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The isothermal magnetic phase diagram of GdA103 has been measured, and a molecular
field analysis yielded the following values of the coupling constants: isotropic intersublat-
tice coupling J~=0.722 K, isotropic intrasublattice coupling J2=0.051 K, anisotropic inter-
sublattice coupling E& = 0.0438 K, anisotropic intrasublattice coupling E2=0.036 K, and
crystal field anisotropy constant Lo= —0 132 K, The magnetic phase boundaries calculated
with these molecular field constants agreed with experiment except for the spin-flop transi-
tion near the triple point. This transition has been studied in detail as a function of the
angle between the easy axis and the applied field. A first-order phase transition is found
only within a critical angle as predicted theoretically. This critical angle also varies with
sample shape owing to its dramatic dependence on demagnetization. The striking differ-
ences between the isothermal and the previously reported adiabatic phase diagrams are
attributed to magnetocalorie cooling. The cooling on adiabatic magnetization of an anti-
ferromagnet in its antiferromagnetic phase is calculated within the molecular fieM approxi-
mation (MFA) and is found to agree with this experiment and others. A comparable cooling,
not predicted by the MFA, is observed for fields applied perpendicular to the easy axis.

I. INTRODUCTION

Magnetic phase diagrams of antiferromagnets
have recently been studied both theoretically'
and experimentally. "The phase diagram of a
uniaxial antiferromagnet with the magnetic field
applied along the easy axis of magnetization is
drawn schematically in Fig. 1. The paramagnetic
(PM) state is separated from the spin-flop (FI.)
state and the antiferromagnetic (AF) state by the
two second-order phase boundaries, FL-PM and
AF-PM, respectively. The AF phase is separated
from the FL phase by a first-order phase transi-
tion which meets the PM phase boundary in the
triple point T,. Associated with this first-order
phase transition are the stability limits of the FL
phase (FL-AF) and the AF phase (AF-FL) with the
thermodynamic phase boundary lying between them.
The field at which the system undergoes the first-
order phase transition is usually referred to as
the spin-flop field.

The magnetic phase diagram and its dependence
on the direction of the magnetic field can be used
to determine the magnetic coupling constants. "
In this paper we concentrate in more detail on
three aspects of the phase diagram, namely, the
temperature dependence of the critical fields, the
dependence of the spin-flop transition on the di-
rection of the applied field, and the apparent phase-
boundary shifts caused by the magnetocaloric
effect. Experimentally, the magnetic phase bound-
aries are traced out by peaks or discontinuities
in the ultrasonic attenuation, '3 specific heat, "'
and magnetization or differential magnetization. '

In the present investigations the transition fields
were located by peaks of the differential magne-
tization. The experimental results are interpreted
in terms of a molecular field approximation (MFA),
which not only gives a satisfactory qualitative de-
scription of the experiment, but also a surprisingly
good quantitative description of many of the results.
However, the isotropic field dependence of the sub-
lattice magnetizations observed in the FL state at
high temperatures and the critical behavior of the
differential magnetization close to the phase bound-
aries are beyond MFA. -

The angular dependence of the phase diagram has
been investigated previously, ' but quantitative re-
sults were reported only for the PM phase boundary.
These experiments also showed a rapid decrease
of the maximum of the differential magnetization
at the spin-flop transition if the applied field was
tilted away from the easy axis of magnetization.
Chepurnykh and Rohrer and Thomas have shown
that at T =0 K a first-order spin-flop transition
exists only for angles between the easy axis and the
applied field less than a critical angle which is of
the order anisotropy/exchange. For angles larger
than this critical angle the sublattice magnetizations
turn continuously from an antiferromagneticlike
configuration into a spin-flop-like configuration. It
was later shown' that this critical angle decreases
with increasing temperature and vanishes at the
triple point. For finite angles less than the critical
angle, the first-order phase transition between the
AF state and the FL state is no longer connected to
the PM phase boundary but ends in a critical point.
Between this critical point and the kink in the PM
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FIG. 1. Schematic phase diagram of a uniaxial anti-
ferromagnet for the field applied along the easy axis.
At the triple point T& all three phases coexist. Broken
line 0& =0 is not a phase boundary; its significance is
explained in conjunction with Eq. (3a).

phase boundary, the sublattice magnetizations turn
continuously but also sufficiently fast to induce a
substantial change of magnetization in a small field
interval. Such a pseudotransition is not easy to
distinguish from a real transition. Since the ques-
tion of the existence or nonexistence of a phase
transition is an important one in the experiments
related to soft modes, domain effects, etc. , we

, have studied this problem and determined the criti-
cal angle as a function of temperature. Preliminary
results of this investigation have been reported
elsewhere. '

The magnetic phase diagram for static fields
along the easy axis of magnetization is different
from the one measured previously' with pulsed
fields. The difference of these phase diagrams
is attributed to adiabatic cooling in the AF state
on magnetization by fast field pulses. ' The
possibility of adiabatic cooling has already been
discussed by Kurti'6 for the case of antiferromag-
netic ordering at very low temperatures in the
classical salts used for adiabatic demagnetization,
and by Wolf' for paramagnetic ions with a crystal-
field-induced nonmagnetic ground state. More
recently, the cooling on magnetization of antiferro-
magnets' ' and ferrimagnets" has been observed
by measuring the temperature of the sample on
magnetizing or the field dependence of the spe-
cific heat. Here we give a more detailed and

quantitative analysis of the magnetocaloric effect
based on a molecular field calculation and compare
the results with our phase-diagram measurements
on GdAlO, and other experiments.

Finally, we discuss briefly the temperature

dependence of the PM boundary near the Neel
temperature. In the isothermal case, molecular
field behavior is observed. In the adiabatic case,
the phase boundary represents the temperature
dependence of the order parameter and shows
critical behavior similar to that found in other
antif err omagnets.

Before reverting to the problems just outlined,
it is useful to write down a few molecular field
expressions which wiQ be used throughout the
paper and which are derived in more detail in Ref.
5. The free energy of an antiferromagnet with N
spins 8 per sublattice is given by

F=N(S [&gogoa cos(c' —P)+2+2(oA+oB)

+Kycf~o'e cosQ cosg+ gE2(v~ cos Q +0'icos p)]

—@ps SH [(T~ cos(Q —!j'f) + vs cos(P —()]
—T [s(o„)+s((re)]), (1)

where &, P, and P are the angles of sublattice A,
sublattice 8, and the magnetic field H with the easy
axis of magnetization as explained in Fig. 2; o&
and o~, the average values of the spins of sublattice
A and sublattice 8 normalized to 1 (i.e. , o„
=(S„)jS, where S„is a spin on sublattice 2); J',
and E» the intersublattice; J, andK» the intra-
sublattice isotropic and anisotropic coupling con-
stants; T, the temperature; and s(o„}and s(o'e),
the entropies per spin of sublattices A and 8,
respectively. The crystal field effects in their
simplest form further contribute to the Ka-type
anisotropy. In second order, the crystal field
anisotropy takes the more complicated form

where f (o) varies as o for o- 1 and is constant for
o-0 with /(0) =r l(1)(2S +3}j(2S+2). For v= 1
or o =0 this L-type anisotropy can be treated simi-
lar to the E~-type anisotropy except that the an-
isotropy constant is different in the limits o =1
and 0. At intermediate values of o, the numerical
calculations are unduly complicated by the o de-

FIG. 2. Angles defining the
osition of the sublattice magne-
zations in a field applied at an
ngle to the easy axis. Here P
nd g are positive and 0. negative.
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v, =Bf(S'/T)[ —(Z, +If,)v„+ (Z, + IC,)v,

+ {gic /S ) H]] =B(X },

,=BOS'/T)[- (Z, +Z,)v, +(Z, +Z,)v„

—(g~»/s) H]] =B(X,).

Flop state (v~=o»=o', o'= —P=y):

v=B f(S'/T)(Z, -Z, ) v] =B(X,),

cosy = {gp»js ) H/[(W, +K, + If',}v].

Paramagnetic state (o„=vs =cr, o'= p=0):

v =BT{S'jr)[ —(Z, +Z, +H, +Z,)v+{gi,/S) H]]

=B(x,). {Sc)

And for fields perpendicular to the easy direction:

Flop state:

v =B[(S'/T) (Z, +Z, —Z, —If,)v]

siny = (g p, »/S) H/[(2Z, ~If; —If', )cr] .
Paramagnetic state:

cr =B$(S'/T) [(gps/S ) H v(J, +Z,)]]- (2e)

For the antiferromagnetic state there also exist
solutions with a = P =0 in the region to the right of
the line v& —-0 in Fig. 1. Ecluations (Sa) also ac-
'count for these states if we let o& assume negative
values.

pendence of / without changing the results appre-
ciably. Therefore, if not stated otherwise, we
include I.-type anisotropy only in calculations re-
lated to properties at T =0 K (o = 1) or for T not
much below T» and small fields (v small). Further

t i di th K- dE-typ ' t p'

the shape anisotropy caused by the demagnetizing
fields. For effects such as superheating and
supercooling and angular dependence of the spin-
flop transition, this type of anisotropy can be the
dominant part. For the different anisotropies, with
the signs given in Ecl. (1), to favor the easy direc-
tion, K, has to be positive and E& and I.o negative.
The sublattice entropies are of the form

ds(v)/dv = —B '(v),
where B '(v) is the inverse Brillouin function for
spin S.

The equilibrium positions of the sublattice mag-
netizations are found by putting the derivatives
of F with respect to o, p, v~, and v» eclual to zero.
One obtains for the field applied along the easy
axis the following results:

Antiferromagnetic state (o. =0, P= rr):

An equilibrium state is stable as long as all the
eigenvalues of the symmetric matrix formed by
the second derivatives of I' with respect to 0~, a~,
o', and P are positive. The eigenvector belonging
to the first eigenvalue to become zero characterizes
the type of instability of that state. It is found for
fields along the easy axis that the system becomes
unstable with respect to the following deviations
and restrlctlons:

Along AF-PM,

50~ =- 503,

Along FL-PM,

50.& =50&=0,

Along AF-FL,

nv„=~v, =o, ~f~v„(«(nPv. (

{4a)

(4c}

Neel temperature:

r„=', S(S+1)(Z, +-X, - Z, Ic, -~I.p). -
Par amagnetic Curie-%gneiss temperature defined

by y„= C/(r —e„):

8„=—
p S (S+ 1) (J', +If')+/3+%2 ~L p) ~ (»)

Triple point [to first order in (T„-T,)/T»]:

Tt T» 2 {T» TS) (5c)

Tp 3 S(s + 1}(CTf CTQ +Qtfp)

is the temperature obtained by extrapolating the
FL-PM instability curve to H =0.

Instability fields at T =0 K: (a) H parallel to
easy axis:

H(FL-PM} =H~p =A(2cT)+Kg+If'p+I p),
H(AF-FL) =H,„=a[(If;-X, I,,)—

x(2J', +Z', —H, —I.,)] 'r',

(Ga)

(6b)

x [{If,- If, -I,p)/(u, +Z; -Z, - I.p)]'", (ec)

and the thermodynamical spin-flop field

Htp A[(If( —If'p —I p) (2Z(+Iffy+ If'2+I p)]

Along FL-AF,

5v„=—5v», 5n = 5P. {4d)

For fields applied perpendicular to the easy axis
the instability along the whole PM boundary is the
same as (4b). Finally, we write down a few useful
expressions for selected points in the H-T plane
in terms of the molecular field constants J, K,
and L:
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(b) H perpendicular to easy axis:

(8e)

where the J's, E's, and I., are measured in units
of K, Pin koe, and A. =S/gpa =14.8888/g.

These equations have been derived for uniaxial
anisotropy. They are, homever, also valid for
orthorhombic anisotropy, as long as the applied
field is kept in a plane perpendicular to the hard
direction. Then the equilibrium positions of the
sublattices remain in the plane of the easy axis
and applied field, and the anisotropy in the hard
direction does not appear in the above equations.
The anisotropy in the hard direction plays a vital
role, however, in the dynamic properties.

II. EXPERIMENT

The differential magnetization measurements
were carried out on flux-grown single crystals'9
of GdA103 cut into cylinders and a disk. The
cylinders mere up to 14 mm long with diameters
of about 0. 6 mm, and the disk was 0.05 mm thick
and 3 mm in diameter. The demagnetizing field
in the direction of the external field at saturation
magnetization varied betmeen 20 and 60 Oe for the
cylinders and was 250 Oe in the case of the disk.
In the following, the corrected fields are quoted.
The Neel temperatures of the different samples
agreed within the experimental accuracy and mas
T&= 3.875 +0.005 K. Geller and Bala reported
thRt GdAl03 hRs Rn orthorhombic structure. Con-
sequently GdAl03 is not perfectly uniaxial in its
magnetic properties. ' The easy axis is the or-
thorhombic b axis and the hardest direction is the
u axis, with the e axis intermediate. Only for
fields applied in the be plane do the spins flop in
the plane of the easy axis and applied field. In
this case the results may be compared with the
molecular field theory of a uniaxial antiferromag-
net and the orthorhombicity of the anisotropy
neglected. Therefore, the cylinders used to de-
termine the angular variation of the phase dia-
gram were cut for each angle between the easy
axis and applied field in the be plane, with the
cylinder axis in the direction of the applied field.
The cylinders and the disk were oriented with x
rays, so that the angle between the easy axis and
applied field mas known to +0.3'. For a cylinder
aligned along the easy axis with this accuracy of
orientation, the narrowest spin-flop transition ob-
served mas less than 10 Oe at 10 kOe.

The susceptibility was measured by the mutual-
inductance method in the static field of a super-
conducting solenoid, the variable frequency field
being supplied by a separate tickling-field coil.

Inside the tickling-field coil the pick-up coil with
the sample and the compensation coil were mounted
side by side. This arrangement allowed better
compensation than the usual method with the tmo
coils on top of each other. Also, for accurate
compensation, the sample could be moved in and
out of the pick-up coil at any temperature. The
tickling field was about 1 Oe and its useful fre-
quency range between 15 cps and 30 kcps.

III. RESULTS

A. Susceptibility and Phase Diagram

The susceptibility measured by the mutual-
inductance method is not necessarily the isothermal
susceptibility. Only if the spin system is coupled
strongly enough to a large heat reservoir, such
that entropy can be completely exchanged between
the two within a cycle of the tickling field, is the
isothermal susceptibility measured. The spin-
lattice relaxation is usuaQy fast enough (-10 6 sec)
to keep the spin system and the lattice in thermal
equilibrium up to tickling frequencies of many kcps
even at low temperatures. But as the temperature
is decreased the thermal capacity of the lattice
becomes negligible and the surroundings have to
act as the heat reservoir for the spin system. The
thermal relaxation of our cylindrical samples was
such that only measurements carried out at fre-
quencies below 50 cps could be considered iso-
thermal.

The measured susceptibility as a, function of
applied field for two cases is shown in Fig. 3.
Two second-ol-del- phRse tIRnsltlons into the PM
phase are clearly seen by their characteristic
discontinuities in the susceptibility at X and Z.
For temperatures above the triple point this tran-
sition is from the AF into the PM phase, whereas
below T, it is from the FL into the PM phase.
Also, belom T, a peak is observed in the suscep-
tibility showing a first-order phase transition
due to the AF-FL transition, where the magnetiza-
tion increases discontinuously. The different
forms of the curves at X and F clearly show this
difference in the order of the AF-PM and AF-FL
phase transitions.

The peak at the AF-FL transition has a finite
width due to inhomogeneities of the bulk magnetic
propexties and demagnetizing fields, and conse-
quently a finite height. In the case of isothermal
susceptibility measurements (low-frequency
tickling fields) the area under the susceptibility
peak is equal to the jump in magnetization; in the
adiabatic case (high-frequency tickling fields),
however, the area under the peak is substantially
reduced owing to the different magnetic field
dependence of the isentropes and isotherms dis-
cussed in more detail later.
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readily obtained within the MFA from Eq. (1). The
instability of the PM state occurs with respect to
5n = —5P along the PM-FL boundary. For fields
parallel and perpendicular to b the matrix formed
by the second derivatives of F decomposes into
two 2&&2 matrices, and the first eigenvalue to be-
come zero is given by

I =o.

This yields, for (a) H&b (n=P=2v, o„=o~),

H,', =(S/g q, )(2J, +K, K,) o,—(H,'„T)
and, for (b) H~~b (a=P=o, a~=os),

H,"2 ——(S/gp~)(2J~+K, +K2) a„(H,'2, T)

(7)

(8a)

(8b)

cr, (H,;,T) and a„(H,'2, T) are obtained by solving the
equilibrium condition SF/eo =0, which gives

o,(H,'„T)=B((S'/T)[(gp /S)H,', (T)

—(J, +J,) o, (H,'„T)]], (Qa)

o„(H,"„T)= B((S'/T)[ (gg /S )H,",(T)

(Qc)

(Qd)(oH,"„T)=B[(S'/T) (J, J,) o„(H,"„T—)].
Equation (Qc) is equivalent to Eq. (3a) for H=0,
and therefore

o,(H,'2, T) =o(0, T)

and, similarly,

o„(H,"„T)=o(0, TT„/T, ) .

(Qe)

(Qt)

Thus, the FL-PM boundaries are Brillouin-Weiss
curves. In the case of H~b the Brillouin-Weiss
curve intercepts the T axis at TN and the field axis
at H,'2 (0) = (S/g p~)(2J, +K, —K2 —Lo), and in the case
of Hllb the intercepts are T, and H,",(0) =(S/ggs)
&&(2J, +K, +K2+Lo). The Brillouin-Weiss curves
drawn through the experimental points are least-
squares fits of the field deviations computed with

the intersections on the II and T axes as parame-
ters. They fit the experiment quite well, the
standard deviations being 320 Oe for both Hj.b

and Hllb. The largest deviations from the Brillouin
function are found in the region of the triple point,
which is determined by the kink in the AF phase
boundary as T, = 3.12+ 0.005 K [see also Fig. 7(a}].
Here, the measured phase boundary curves away
from the Brillouin-Weiss curves and meets the
AF phase boundary about 0. 1 K below the inter-
section of the calculated PM boundary with the

—(J, +K, +J,) o„(H,"„T)]], (Qb}

and inserting Eqs. (8) into Eqs. (Q),

g~(H, ~, T) =B[(S /T) (J(+K) —J2 —K3) oj(H~q, T)])

measured AF boundary. Minimal standard de-
viations are obtained for Hllb with the intercepts
H,",(T = 0) = 36. 28+ 0. 1 kOe, T, = 3. 35 + 0. 01 K; and
for Hlb (Hlic), H, z (T =0) =41.27+ 0. 1 kOe, Tz
= 3. 878 + 0. 005 K. This compares well with pre-
viously obtained values from pulsed fields,
H,"2(T =0) =35. 5 kOe and H,'2(T =0) =42. 0 kOe. The
values reported by Cashion et al. "are 7% higher.
We believe this discrepancy is mainly due to in-
sufficient compensation for demagnetization as
indicated by the finite slope of the M-vs-H curve
at the spin-flop transition.

From these isothermal transition fields and a
spin-flop field at T =0 K of 11.5 kOe, one obtains,
with Eqs. (6), J, =0. 722 K, K, =0.0438 K, and

K2+Lo= —0. 0961 K; furthermore, T„-T,
=

& S(S + 1)(K,—Ka -
z Lo) yields Lo = —0. 132 K and

K2 = 0. 036 K. The isotropic intrasublattice coupling
constant J~ can then be obtained from either the
Neel temperature, the Curie-Weiss 8, or T3. The
Curie-Weiss temperature was obtained from a
least-squares fit to previously published' suscep-
tibility data in the temperature range from 20 K to
liquid N& for different field directions perpendicular
to b. We found 8, = —4. 4+ 0.4 K and a Curie con-
stant C =7.87 K/mole, where

8i = ——', S(S + 1)(J,+J2 —9 Lo)

is the Curie-Weiss temperature for the perpendic-
ular susceptibility and is different from the com-
monly used Curie-Weiss temperature 8, for parallel
susceptibility as given by Eq. (5b). The value of

8, used here is somewhat lower than that previously
obtained from graphical analysis' or from measure-
ments in the liquid-hydrogen temperature range '

where we find that 1/y vs T is slightly curved. With

the molecular field constants derived above one
obtains J2=0.051 K from T„or Ts and J2=0. 083
+ 0.07 K from 8,. For the numerical calculations,
however, where L, = 0, we have used J& = 0. 123 K
in order to reproduce the experimental Neel tem-
perature by Eq. (5a). From 8, and 8„, one obtains
for the difference of the inverse molar suscepti-
bilities above T&

1/y, —1/y, = —'(K, +K +—, L ) S(S +1)/C,

which is independent of temperature. Using the
approximation 1/y(T„) = 2T„/C, the relative differ-
ence of the susceptibilities at T„ is

+X/1B —(+ 1~~)//~I ——S (S + l}(Ky +K2 + 3 Lp)/6T g

With the anisotropy constants derived above we ob-

tained &lf/y„(T~) = —0. 05%. Experimentally, we
could not detect any difference between parallel
and perpendicular susceptibility above the Neel
temperature within the accuracy of our measure-
ments; Cashion et al. ' found a small difference
of about l%%d, but with the opposite sign (y„&y,).
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It should be noted that the difference of the suscep-
tibilities is proportional to the difference between
K,- and K,- or L,-type anisotropy fields. (Re-
member that K, has to be positive and E~ and Lo
negative, as is the case in GdA103, in order to
favor the same easy direction. ) This is in con-
trast to the spin-flop field and the Neel temper-
ature which contain the sum of the anisotropy fields.
This is demonstrated nicely by GdA103, where
the total anisotropy is of the order of 2070 of the
isotropic exchange, yet no difference of the sus-
ceptibilities is detectable.

The excellent fit of the FL-PM boundaries by
Brillouin-Weiss curves is somewhat surprising.
Combining Eqs. (8a} and (Qe), we see that the
transition fields are proportional to the zero-field
sublattice magnetization 0'„and sublattice mag-
netizations of antiferromagnets do not usually follow
Brillouin-Weiss curves. Since we did not determine
the temperature dependence of 0'0 directly, we cal-
culated vo from the parallel zero-field suscepti-
bility y in order to compare it with H, 2 ~ Hornreich
and Shtrickmann have suggested that the MFA re-
lation between y„and a'0 [written here normalized
to y„(T„)],

X„(T)
XII(TN)

6T„+2S(S+1)(J'2+K2)
3T„+2S(S+1) (82+Kg)+ T(S+1)/(S dB/dX)

(10}
where oo =B(X), should hold beyond MFA. They
have demonstrated the validity of (10}for a num-
ber of antiferromagnets, where 0'0 does not follow
a Brillouin-Weiss curve at all well. Uncertainties
in the coupling constants Z~ and K~ are not impor-
tant since 2$(S+1)(Ja+K2) «3T~. The results of
a numerical solution of Eq. (10) using experimen-
tal values of the zero-field susceptibility are plot-
ted in Fig. 4. The discrepancy between the mea-
sured FL-PM transition fields and those calculat-
ed from the zero-field susceptibility amounts to
as much as 5 kOe, or 20%%uq. As we shall see later,
this discrepancy is due to a change of the sublattice
magnetizations in the FL state, which is not pre-
dicted by MFA.

We further note the validity of the MFA relation
(5c) between the triple point, the Neel temperature,
and T3, the H = 0 intercept of the extrapolated
FL-PM boundary for Hll b. With T& = 3.875 K and

T& = 3. 12 K, one obtains T3 = 3 ~ 37 K, in good agree-
ment with the MFA extrapolation of the FL-PM
boundary.

Consider now the boundary of the AF phase.
Both the transitions to the FL phase and to the
PM phase are no longer simple functions of II and
T and, therefore, have been calculated numeri-

cally. The result of the computation is compared
with experiments in Fig. 5. The agreement is
considerably worse than for the FL- PM phase
boundary. The most striking discrepancy is found
for the spin-flop transition fields near the triple
point; the calculated values of H, ~ increase from
11.5 kOe at T = 0 K to 15.9 kOe at T„whereas
the measured transition fields decrease from 11.28
kOe at T = 1.39 K to 10.97 kOe at T, . The calcu-
lated transition field is partially depressed when
L 0-type anisotropy is used. The lower curve has
been calculated with the values of Lo and K, de-
rived above. The calculated transition field of
14. 53 kOe, however, is still about 3QVg too high.
The spin-flop field at higher temperatures could
be further reduced by increasing

~
Lo

~
under the

restraint that Lo +K~ = const in order to retain the
same critical fields at low temperatures. This
decreases the effective anisotropy at high tem-
peratures, reducing the spin-flop transition field,
but simultaneously pushes the triple point to
higher temperatures.

The temperature dependence of the spin-flop
transition field of GdA10, seems to be an excep-
tion. Other well- studied antif erromagnets like
MnF, ' C r~O, CuC12 ~ 2H&O

' ' NaCrS~,
LiMnPO4, etc. , all exhibit an increasing spin-
flop transition field with increasing temperature.
Computations ot T& and the transition field at T„
H„(T,), with the molecular field constants de-
duced from the transition fields at T = 0, and from
T„and 8, also give better agreement with exper-
iment in these cases. One obtains with E~-type
anisotropy, for instance, T, = 64. 6 K and H„(T,)
= 140 kOe for MnF~, compared with the experi-
mental values of 64. 9 K and 119 kOe, and for
CuClz ~ H'0, T, =4. 32 K, H„(T,) = 10.8 kOe, com-

&o-
LLI

C3
I-
UJ

(9

I I I

2
TEMPERATURE (K)

FIG. 5. Phase boundary of the AF state for fields
applied along the easy axis. Dots are experiment,
dashes calculated with K2-type anisotropy, and solid
line calculated with K2-type (K2 =+0.036) and L-type
(Lp = 0 132) anisotropy.



pared to Tt ——4. 31 K and II,&(T&) = 6. 60 kOe exper-
imentally. For MnF, these values are again im-
proved if L-type anisotropy is used. Then T,
=65. 4 K, H„(T,) =118 kOe. For CuC1~ ~ 2HaO,
I,-type anisotropy ls not effective because of 8

B. Angular Dependence of the Spin-Flop Transition

The existenc~ of a first-order spin-flop transi-
tion is not only confined to small angles between
the easy axis and the appbed fieM, but extends
for finite angles only up to a critical temperature
T„where it ends in a critical point (Fig. 6). A

method well suited to detect the onset of a first-
order transition is the soft-mode or truncated-
resonance method described by Blazey et al. 3

For finite angles, however, this method is not

appropriate here for two reasons. First, the mea-
surable mode, the antiferroma, gnetic resonance
mode, is no longer the soft mode at the spin-flop
transition. ' Second, the field and angular depen-
dence of this AF resonance mode near the spin-
flop transition is rather complicated, ' and cannot
be used to identify a metastable region typical for
first-order transitions. Here the onset of the
first-order spin-flop transition is clearly seen in

the susceptibility which exhibits a strong narrow
peak. Above the critical temperature the suscep-
tibility has a wider, weaker maximum located
along the line connecting the critical point with

the kink in the PM-phase boundary at T, . The
onset of the first-order transition is then deter-
mined from the temperature dependence of the
height and width of the susceptibility peak as shown

in Fig. V(a). Above the critical point, the height
of the peak decreases and its width increases
rapidly with increasing temperature. In this part
the temperature variation of both the width and

height is independent of the tickling-field frequency.
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FIG. 6. Schematic phase diagram for H applied at
Rn angle from the easy Rxis. Dotted line Rbove the

critical temperature T, locates the maximum suscepti-
bility; T& indicates the triple point for H I) $.

PIG. V. Determination of the critical temperature
with susceptlblllty peRk Rs function of temperature: {R)

Small angle between easy axis and applied field and a
modulation frequency of 12 kcps. Crosses show peakheight;
triangles, peak width; open circles, applied field at
the susceptibility peak; solid circles, transition to the
PM state. The difference between T~ and T f indicates
a misalignmentof 0.3 deg. (b) Angleof 5.3 deg between

easy axis and applied field. Peak heights for different
modulation frequencies have been normalized to 1 at T~.
o~ is common to all modulation frequencies.
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FIG. 8. Critical temperature T~ as function of angle
between easy axis and applied field. Solid circles, long
cylinders; triangles, disk.

Below the critical point the peak height depends
on the modulation-field frequencies as shown in
Fig. 7(b). For low frequencies, the peak height
continues to increase with decreasing temperature,
exhibiting, however, a distinct break in its tem-
perature dependence at the critical point. For
intermediate frequencies the peak height remains
constant, and for high frequencies, the peak height
falls off sharply below the critical point and levels
off at very low temperatures. This pronounced
frequency dependence comes from two sources.
First, low-frequency field modulation means iso-
thermal field changes and the modulation really
follows the I-vs-H curve. High frequencies,
however, mean adiabatic changes and the modula-
tion sweeps the crystal not through the transition
but along the phase boundary, i.e. , nearly per-
pendicular to the M-vs-II curve. Second, minor
hysteresis loops, in addition, play a role at the
highest frequencies used although no macroscopic
hysteresis has been observed. They are probably
most important for any further suppression of the
signal beyond frequencies comparable with the
thermal relaxation of the sample. We found that
the most convenient modulation frequency to work
with was about 1 kcps. This allowed the deter-
mination of the critical temperature with an
accuracy of about 0.005 K for small angles, as
shown in Fig. 7(a), between easy axis and applied
field, and 0.03 K for large angles, in Fig. 7(b).

In Fig. 8, we show the critical temperature as
a function of the angle between the easy axis and
the applied field, or conversely the critical angle
(the angle beyond which a phase transition between
the AF state and the Fi. state no longer exists) as
a function of temperature. The curves drawn
were obtained by solving the equilibrium and

stability conditions of Eq. (1) numerically. In
these computations only E,—and K,-type anisotro-
pies could be included. The computed critical tem-
peratures were scaled with T&(expt)/T, (calc) in
order that the critical temperature for Illlb be
equal to the measured triple point. The critical
angle for T = 0 K was obtained from

Kp+ Lo
az, +z, +z, +I.,

The difference between the critical temperatures
of the disk and those of the cylinders is due to
demagnetizing effects. For small angles between
the easy axis and the applied field, the magnetiza-
tion of a cylindrical sample is, in both the AF
state and the FL state, close to the cylinder axis,
and at first sight demagnetizing effects would be
considered negligible. However, at the transition,
the magnetization has to turn first away from the
easy direction before lining up again with the easy
axis in the other phase. The effect of the accompa-
nying demagnetization on the spin-flop transition
is best demonstrated in the simple case of an
infinitely long cylinder with easy axis and external
field along the cylinder axis. In this case, the
magnetization points along the cylinder axis both
in the AF and FL state, and all the demagnetizing
fields are zero. However, when going from the
AF state to the FL state, the instability occurs
with respect to 5a, OP&0, which requires that the
sublattice magnetizations tilt away from the easy
axis and produce a magnetization component
perpendicular to the cylinder axis. The resulting
perpendicular demagnetizing field in turn exerts a
torque on the sublattice magnetizations towards
the easy axis thus preventing them from turning
away from the easy axis. The instability field is
consequently pushed to higher fields; the thermo-
dynamic transition, however, is not affected.
The effect of demagnetization can be incorporated
in all the equations by renormalizing the molecular
field constants. For an ellipsoid with one of the
principal axes along the easy (z) axis, the Zeeman
term —H ~ M of Eq. (1) can be rewritten in the form

Fg = —H~~ ~ M+ 2 (N„M„+ N~M + N~ g), (12)

where the ¹sare the demagnetizing factors along
the principal axis, and the M's, the components of
the magnetization. For an antiferromagnet with
uniaxial anisotropy the sublattice magnetizations
turn in the plane containing the easy axis and the
applied field; this is also true for orthorhombic
anisotropy as long as the field is perpendicular to
the hard direction. If the applied field lies in a
principal plane of the demagnetization ellipsoid
perpendicular to the hard direction, the magnetiza-
tion component in the hard direction is always



zero and Eq. (12) becomes

Fz ——H g M+2 [NI (0'~cosQ+0'ecosP)1 2

+N, (o„sino. +os sinp)2], (12')

where N„and N, are the demagnetizing factors in
units of energy in this plane II and l to the easy
axis. The second term of (12 ) can be redistribut-
ed amongst the first four terms of the right-hand
side of Eq. (1), leaving the functional form of
Eq. (1}unchanged but with renormalized molecular
field constants,

K,-K, = K~ + 2 (Nj, —N~),

K, -K, =K, + p (N„-N,),

and with the internal field H replaced by the applied
field H,„&. From the difference of the FL-PM
transition for a sphere and a long cylinder, a de-
magnetizing fieM of 5. 2 kOe for a sphere at full
magnetization was obtained, in good agreement with
the theoretical value of 5. 23 kOe. This gives, for
the demagnetizing factors of Eq. (13}, X, = 0.300 K
for the long cylindex, and N„=X,=Q. OOV2 K for the
disk used in the present experiment.

In the case of the disk, the critical angle is
practically not influenced by the demagnetization,
whereas in the case of the cylinder, the critical
angle is nearly tripled due to N~. This is well
verified by the experiment. The small systematic
deviations of the critical temperatures of the disk
are attributed to uncertainties in the E,- and I.-
type anisotropies and to possible misalignment of
the disk plane away from the applied field. The
Ka- or L-type anisotxopy, which determines the
critical angle, is experimentally obtained from
the difference of two large quantities obtained by
extrapolation of the phase diagram to zero temper-
ature Apossibl. e error of 10% in Kz would account
for the observed deviations. Moreover, I -type
anisotropy in place of E2-type anisotropy mould

also alter the calculations somewhat. These
arguments do not apply for the cylinder because
there the dominant paxt of the anisotropy which
determines the critical angle is of K2-type owing
to demagnetization and is well known. In case of
misalignment of the disk plane, the sublattice
magnetizations no longer lie in the disk plane. The
orthorhombic nature of the anisotropy induced by
the axial shape anisotropy then plays a vital role
for the equilibrium positions of the sublattice mag-
netizations, and the critical angle depends on the

anisotropy along the hard direction.

C. Magnetocaloxic Effects

The phase diagram with the field applied along
the easy axis measured in the present investigation
is compared with that obtained previously in
pulsed fields in Fig. 9. The apparent difference
between the two phase diagrams occurs because,
during the pulsed-field experiment, the crystal
cools upon adiabatic magnetization in the AF phase.
The temperatures plotted are those at the start of
the field pulse and not those at which the transition
occurs. Connected with the adiabatic cooling is an
entropy increase upon isothermal magnetization in
the AF phase. The origin of this entropy increase
is illustrated in Fig. 10 for the case Hllb. Accord-
ing to Eq. (2), the entropy decreases monotonically
with increasing sublattice magnetization. On turn-
ing on a field, the sublattice magnetization o~, which
is parallel to the field, increases and o& decxeases
with the same initial slopes. Thus the isentropes
in an H-T diagram leave the 7 axis with infinite
slope- as requixed, since the line H=O is not a
phase boundary. As the fieM is further increased,
o~ decreases faster than a& increases and the total
entropy increases. At the spin-flop transition the
entropy increases or decreases discontinuously,
depending on the temperature dependence of the
transition field. In our calculations, H„ increases
with increasing temperature (see Fig. 5) and the
entropy decreases when crossing the phase bound-
ary. Experimentally, however, H„decreases
slightly with temperature. In the adiabatic case,

') (H„

I I

2 Ty

TEMP ERATIJRE (K)

PIG. 9. Comparison of isothermal (solid lines) and
adiabatic (dashed lines) phase diagrams for the field
applied along the easy axis. Dash-dots shower isentropes
of the isothermal phase diagram. Amount of adiabatic
cooling between &=0 and the PM phase boundary is
shown by ET„and hT„.
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starting at a temperature T„, the sample cools
down to T» on magnetization where the AF-PM
phase boundary is met at a field Hgp Starting
at a lower temperature T„ the temperature de-
creases to T„F where the AF-FL phase boundary is
metata field H„F. Owing tothe latent heat, the isen-
trope coincides with the phase transition down to
a state (H», T»). In the flop state, the sublattice
magnetization is independent of field [Eq. (3b}]
and the temperature stays constant until the FL-
PM phase boundary is met at (HFP, TFP). The
phase diagram obtained by plotting the transition
fields Hgp, HFL HFp and H~ as functions of the
temperatures T„F, T», T», and Tgp respec-
tively, is of course identical to the isothermal
one. Since in our pulsed field experiment these
temperatures are not known, we shall refer in the
future to the plot of these transition fields as a
function of the temperature at the start of the
field pulse (T„and T, in Fig. 9} as the adiabatic
phase diagram, which is then different from the
isothermal one.

Consider first those aspects of the adiabatic
cooling connected with the phase diagrams. From
the difference of the adiabatic and isothermal phase
diagrams, we obtain the total cooling when going
from H = 0 to the PM phase boundary. The lattice
contribution to the total entropy can be neglected
and then the entropy is a function of the sublattice
magnetizations alone. We have then

(14a)

and

VA (0, TH) = NFL(HFLp TFL) = op (HFP ~ TFP) . (14b)

Rewriting Eqs. (3) in the form

3S Ts
NFL (HFLy TFL} H 3 1 +FL(HFLs FL } T8+1 FL

H [XFL(HFL& TFL}]y (15b)

op (HAp TAp }

SS
=H Hl SH — Hp(H, 'H* )9„)S+1

&[Xp(HAF TAP}] (15c)

where T may equal T„or T„conditions (14) are
equivalent to

XA (0, T„)=Xp (HAP& TAp), (14c)

XA(0, TH) =XFL(HFL, TFL}=Xp (HFpy TFP) (14d)

T»/TH = TB/TFL ~ (16a)

The cooling, expressed in measurable quantities,
is then

&Ty = Ty —TFL

= T„(T»—Ts)/T»

= s TH (T» T~)/T». - (16b)

The cooling decreases linearly with decreasing
temperature. The maximum temperature T,
up to which Eq. (16b) holds is obtained by setting
TFL Tt, in Eq. (16a}. This gives, to first order
in (T„T,)/T„, —

The cooling for the case where the isentrope cuts
the PM boundary below T& is readily obtained by
comparing (15a) and (15b), which yield

o„(O, T) =a „o„(0,T)
3S, T„

=a[XA(0, T)], (15a)

T, m~ = T» T~/T~ = H(2T» + Tg} .

At this temperature the cooling is

(16c)
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hT» m»„=T, (Tg —T3)/T3 3 (Tg T,) (16d)

For the case where the isentrope cuts the PM
phase boundary above T, , we first have to cal-
culate the phase boundary. At this phase bound-
ary, the PM state becomes unstable with respect
to 50~ = —5o&. The relevant eigenvalue is then
given by

This yields

S'(Z, +Z,)+T/[dB(X,}/dX,] -S' ~Z, +X,
~

=0, (IV')

where we have made use of the following relation:

d s(o~)/do~ =dB '(o~)/doJ

case of GdA103, the calculated maximum cooling
is 0. 51 K at T=3.63 K. The experiment agrees
very well with the calculations above the triple
point. Below the triple point, however, a direct
comparison between calculation and experiment is
not possible. With E~-type anisotropy, no cooling
is calculated for the flop state, yet experimentally,
considerable cooling is observed, as can be seen
from comparing the steady-field and pulsed-field
phase boundary when the field is applied perpen-
dicular to the easy axis as shown in Fig. 12. The
cooling n. T given by Eq. (16b) is then no longer
equal to the total measured cooling ~T between
the state H = 0 and the PM phase boundary, but has
to be compared with

4T= 4T~ —5T,
dB'(o ) dX 1

dxr do~ dB(XJ )/dx~

where oJ, =B(XI,). If we expand dB(X)/dX in
powers of X,

dB(X) S+1
dx SS (16}

where 5T is the cooling in the FL state. We have
estimated 5T by assuming it proportional to the
applied field, as was found experimentally in the case
of CuC12 ~ 2H&O.

' If we further assume that the cooling
in the FL state is the same for H !lb and H~ b, we
obtain for 5T

where a =~[(2S+1)' —1]/(2S), we obtain for Xz
along the AF-PM boundary

( ) (
~»»,s(») —H„(»)
T„H„(T) (21)

2 S+ 1 TN TAPXP (+APE T») 2S 6aT

Expanding Eq. (15a) yields

X2(0 T )
S+1 TN- T„
3S aT

Setting X& =X~ gives

and a cooling

~T„=T„-T„,= 2(T„-T„} .

(20a)

(20b}

where ~T, is the measured cooling between H= 0
and H= H,2 with the field applied perpendicular to
the easy axis. The remaining discrepancy between
experiment and calculation at low temperatures is
due to an anisotropic component of the cooling in the
FJ state as shown later.

In the case of CuC12 ~ 2H&O, Butterworth and
Zidell'0 have measured the isentropes and 4T is
directly obtained from their measurements. The

.03-
The cooling increases linearly with decreasing
temperature. The minimum temperature T„
down to which Eq. (20b) holds, is again obtained

by replacing T» by T, in Eq. (20a):

T» m, »= ', (T, +2T„), - (20c)

which is of course equal to T, ,„. Also the maxi-
mum cooling hT„, is the same as that derived
previously for n.T„„.Note that Eq. (5c) relating

T„, Ts, and T, can be obtained by equating T„
= T„T,/T, and T„„=»(T, +2T„).

Thus the adiabatic cooling between the state
H = 0 and the PM phase boundary increases linearly
with decreasing temperature to a maximum value
ot ,(T„—T, ) at T= &(T, +2T„)—. The cooling between
H= 0 and the flop state decreases linearly from
this maximum value to zero at T= 0 K. In Fig. 11,
we compare the calculated adiabatic cooling with

experiment for GdA103 and CuC12 ~ 2HzO. In the

.02
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CI

.Ot

—,6

-5
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FIG. 1l. Adiabatic temperature change in the AF
state plus that on going through the spin-flop transition
as function of the initial temperature. GdA103. circles,
no correction; triangles, correction for isotropic cool-
ing in the FL state; crosses, correction for anistropic
cooling in the FL state. CuC12 2H20: solid circles .
The solid lines are the adiabatic cooling obtained from
Eqs. (16b) and (20b).
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where the field dependence of 0 is caused by the
term cos y, and is

do dB dX L dcos y dl dB
dH dX dH dH do' dX

Since La&0, d(cos y)/dH&0, dl/dv&0, and dB/dX
&0, one obtains der/dH& 0, i. e., the sublattice mag-
netizations decrease with increasing field as re-
quired. If the field is applied parallel to b, Eq.
(3b) becomes

1 2

TEMPERATURE (K)

FIG. 12. Comparison of the PM phase boundary for
field perpendicular to the easy axis (H II c) with the sub-
lattice magnetization computed from the parallel sus-
ceptibility by Eq. {10). Dashed lines are isothermal
boundary; solid circles, adiabatic boundary; the solid
line represents the sub1, attice magnetization normalized
to 41.27 at T = 0 Kcomputed from the susceptibility results
of Refs. 8 and 21.

experimental accuracy permits only a comparison
with the calculation below the triple point. In this
region the r).T to be compared with that of E(I. (16b)
is the total cooling in the AF phase plus the heating
at the pha, se transition. Also in this case, the

agreement is quite satisfactory.
The observed adiabatic cooling in the flop state

with H ~ b indicates that the sublattice magnetiza-
tions in the FL state decrease with isothermally
increasing field. In a pulsed-field experiment
(adiabatic process), however, the magnitude of the
sublattice magnetizations remains constant. Then
for fields perpendicular to the easy direction, the
adiabatic FL-PM phase boundary should, according
to Eq. (8), exhibit the same temperature depen-
dence as the zero-field sublattice magnetization.
We tested this in Fig. 12, where we have plotted the
adiabatic transition field and the sublattice magne-
tization obtained from y„as a function of tempera-
ture. The good agreement between the adiabatic
FL-PM phase boundary and the zero-field sublat-
tice magnetization verifies Eg. (8), which relates
the FL-PM phase boundary to the sublattice mag-
netization at the boundary. A possible source of the
isothermal reduction of the sublattice magnetiza-
tion in the FL state with H L b and the adiabatic
cooling associated with it is molecular fields which
are not linear in o as, for example, L-type aniso-
tropy. Including L-type anisotropy, Eq. (3d) be-
comes

Since in this case d(cos cp)/dH & 0, one obtains do/
dH&0, i. e., the sublattice magnetizations increase
with increasing field and the sample heats on adia-
batic magnetization. The computed isothermal re-
duction and adiabatic cooling for H j. b, and for the
anisotropy constants Lp

= —0. 132 K and K~ = 0. 036
K, are about a factor four smaller than found ex-
perimentally, and the computed heating for Htlb is
nearly equal to the computed cooling for H l b.
Thus the dominant cause for the change of magni-
tude of the sublattice magnetization in the FL state
is not contained in MFA. If we assume that the
total cooling in the FL state is due to a large iso-
tropic non-MFA component and a cooling or heat-
ing due to L type anisot-ropy, then the total cooling
in the FL state for H ll b is about half of that given
by E(I. (21). This reduced correction leads to good

agreement for the total cooling between the H= 0
state and the FL state, as can be seen from Fig.

The source of the isotropic cooling in the FL
state is not known at present.

The field dependence of the magnitude of the sub-
lattice magnetizations in the FL state might be ex-
pected to induce some field dependence in the sus-
ceptibility X. The magnetization in the direction
of the applied field perpendicular and, parallel to
the easy axis is

gp~H/S H
(I 2J, +KgaKp+Lol(o) AG

where the upper signs refer to M, and the lower
signs to M„, G = 2Z, + K, + K(, and 5 = Lo/G. The
change of X is then

dx dH=Q ~

where terms containing d I/do and da~/dH have
been neglected. Since 5 & 0, 1 & dl/do & 0, and do/
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dH&0 for Hl b, and da/dH&0 for H II b, the relative
change of y is at least an order of 6 smaller than
that of 0; and X increases with increasing field
whether 0 increases or decreases. The computed
total change of }I is at most 0. 3% compared to a
maximal change of o of 4%. Experimentally, the
parallel susceptibility in the FL state is practically
field independent, except close to the transitions
where X increases rapidly (see Fig. 3). Since the
same field dependence of X in the FL state is found
both in isothermal and adiabatic experiments, it
is not connected with an entropy change and, in
particular, not due to changes in the sublattice
magnetizations responsible for adiabatic cooling in
the FL state. It has been suggested ' ' that the in-
crease of susceptibility near the FL-PM transition
might be due to the freezing out of the zero-point
motion. The increase of the sublattice magnetiza-
tion due to this effect is of course not connected
with an entropy change, since the zero-point motion
does not contain any entropy and should, therefore,
be'observed both isothermally and adiabatically.
The excess susceptibility just above the transition
is of the same order as that below the transition
and cannot be attributed to zero-point motion ef-
fects. As an alternative explanation we suggest
that critical fluctuations are responsible for the
strong field dependence of y near the FL-PM tran-
sition. The fact that the extra susceptibility is
also seen in pulsed-field experiments points to
fluctuations in the angle between the sublattices,
in agreement with the type of instability occurring
at the FL-PM boundary.

L-type anisotropy also changes the temperature
dependence of the FL-PM transitions slightly as
given by Eqs. (8) and (9). The transition fields are
no longer proportional to the sublattice magnetiza-
tion at the transition, and this sublattice magnetiza-
tion no longer follows a Brillouin-Weiss curve.
However, these changes are small (& 3%) and nearly
compensate, so that the FL-PM boundary computed
with L-type anisotropy deviates by less than 1%
from a Brillouin-Weiss curve.

Finally, we note that the magnetocaloric effect
in the paramagnetic state is the cause of the re-
duced saturation magnetization observed in the
adiabatic magnetization curves. In the paramag-
netic phase the change of magnetization is connected
with equal changes of the sublattice magnetizations
and thus with a change of entropy. At low tempera-
tures where the temperature dependence of the lat-
tice entropy is negligible compared to that of the
spin system, the total magnetization cannot change
in an adiabatically increasing field and the sample
heats according to H/T= const. On heating suffi-
ciently the lattice starts to absorb some of the spin
entropy and consequently the magnetization in-
creases again. This explains the plateau observed

in the magnetization after entering the paramagnetic
phase in the pulsed-field experiments. The in-
crease in magnetization immediately after the PM
phase boundary observed in these experiments is
caused by the excess susceptibility attributed to
the Quctuations in the neighborhood of the phase
transition.

h'„= q)(S) &' ' (1 —e ) (1+n,,), (22)

where y(S) is a function of the spin alone, y(S)
=1.44 for S=~, and n,,=-L /(02J, +K, K2-Lo)-
= —0. 03, a small correction due to L-type anisotro-
py.

For H tt b, the equilibrium condition F,= 0 gives

o(Jr+Kg+ Jp+Km) -H/A+XT/S = 0,
where again X= B '(o) = —ds(a)/do. Expanding o

=B(X) in powers of X, one obtains

X=HS'/[A(T —e)] .
Setting X equal to Xr of Eq. (19) immediately gives
II",

&
o= &', where the proportionality constant is

v 3Ay(S) (T —Hg)/S(S+ 1). For the reduced critical
field we obtain

h,"2 = S ~39 (S)~'" [1-a(b+ ~)] (1+ n ), (22')

where again b = —2(J2+ Km+9 Lo)/(J~+ K, —J~ —t'r LQ)

and & = (2J2 K( + 3K~ +~L0)/(2 J~ + Kg +Kg + L0) are
corrections; for GdA103, 5=0. 18 and 4„=+0.20.
Equations (22) and (22') are essentially the "law of
corresponding states" given by Foner and Shapira.
Experimentally, we find for the exponents P and
the proportionality factors b defined by h,z/[(1 -e)
x (1 + 4~)]= b~& and hI 3/([1 —g(E + b)](1 + &)]'= bye

P~=0. 51+0.02, b, =1.67+0.1,

P„=0. 51 a 0. 02, b„=0.73 + 0.05,
in the interval 5x10 «& 0. 12, compared to the
MFA values P, =P„=0.5, b, =1.44, and b„=0.83.
Foner and Shapira' observed the same tempera-
ture dependence of the PM transition near TN in
MnF& and FeF&. The values of P close to & reflect

D. Behavior of the Phase Diagrams near T

Finally, we consider the behavior of the phase
diagram near the Neel point. In MFA, all the PM
transition fields H,s vary as [(T„—T)/T„]' near
T&. ' ' Near Ts, o is small and we set l(o) =l(0)
= s and dl/do = 0. Then H', z is proportional to o(H
= 0). Expanding o(H= 0) = B[3ScrT„/(S+ 1)T] in pow-
ers of 3SoT„/(S+1)T gives o-c', where &=(T&
—T)/T„, and thus H,'~~&', the proportionality
constant being A(2J, +K, -Kz ——', Lo) (T/T„)([(S+1)/
3S] /aJ'~, where a=~[(2$+1) —1]/(2S)4. For the
reduced critical field h', 2 =H',2/H,'2(T= 0), we then
obtain
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the molecular field behavior of the PM phase
boundary. Also interesting is the behavior of the
adiabatic phase diagram near T„. The adiabatic
transition fields for Hl 5 should be proportional to
the zero-field sublattice magnetization and, there-
fore, reflect the behavior of the order parameter
near T„. We find for P and 5, now defined by h,&

= b~',

P, = 0. 36 + 0.02, b, = 1.20 + 0.1,
P„=0. 31+ 0.02, b„=0.70 + 0.05,

in the temperature interval 10 & g & 1.2&& 10 ~ for
Hl b and 5&10 &q &7.10 for H tt b. The values
of P, and b, are in good agreement with those found
in other antiferromagnets for the critical behavior
of the zero-field sublattice magnetization. Thus
the sublattice magnetization 00 along the line H= 0
exhibits the critical behavior expected from an
order parameter, whereas the sublattice magnet-
ization along the PM phase boundary is correctly
given by MFA. The critical phenomena of the
susceptibility near the FL-PM transition and of the
transition fields near T„are being investigated
further.

IV. SUMMARY

Here, the isothermal magnetic phase diagram of
GdA103 has been determined from differentia1. mag-
netization measurements for various angles be-
tween easy axis and applied field. From the phase
diagram for fields parallel and perpendicular to
the easy axis we have determined all the molecular
field constants. The difference between these phase
diagrams and the adiabatic ones demonstrates viv-
idly the expected magnetocaloric cooling of an anti-
fer romagnet upon adiabatic magnetization.

Most of the properties of the phase diagram can
be accounted for in the molecular field approxima-
tion, the most important features being the follow-
ing: (a) The FL-PM transition fields are practical-
ly proportional to the sublattice magnetization at
the transition. (b) The isothermal FI -PM bound-
aries follow the expected Brillouin-Weiss curves
in spite of an extra field dependence of the sublat-

tice magnetization in the FL state not contained in
MFA. (c) The adiabatic FL-PM boundary is pro-
portional to the zero-field sublattice magnetizations
which are different from their molecular field val-
ues. (d) The first-order spin-flop transition is
found to be restricted to small angles between easy
axis and applied field in good agreement with the-
ory. (e) The critical angle and the critical temper-
ature are very sensitive to demagnetizing fields,
e.g., the critical angle of a cylinder is nearly three
times that of a disk. Contrary to the calculations
and experimental results on other well-studied anti-
ferromagnets, the spin-flop transition fie1d in-
creases with decreasing temperature.

The molecular field adiabatic cooling in the anti-
ferromagnetic state increases linearly in tempera-
ture to a maximum value when the final tempera-
ture is at the triple point, and afterwards decreases
linearly to zero at the Noel temperature in good
agreement with experiment. In the flop state,
adiabatic cooling for fields perpendicular to the
easy axis and heating for fields parallel to the easy
axis are expected due to the special field depen-
dence of the L ty pe ani-sotropy. Experimentally,
however, an over-all cooling is observed due to a
large additional isotropic cooling which cannot be
accounted for in MFA.

The transition to the PM phase near T& for fields
parallel and perpendicular to the easy axis is well
described by MFA and obeys the law of correspond-
ing states. In the adiabatic case, where the PM
transition field for H j b is proportional to the zero-
field sublattice magnetization, the same critical
behavior near T„ is found as in other antiferromag-
nets.
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Infrared Absorption and Raman Scattering by Two-Magnon Processes in Nio
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Strong two-magnon (2M) Raman scattering has been observed from ¹iOalong with first- and
second-order phonon scattering. The shape of the 2M scattering peak is well described by a
simple-cubic Green s function for interacting spin waves with an intersublattice exchange J2
= 148 cm . The temperature shift of the scattering peak is identical to that of the 2000-cm
ir absorption peak described by Newman and Chrenko, but energy considerations require the
absorption peak to be a phonon sideband of the 2M scattering peak, which is not seen in absorp-
tion.

I. INTRODUCTION

Nio has been widely investigated as a model
magnetic semiconductor, and a candidate for a
metal-insulator transition which has never been
found. While much work has been done on its op-
tical and electrical properties, little quantitative
information has been available concerning the ex-
change interactions leading to its antiferromagnetic
order and the resulting magnetic excitations. Fur-
thermore, a strong, temperature-dependent ab-
sorption band is observed near 2000 cm ' which

has variously been interpreted as the excitation
of a zone-boundary magnon and a phonon (M+ P), '
two zone-boundary magnons (2M), ' and the simul-
taneous excitation of two magnons and a phonon

(2M+ P), ~ among other suggestions.
In this paper we study the exchange interactions

in NiO by observing the two-magnon (2M) Raman
scattering in both halide-vapor-decomposition-
grown crystals (called "green" NiO because of its

transparency in thin sections) and also in "black"
crystals containing excess oxygen, grown by the
flame-fusion technique. In order to choose among
the various mechanisms so far proposed to account
for the ir band, we measure the temperature de-
pendence of the Raman scattering between 1.4 and

600'K, and compare this to the ir data of Newman

and Chrenko' above room temperature, which we
supplement with low-temperature absorption data.

II. EXPERIMENT

The experiments were performed on samples of
uncertain origin. However, some of the crystals
were believed to have been grown by epitaxial vapor
deposition on MgO, presumably by the decomposi-
tion of the halide. ' These crystals were thin (200 p
thick) platelets oriented with (100) faces, and ex-
hibited no detectable absorption between 3000 and

6000 cm '. The "black" crystals were cut into
similar (100) slabs about 100 p thick. All crystals
were polished with a 3- p, diamond paste on a tin


