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frequency ~, increases cannot be due to the in-
homogeneous linewidth and is instead due to a
distribution of enhancement factors. Utilizing the
same analysis as Mendis and Anderson, ~ we find
that the room-temperature rotary-saturation data
presented in Ref. 1 are consistent with a distribu-
tion of enhancement factors having a maximum
enhancement factor of g = 5000. The uncer-
tainty in the value of q is not more than + 20%%uo.

The average value of the enhancement factor
(as defined in Ref. 2) is q „=1600.

Stearns has recently measured the enhancement
factor for nickel metal and finds q =4000+ 500
independent of temperature over the temperature
range from 1.3 to 77 'K. We believe our room-

temperature result combined with the low-tem-
perature results of Stearns indicates that g is
independent of the temperature from l. 3 to 300 'K.
In addition to the measurements on q Stearns
found that T& as a function of temperature obeys
an equation T&T ' = 6. 5 + 1.5 msec 'K in the range
of temperatures from 1.3 to 77 K. Using Steam's
formula for TI to extrapolate to T = 300 'K, one ob-
tains a value for T, that is about half the value T,
=0. 16 msec which we reported in Ref. 1. This
seems reasonable since Stearns actually deter-
mines the value of T, at the center of the domain
wall whereas we measure a complicated average
over the various spins in the domain wall.
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It is shown that Baxter's recent results on a lattice-statistical model lead to the solution of
an Ising model with two- and four-spin interactions. Critical properties of this Ising model
in various regions of the parameter space are given. It is argued that four-spin or crossing
interactions in a two-dimensional Ising model would in general lead to a critical exponent
n '&0.

The recent exact solution by Baxter' of a
lattice-statistical model constitutes a break-
through in the study of phase transitions. The
most striking feature of Baxter' s solution is that
the nature of the phase transition is dependent on
the energy parameters of the model. While it has
been known for some time that the behavior of
this lattice model is quite different in the isolated
soluble cases of Ising, F, and potassium dihy-
drogen phosphate (KDP) models, it is for the first
time that a phase transition is shown to exhibit
a continuously variable exponent. Baxter's so-
lution is given in the language of a ferroelectric
model. To those who are accustomed to the "mag-
netic" language of phase transitions, the impli-
cations of his results are perhaps not very trans-
parent. Therefore, we wish to point out in this
note the conclusions on the more familiar Ising

model that can be deduced from Baxter's solution.
It can be shown' that the ferroelectric problem

considered in Refs. 1 and 2 is equivalent to an
Ising model in zero magnetic field with finite
two- and four-spin interactions. The equivalent
Ising lattice, shown in Fig. 1, has first-neighbor
interactions —J& and —J2, second-neighbor inter-
actions —J and —J, and a four-spin interaction
—J4 between any four spins surrounding a unit
square. The Hamiltonian reads, in obvious
summation notations,

H= —J,goo —F2+ocr —Jg oo

—Z'goo' -J~Qocr'o"o"' . (1)

The energy parameters of the ferroelectric prob-
lem turn out to be, using Baxter's notation,
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(ii) The transition temperature T, is given by

e 4= lcosh(Ã —K )/sinh(%+K )l,
regions I and II

sinh(K- K )/cosh(Ã+ If ) I (4)

x'egions III Rnd IV

FIG. 1. Ising lattice specified by the Hamiltonian 0.).
Each dot denotes a spin and the four-spin interactions
are not shown.
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with an extexnal electric field

(I, v) =(J„J,). (2b)

Baxter solved the ferroelectric model with k =v
=0. In the Ising language this corresponds to de-
leting the first-neighbor interactions Z, Rnd Z, .
Therefore, the resulting Ising lattice is composed
of two superimposed squax'e lattices which are
coupled together via four-spin interactions. If the
four-spin interaction vanishes (74=0), the problem
reduces to that of the simple square Ising lattice
and can be solved by standard means. The crux
of the matter is that Baxter's solution can be
adapted to this Ising model (J', =J,= 0) for arbitrary
rJ4f This wiQ be the fix'st time thRt R solution ls
found for an Ising model with many-spin interac-
tions.

After the hard work has been done by Baxtex, it
is now quite straightforward to transcribe Baxter's
results to the present Ising proMem (with J, =Ja
=0). The main results are summarized in the
following.

(1) Sillce the pax'tltioll fullc'tioll ls lllvax'laIlt llndel'
the reversal of the signs of J', and J (or J'4 and J' ),
we may, without los's of genexality, consider only
J4& 0. In Fig. 2 we show the various regions in
the J'-J plane defined by (a given vertex energy
is favored within a region)

wher«= J/II ~„&'=J /&&„and ff4 =J4/&&, .
note that T, = 0 on all region boundaries.

(iii) The energy is continuous at T,.
(iv) In regions I and II the specific heat diverges

at 7, with critical components

In xegions III and IV the specific heat is continuous
while the nth (II~ 3) derivative of the free energy
diverges as I T- 7, l'~~- " (logarithmic divergence
if v/p, =II), where II is the integer defined by

n —l&II/tl Xn.

In (5) and (6),

p, =gII+sin ' [tanh(2Z'4)j.

(v) The case of J'4 =0, the nearest-neighbor
square Ising lattice, is a singulax exception for
which the specific heat has a logaxithmic singu-
larity.

sevex'Rl remarks Rx'8 now 1n ox'dex'. F1x'st, we
note that the cxitical behavior of the Ising model
depends on the interactions J, J, and J4. It is
also tempting to infer from the above results
that, in appropriate regions in the parameter
space, the four-spin interaction will in general
18Rd to highex' than second-ox'del tx'Rnsltlons. %8
wish to point out, however, that it is also possible
that this peculiar behavior is an artifact of setting

KI & (e3, 64, 61), I'egloI1 I

64 & (61~ 64q 4'7)~ I'eglon D

e4 & (61, 64, 61), I'egion III

FIG~ 2~ VargoUs regions 1n the 41-eJ plane for a fixed
J'4 &0. The phase transition is associated with an infinite
specific heat in the shaded regions I and II, and is of
higher than second order in regions III and IV.
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J, =J~=h=v=0 in the Hamiltonian (1). In the case
of the F model, for example, it is known that the
inclusion of a nonzero field (h, v) changes the in-
finite -order transition to a second-order one.
The inclusion of some nonzero values for J& and

J2 could have the same consequence in the present
problem. It does appear safe, however, to infer
that the inclusion of the four-spin interactions will
in general not result in n = n =0.

The result that the nearest-neighbor square
Ising lattice is a singular case with & = & =0 also
appears somewhat disturbing, for it is generally
believed that the critical exponents should depend
only on the dimensionality of the model, and not
on the range of interactions. We wish to present
some counter arguments. First, some informa-
tion is available at one particular point of the
parameter space, namely, J, =J2=J=J and J4=0.
This is the square Ising lattice with equivalent
first- and second-neighbor (crossing) interactions.
For this model Domb and Dalton and Dalton and
Wood have carried out numerical analyses on the
high- and low-temperature series expansions. The
study on the high-temperature series led to the
critical exponent'

y-=1. 75, (8)

which does not differ from that of the nearest-
neighbor planar Ising lattices. On the other hand,
the study on the low-temperature series did not lead
to such agreement. The authors of Ref. 9 attrib-

uted their results on the low-temperature exponents

P and y' to the erratic behavior of the Pads approx-
imants. On reexamining their data on the first-
and second-neighbor square lattice, we feel that
unless something drastic happens in the high Pads
approximants, it should be safe to infer the fol-
lowing bounds on the critical exponents P and y ':

0. 80&y &1.30, 0. 13&P&0. 16 . (9)

Accepting (9), the Rushbrook inequality n +3P+y
& 2 then leads to the bound

~'~ 0.38 (10)

on n . This indicates a X transition of the type
given by (6) and is definitely different from the
commonly accepted value of & =0 for two-dimen-
sional lattices. ' This result suggests that the
logarithmic singularity of the nearest-neighbor
Ising model is indeed a singular case. It must be
noted that this is not the first time that the two-
dimensional nearest-neighbor model is found to
possess a unique behavior. In a recent study on the
behavior of two-point correlation functions on a
phase boundary, Fisher and Camp" showed that the
planar nearest-neighbor model is unique in having
a decay exponent different from the Ornstein-
Zernike form. We feel that these are strong evi-
dences which indicate that the four-spin or the
crossing interactions in a planar Ising model will
in general lead to a critical exponent n 4 0.
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ERRATUM

Enhancement of Superconductivity in Aluminum Films, J. J. Hauser [phys. Rev. 8 3, 1611 (1971)]. Figure
1 caption should read: Transition temperature of Al-Ge and Al-Al203 films as a function of low-temperature
resistivity. The values Al-10 wt% (3. 6-at.%) Ge and Al-10 wt% Al&O& (V-at. % 0) quoted in the caption cor-
respond only to the peak in T, as explained in the text.


