 6e„(r)6e» (r) —2c;j»e)jj6e;j(r)6c(r)

(s)

Now let s (r) denote the displacement of the ions
at a point r and let (the term q-=0 being excluded
from the sums}

s (r}=$;; s (q)e ' '", s (q) = s *(-q},
6c(r) =Qg c(q)e "', c(q) =c*(-q)

Then, we have

ss, (r) ss, (r))6fjj r)=2 +
Xj Xj

(9)

= —
& i Q; (s (qj)q& s+j(q)qj)e "' (10)

=-Q; ejj(q)e "'
where the last identity defines e j j (q), the Fourier
transform of 6ej j(r). Substituting (9) and (10)
in (8) and noting that J exp[i(q+q }~ r]d x=0,
unless q = —q, one obtains

2,,(-.8 G
D44s= ' '

2 + ~C~)~recgnrC) T, o, N

In (6} and (7} a subscript like e means that all the
strain components are kept constant, while c in-
dicates that all e&, , except the one with which
differentiation is being performed, are kept con-
stant. In (7}we have also used the relation

(i4)

S„c(q)=Re(N(-q) c (q)) =NReqj(ic(-q) sj (q)),
(i6)

Scc(q) =N(c(-q)c(q)) . (16)

The averages in (14)-(16) are readily evaluated
with the help of (12) and (2}by writing in (12)

sj(q) =s&"+is'&'(q), c(q) =c'"(q)+ic' '(q),

where s",.', s",.', c"', and c"' are all rea]., and

calculating the averages of the various real binary
products of s", s'&', c"', and c' ' with each other.
Denoting the inverse of the 4&&4 matrix D, whose
elements D 8 (cj, iI=1, 2, 3, 4) are given by (13) and

(7), by D ' and its elements by (D ') , one ob-
tains (i, j =1, 2, 3}

Sjjjj(y) =Nks T(D ')jj qjqj

SNc(y) =Nkjj T (D )4j qj

Scc(y) =Nkjj T (D )4j

(»)
(is)

(»)
where y is the unit vector along the direction of q.
In (17)-(19)we have written the argument of the
structure factors as y, rather than q, (a) to sig-

nify that while the expressions (17)-(19) in gen-
eral depend on the direction of q, they are in-
dependent of the magnitude' of q, and (b} to remind
the reader that these expressions are the macro-
scopic or long-wavelength limit of the structure
factors S»(q), etc.

III. EVALUATION OF (& ') AND SPECIAL CASES

An instructive way to partially evaluate (D '),j)

is as follows: Write the matrix D as

keeping the total number of particles fixed, the
deviation 6n (r} in the local number density of the
particles for small fluctuations is 6n(r) = —(N/V)
&& 6e j j (r). Denoting the Fourier transform of 6n(r}
by N(q) as in I, recalling the definitions of the struc-
ture factors [see Eqs. (7), (11), and (19}of I],
and making use of (10) and (11), we may obtain

S j)(„(q)=N ' (N(- q) N (q)) =N q jq& (s j (- q}sj (q)),

W=-,' Q; [D„s;(- q)s, (q) —2D„(is~ (-q)c(q) )

+D„c(-q)c(q)], (12)

with (i,j, k = 1, 2, 3)

Djj=D4j I'cjj»e»qjt (13)

here we have used the usual symmetry properties
of the elastic constants, c&»r =c»„etc.

Next we note that since we have considered above

the fluctuations in strain components or volume

D„)
(20}

where A is the 3&3 matrix whose elements are D,~

(i, j= 1, 2, 3), B is 3&&1 (column matrix) with ele-
ments D&4, and B the transpose of B. If A ' denotes
the inverse matrix of A, then one may show that

(D ') = Q ') I+(D ') (8 '&&& ');, (21)
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(D ')$4= —(D ')«(& 'B)y,

(D ')44= I/(&« —BA 'B) ~

(22)

(23)

Now the elements of the matrix A may be seen to
be just Vq times the elexnents of the matrix which
determines the velocities and polarization vectors
of the three independent elastic vraves propagating
along the direction y (il q) in the crystal .Hence,
the elements of A ' may be written asv

( ) ()
V q'~a ' (24)

(u(t') .y)a
«(y) = (25)

If the second term in (25) is zero, 8»(y)
= (N/V)ka T«(y) which has the form of the well-
known expression for the structure factor (in the
limit under consideration) of a pure crystal.

For an alloy a specially simple case is that
where the bvo types of atoms are of identical size
and shape, i.e. , e~~ [= (&e,~/se)r, „]=0, for alii

where u'"' -=2"'(y) is the unit polarization (displace-
ment) vector associated with the particular elastic
vrave propagating along the y direction whose ve-
locity is U, = &„{y), and p is the density of the
medium. Note that '0, in (24), and hence also in
subsequent expressions, refers to velocities calcu-
lated from isothermal (rather than adiabatic) elastic
constants.

Noting the forms of (21) and (22) and using (18),
(19), and (24), one sees that the expression (1V)
for S»(y) may be written as

'8««(y) = (N/V)kBT«(Y)+[8«e(y)/See(y)]'See(y)

8 Q8„(y)=Nk, T
r, e,X

(2V)

and is independent of the direction y.
For the general case of e&& &0 and a substance of

arbitrary crystal symmetry, the expressions for
8«e(y) and See(y) [and hence for 8»(y)] may be
written down using Eqs. (21)-(25). We may note
that for crystals having orthorhombic symmetry or
higher and no residual strains, considerable sim-
plification occurs since the tensor e,~, referred
to crystal axes as coordinate axes, is diagonal,
i.e. , e,&

=0 for i&j. Even so, the expressions are
lengthy and we confine our attention here to the
specific case of a crystal of cubic symmetry with
no residual strains. Referring to cube edges as
coordinate axes, one has for this case e„=0 for
i4j and

~tt=e22=~33= 3& y (as)

say. 6 is obviously the fractional change in volume
per unit change in the concentration. Then using
the symmetry characteristics of the elastic con-
stants of a cubic crystal, one obtains

8«e{y)= —5Br«(y)See(y)

(
NkaT

(8 G/Be )T, , „+V5 Br(l —BT«(y))
(30)

where Br [= —,'(e»+ acta)l is the isothermal bulk
modulus, and «(y) is as given in (26), which for a
cubic crystal may be explicitly vrritten as

and j. For this case all the elements D&4 of the
matrix B in (20) are zero. Consequently S„c(y)=0,
so that fluctuations in number density and concen-
tration are uncorrelated for this case, as might be
expected intuitively. 8«(y) for this case is given
by, using (V), (19), and (23),

«(y)= a 3 a 3 aa aa a 3 y

1+aq(1'm'+ m'n'+ n'I') + 3q'I'm'n'
e»+ (e»+ e&a)rl(l m +m n +n l )+ (e«+ ac,a+ e«)rl l m n

where rl = (e» —e,a
—2e«)/e44 is a measure of the

elastic anistropy and l, m, n are the direction
cosines of y. In (31) the elastic constants e,»,
have been written in the two-suffix (Voigt) notation:
(-"&gag = pq y Py

For an elastically isotropic solid, q =0 and
«(y) (e») (Br+3 e44) '. Hence «(y) and con-
sequently all the structure factors 8»(y), etc. , have
no directional dependence. Further, if the shear
modulus e«=0, as for a fluid, we have «(y) = Br'.
With this substitution in (29) and (30) and remem-
bering that for a fluid (& G/Se )r,, « = (8 6/se )r,3,«
{P, pressure), expressions (25), (29), and (30) for
8„„(y), S„e(y), and S«(y) become identical with

the corresponding expressions given in I.
Next we recall from I that the scattering function

I(q) may be written as

I(q) = 8(q)(W)'+ [W, —W, + W~(q)]'8„(q), (32)

where TV and 8' are the pseudopotential matrix
elements, W= e W, + (1 —e)W„b,(q) = S„e(q)/8«(q),
and 8(q), by virtue of Eq. (48) of I and (25), is
such that 8(y) = (N/V)ka T«(y). Consider now the
long-wavelength limit of (32) for a dilute (e « I)
isotropic solid alloy. Then See =e, L(y) = —5Br/e»,
and, to linear terms in c, the temperature-inde-
pendent part of Z(q) is [ W, —Wa —5(Br/e») Wa] e.
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This is equivalent to the result obtained by Blatt
from Friedel's sum rule considerations, the term
involving 5 in the square brackets being usually
referred to as the dilatation effect.

In our treatment, as will be clear from Eq. (&),
the origin of the term 4(q) or S„c(q) may be
ascribed to the fact that a fluctuation in concentra-
tion is always accompanied by a fluctuation in
strain, unless the two types of atoms are of iden-
tical shape and size, i.e. , e,&

-=0, where &(q) = 0.
At shorter wavelengths, in connection with x ray-
scattering, the effect of these strain fluctuations
has been considered by Huang and Krivoglaz.
Although the formulations of these authors are dif-
ferent from ours, one may reasonably infer from
them (see Sec. 1& of Ref. 4) that for a random
solid solution &(q) is approximately of the form (as-
suming elastic isotropy and omitting a Debye-

Wailer type of factor~)

c)~ Ig„-ql' (33)

where g„ is the "reciprocal-lattice vector" closest
to q. '0 We see that for a g„e 0, b, (q) is singular at
q =g„and the [h(q)]~ term in (32) gives a scattering
near q =g„, which is similar to the diffuse or um-
klapp scattering due to the thermal phonons. 9 Thus,
the contribution from the h(q) terms in (32) to the
scattering can be quite Significant as compared to
that arising from the difference S', —S'~ alone or
even compared to that [e.g. , if 6 = 0. 3 and
Scc-c(1—c) =-,'] from the 8(q) (thermal phonon)
term at room temperature. In quantitative calcu-
lations of the resistivity it would, therefore, seem
desirable to take these terms into account.
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