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Detailed inelastic neutron-scattering measurements have yielded the behavior of both the
transverse and longitudinal spin fluctuations throughout the critical region of the uniaxial anti-
ferromagnet MnF2. The static susceptibilities, both transverse and longitudinal, are found to
be adequately described by Ornstein-Zernike expressions, both above and below Tz, with K&

remaining finite, while K„approaches zero as TN is approached from either side. Magnons
are observed below T~, the energy gap decreasing as T- T~ in a way which closely approxi-
mates the behavior of the sublattice magnetization. At a given T& TN, the ratio of the magnon
frequency to the magnon width decreases with increasing wave vector q. Above Tz, heavily
damped magnonlike behavior is observed at large q, the peaks merging with decreasing q. The
longitudinal fluctuation is always characterized by a single peak centered at = 0. Above TN,
the half-widths I,

~ (q, T) define a dynamical scaling function O, (q/K„.). In particular, the stag-
gered (q=0) mode relaxation rate is approximately proportional to T- TN for T & Tz. How-

ever for T& TN, I'~) appears to vanish as q-0 at all temperatures. Although the T& Tz data
for I'„(q, T) can also be described by a second scaling-function branch, the experimental ac-
curacy and the range of q/K~) values spanned by the data at a given temperature are more re-
stricted than above TN. The behavior below TN and at low wave vectors may possibly be as-
sociated with thermal diffusion within the spin system. At reduced temperatures below about
0. 95, the numerical value of the observed longitudinal staggered susceptibility is consistent
with the value calculated on the basis of the local energy-density fluctuations.

I. INTRODUCTION

Recently, it has become clear that a variety of

physical systems exhibiting cooperative phenomena
behave quite similarly in their respective critical
regions. 3 With reference to a uniaxial antifer-
romagnet such as MnFz, some particularly inter-
esting aspects of this behavior are (a) the vanishing
of the sublattice magnetization as T- T„, (b) the
anomaly in the longitudina' "staggered" suscepti-
bility, (c) the anomaly in the longitudinal inverse
correlation length z„, and (d) the behavior of the
relaxation rates I'(q), particularly for the longi-
tudinal component of the spin fluctuation.

Of the theoretical ideas useful in describing
critical behavior the concept of scaling has pro-
vided some of the most valuable insights. It now

appears that scaling provides a very good de-
scription of the static behavior of a variety of
systems. The further extension of the scaling
hypothesis to dynamical behavior, as originally
formulated by Ferrell et al. and extended and

applied to magnetic systems by Halperin and
Hohenberg, has provided a framework for the in-
terpretation of experimental data. Further theo-
retical advances have included the extension of
dynamic scaling to anisotropic systems by Riedel
and Wegner, and the detailed calculation of the
scaling functions for isotropic ferro- and anti-
ferromagnets by Rd'sibois and Piette.

The experimental measurement of the static
wave-vector-dependent susceptibility in magnetic
systems can usually be made by studying the angular
dependence of the neutron scattering, i. e. , in a
"quasi-elastic" scattering experiment. Thus
early work by Cooper and Nathans and Passel
et al. "established the general static wave-vector-
dependent behavior in ferro- and antiferromagnets.
More recently, inelastic neutron scattering has
been applied to the measurement of dynamic be-
havior. Thus Nathans, Menzinger, and Pickart'
and Als-Nielsen et al. ' demonstrated the slowing
of a critical mode as T- T,'. Subsequent accurate
measurements by Lau et al, ' established the va-
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lidity of dynamical scalingv' above T„ in RbMnF~,
an isotropic antiferromagnet. The ferromagnets
iron' and nickel 6 have also been studied; a com-
parison'~ with detailed theoretical predictionse
has been made for T& T,.

In principle the behavior of the scattering func-
tion for any one Cartesian component of the spin
fluctuation is obtainable via inelastic scattering.
In practice, however, it was not possible in any
of the previously mentioned studies to obtain
separate information on the scattering functions
for the longitudinal and transverse fluctuations
below T,. Thus, for example, in the work of
Lau et al. ' on RbMnF3, the existence of a domain
structure in the ordered state, and the nonexistence
of an anisotropy gap, made it impossible to de-
termine what part of the observed scattering arose
from the longitudinal fluctuation and what part
arose from the transverse. In fact, prior to the
present work, separate measurements of even the
static longitudinal and transverse susceptibilities
had not been made for any magnetic system below
T,. In MnF2, a uniaxial antiferromagnet, the
existence of a unique axis for the establishment of
the staggered magnetization makes possible sepa-
rate determinations of the longitudinal and trans-
verse scattering behaviors throughout the critical
region.

MnF3 has been studied extensively by a variety
of techniques including nuclear resonance, ' '
antiferromagnetic resonance, specific heat,
and ultrasonic attenuation. The present inelastic
scattering work, a brief account of which appeared
earlier, follows our accurate measurement of the
static aspects of the fluctuation behavior for T& T„
using the quasi-elastic technique. Earlier neutron-
scattering work ' has largely concentrated on
the behavior of the transverse fluctuations; these
were studied more fully by Dietrich, who ob-
tained the q dependence of the magnon width at T„,
together with the decrease of the anisotropy gap
below T&. We have made an extensive study of the
magnon frequency and width as a function of wave
vector and temperature. We emphasize, however,
that the transverse susceptibilities remain finite
throughout the critical region. The transverse
fluctuations thus never become critical in the sense
of a diverging correlation range. Our primary
interest was therefore in studying the dynamics
of the longitudinal fluctuation. An aspect of this
was to provide data for comparison with dynamical
scaling theory in a weakly anisotropic system. Of
particular interest, it turned out, was the behavior
in the largely unexplored region below TN.

The essential limitation in an experiment of this
type is posed by the finite extent of the. instrumental
resolution function in the four-dimensional space
of energy and momentum transfer. To overcome

The following is a presentation of the arguments
leading to the adopted cross-section expressions,
and enough theory to make possible an intercom-
parison of various aspects of the results. This
enables us to check the entire body of data, in-
cluding that of our quasi-elastic experiment, for
internal consistency in as full a way as possible.

A. Separation of Transverse and Longitudinal Scattering

For a system of localized spins, each having
the same magnetic form factor F(K), the general
formula connecting the magnetic-scattering cross
section for unpolarized incident neutrons to the
spin fluctuations may be written

Here 8 is a constant, K, and Q denote, respec-
tively, the incident and scattered neutron wave
vectors, I'&o =Ra(tf, ~ K&2)/2mo and-IK=h(K, —Q)
denote the neutron energy and momentum loss,
respectively, the Greek letters 0. and P denote
Cartesian components, and 0= K/I K~ . The scat-
tering function S (K, &u) is given by

S' (K, (o)=(2&N) ' f & ' '(S (-K, O)S (K, t))dt,

where

S'(K, t) =Z„e'"' "S„'(t), (2)

the sum in (2) being extended over all N spine in

this problem it is necessary to be able to write the
dependence of the observed neutron cross section
in a theoretically reasonable form containing a
number of parameters which are adjusted to obtain
a best fit to the data. In Sec. II we discuss this
form in detail, and describe the procedure for
separating the effects of the longitudinal and trans-
verse fluctuations. The neutron spectrometer, its
resolution function, and other aspects of the exper-
imental apparatus are described in Sec. III. In
Sec. IV we present the detailed method of data
analysis. The results of physical interest are given
in Secs. VA and VB, respectively, for static
properties and for dynamic properties. In Sec. V C
we present an approximate analysis of the longi-
tudinal relaxation behavior on the theory of dynamic
scaling. The longitudinal relaxation behavior ob-
served below TN is discussed in Sec. VI with
reference to recent quasihydrodynamic theories30'3'
of the spin fluctuations in the ordered state. Sec-
tion VII summarizes our main experimental findings.

II. ASSUMED FORM OF CROSS SECTION
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the sample. Here r„ is the spacial location of the
nth spin.

On account of its two-sublattice antiferromag-
netic structure, critical scattering in MnF3
appears for K near magnetic superlattice points
2m' such that e' '~'~" ~~'= a 1, the pjus or minus
signs holding for n and m belonging, respectively,
to the same or to opposite sublattices. The set
of reflections having this property includes the

[100] and [001] reciprocal-lattice positions. For
reasons that wDl be apparent shortly, we designate
these positions, respectively, as 2rv„and 2m'~.
Thus

2wf„= (2v/a) a; 2vvt, = (2v/c) c

8ince exp[2vi(f„—r'~) ~ (r„—r„)]=+ 1 independent
of the sublattice assignments of spins n and m, we
can write

(2&v~+q, oI) =8 ~(2&f~+q, (o)-=8 '(q, &o) .

The separation of the effects of the longitudinal
and transverse fluctuations, i.e. , of the spin
fluctuations, respectively, parallel or perpen-
dicular to the [001]direction, may be accomplished
as follows. Every measurement with K near [100]
is coupled with a measurement with K near [001]
as sketched in Fig. 1(a). Here K is always in the
(010) plane, and we have equal vector displace-
ments q from the two superlattice points. For the
setting M, Eq. (1) then gives

(dAd~I

= @~~F(E}~ '[28,(q, oI)+ e~(q, (o)] .
dAdw z K&

&g,s (q, (o) = sin es J [8(I(q, (u) —8,(q, ~)] . (3c)

8II(q, OI) -=8-(q, ~) .
ft is clear from (2) that these functions can be de-
termined separately from such a pair of measure-
ments.

In practice sin28„~ was sufficiently small so
that the terms E„,~(q, oI) could be neglected. Thus
we can say that for K near [001], the fluctuations
in each of the two transverse directions contributed
equally to the scattering, with no contribution from
the longitudinal fluctuation. %e called this the
"pure transverse" reflection. For K near [100],
however, fluctuations in the longitudinal direction
and in one of the transverse directions contributed
equally. %e called this the "mixed" reflection.
The notational subscripts I' ("pure") and I
("mixed" ) will now be clear.

fn writing (&) we have dropped the contributions
from the terms in (1) with n = p, since for s, system
with dominantly isotropic exchange interactions
these terms should not contribute appreciably to
the scattering. 33 Then, for this tetragonal system,
the observed cross section will only depend on the
transverse and longitudinal scattering functions,
i.e. , on the quantities

8,(q, or) —= 8™(q,oI) =8'"'(q, (u)

= a ~~F(Z')~'[8„(q, (o)+8,(q, oI)-&„(q, (o)],

(sa)

while for the setting I' we find

clq+I =alq&l

B. Relation of S~~(K,~) and S&(K,u) to the Static
Susceptibilities

The general relation of the scattering to the
wave-vector-dependent static susceptibilities3~

y. (K) has been reviewed by Marshall and Lowde"
and may be written

8o~(K, a)) = X ~(K)F"'(K, oI)B((o, r)her/g'ys3

(4)

[oooj

M~e
[Ioo)

oooo]
qM=M

[Iooj
B(oI, r) =a(op(1 —e-""')-'

with P = (@AT), wtule 8o is the diffuse (non-Bragg)
part of the scattering function and F ((0) 1S a
normalized spectral-shape function, i.e. ,

FIG. l. K-space settings for the measurement pairs
used in the separation of the transverse and longitudinal
scattering. In method (a) the vectorial displacements q
from the respective Bragg positions are the same. Meth-
od (b& takes advantage of the reduced wave-vector approx-
imation. The displacement lengths have been exaggerated.

f E'~(K, &o)doI=1 .

More particularly, in systems like MnF&, where
the magnetic ion lattice has reflection symmetry
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F"(K ld)=-cc 1 X'„

W (a) + It)
(6a)

about each point, I" is real and even in (d. We
assume in fact that F"(K, op) is a Lorentzian in
cg centered about & = 0. Thus,

+g„,(T) cos( —,'K„a)cos(pK„a) cos(-,'K, c), (8)

where x, y, and g are taken along a, a, and c, re-
spectively, with ~

a = 4. 8734A, c = 3.3103A

where I'„depends on both K and T. For the trans-
verse fluctuations where we have spin-wave be-
havior below TN, we take

the lattice parameters. As the anisotropy is
slight, it follows that for T& T»

gii/gi= I =fiI/fi (10)

F"(K, &p) =F' ' (K, &o)

FJ FJ
I'f. + (&u —olo) Tx + (Id+lpo)

where ~0 and I'J depend on both K and T. We
assume that (6b) is also applicable above T„, al-
lowing &0 to be zero, if that fits the data best,
which is the case atq=0 above T„. Using (4) and

(6) we then have

Si(q M) p p B(&g, T) X, (qg
k~T

Wg P~ Ptj + Q7

S,(q, ~)= p'. p B(~, T) X (q)
Wg P'g

1 r, I'JX—
2 If, + (ol —pdp) Fg + ((0+(dp)2 + 2 2

(Ib)

where y„(=y") and y, (=)t") as well as I'„, I',
and codepend on both T and q.

C. Theory for the K Dependence of the Static Susceptibilities

1. Ornstein-Zernike I'orm, ' Reduced-Paee-
Vector Approximation

A theory «r X (K, T) based on the mean-field
approximation was given originally by Moriya.
(See also Ref. 33.) An essential characteristic
of'the mean-field result is that at each tempera-
ture the reciprocal of the K-dependent suscepti-
bility is linearly related. to the Fourier transform
J(K) of the spatial distribution of exchange inter-
actions. For our purposes this may be stated as
follows. Consider the rutile structure of MnF2,
and assume, as may be shown from a number of
experiments, 2 '25' ~ that the dominant interaction
is the antiferromagnetic coupling J2 between a
given Mn ion and each of its eight nearest neigh-
bors along (ill) directions. Adopting a model'P

in which the exchange interaction is slightly aniso-
tropic we have

l(q) fll, J. All, i [1 8(q„a +q„'a'+q, 'c')]

to lowest order in q. This leads to the Ornstein-
Zernike form

X„,(T, q) =A.„,(T)/[q '+ ~,', ,(T)],
where

A„J=8a g, , J

J. ~ (fil J gll J. 1)

q~ = [q„'+q,'+ (c/a)pq, ']'~' (13)

Thus we refer all measurements of x to the a axis.
Note from (13) that contours of equal suscepti-

bility about each superlattice point are ellipsoids
of minor to major axis ratio c/a=0. 68. We will
in fact assume that this principle extends to the
dynamical behavior as well, i.e. , we assume that

S„,(q, ol) =S„,(q„, oI) (14)

for small q~. The approximation (14), which we

In mean-field theory the form (8) is valid both
above and below T„. The relation (10) holds only
for T & T&, however.

The four coefficients in (8), of course, turn out
experimentally to have temperature dependences
quite different from those predicted by mean-field
theory We .believe, however, that (8) should still
provide a rather good account of the shaPe of the
X„',(K)-vs-K curves for T & T„. This may be sub-
stantiated, for example, for the case of the cor-
responding Ising model with the aid of the second-
order scattering approximant of Fisher and Bur-
fordoo [their Eq. (11.2)]. There the breakdown of
the linear relation between g„'(K) and J(K) is slight,
being a reflection of the small but nonzero value of
the critical index q. Thus, for example, at T = T„,
Eq. (8) gives g,, (q) ~q, while Fisher and Burford
find y, , (q) ~q "with 0=0.05. As our inelastic
scattering data do not permit us to discern such
slight differences, we will adopt (8) for T & Tz with
the understanding that the temperature dependences
of the coefficients should be dictated by the data.

For K=2&7.+q, we have
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I/X (K)

(17)

the derivatives being evaluated at [100]. To the
extent that the two curves in Fig. 2 are similar
in shape, the ratio on the right in (17) should equal
the ratio of the crest-to-trough heights of the two
curves. Then

[ooo] [iooj drool

I/~unif I/lt stss ~unit

I/~untf I/lt stss llllif
I lt[mtf/ltstss

)tuntf /~ stun

FIG. 2. Schematic behavior of the reciprocals of the
K-dependent transverse and longitudinal susceptibilities
above TN. The lower curve becomes tangent to the K„
axis as T TN.

call the "reduced- wave -vector" approximation,
makes possible a simplification in the technique
for separating the longitudinal and transverse
fluctuations: Again a measurement with K near
2&r& is coupled with a measurement with K near
2m'~, but we now require only that the reduced-
wave-vector displacements q~ be the same. For
technical reasons to be discussed in Sec. IVA, the
vectorial displacements were chosen parallel to
the corresponding superlattice vectors, the set-
tings for this method being as sketched in Fig. 1(b).

2. Relative Weight Factor &(T)

Now consider the ratio of the slope of an Orn-
stein- Zernike plot for the longitudinal suscepti-
bility to that for the transverse, i.e. , the quantity

~(T) =&.(T)/&„(T) . (15)

For reasons discussed below we call this ratio the
"relative weight factor. " It follows from (10) and
(12a) that

(16)

at least for T & TN. The fact that this is close to
1 will permit an important simplification in the
data analysis.

We can provide another and perhaps more il-
luminating derivation of (16) as follows. Consider
plots of 1„(K)and yJ (K) over an extended range
of K running from [000] to [200] as sketched in
Fig. 2. This figure explicitly shows the experi-
mental fact that for a uniform field (K= 0) the
transverse and longitudinal susceptibilities are
practically equal above T„ in MnFz. We see
further that the two curves of reciprocal suscepti-
bility are close to overlapping. This is a con-
sequence of the weakness of anisotropic inter-
actions relative to isotropic exchange interactions.
Now from (11) and (15) we have that

(18)
where the superscripts unif and stag refer, re-
spectively, to the cases K=O and q~=0. Note that
the derivation of (18) did not depend on a particular
shape (e.g. , sinusoidal) for the two curves, but
only on their having the same shape.

Using experimental data for the uniform sus-
ceptibilities, and rough estimates of the ratios of
the uniform and staggered susceptibility obtained
from our data (see Sec. VA), we conclude from
(18) that & = 1.01 a 0.05 for T & T».

The situation below T„ is much less clear be-
cause the validity of the linear relation between
)t '(K) and J'(K) is questionable there Non. etheless
we again employed (18), finding that & increased
gradually from 1.0 at TN to 1.2 at 59. 6 'K, our
lowest experimental temperature below T&.

In practice we analyzed all our data using the
value & = 1.05 obtained ' from mean-field theory, '6

and employed in the analysis of our quasi-elastic
scattering experiment. 24 It is clear from the pre-
ceding discussion that the result &= 1 for T & T„
does not depend on any mean-field assumptions.
In view of the uncertain theoretical situation below
T„, however, we decided to check our results
experimentally without any assumptions for the
value of &. This is discussed in Sec. IVD.

3. Ratio of Uniform and Staggered Susceptibilities

Assuming that (8) is correct, and noting that
I/XII J fll J gll J while I/X[[ J f[[ J+g[[~J[
using (12b), we find

(19)

A somewhat more involved relation (for y„) is ob-
tained if the inverse susceptibility versus wave-
vector relation of Fisher and Burford is used.
In practice, however, this does not differ very
much from (19). For example, in the Fisher-
Burford theory the right-hand side of (19) would
have the values 1.04 and 1.15, respectively, at
temperatures 1.0 and 0.04 K above T„.

Note that while (19) depends on the sinusoidal
shape of the inverse susceptibility vs wave-vector
curves, the Ornstein-Zernike form (11) is more
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generally valid. Indeed it is clear that p() g will
have a minimum at a superlattice vector. Then
(11) sllould describe 'tile behavior thel'8, provided
that the staggered susceptibility is finite, and that
the reduced-wave-vector approximation holds.

constant below T&. This follows from the propor-
tionality of the anisotropy field to the sublattice
magnetization, which is physically reasonable in
MnF& where the anisotropy is largely of dipolar
origin. Moriya obtained

4. Effect of COQpHÃgS Ogl81 fhCES Jm x","(o 'K) = c/r. , (21)

X "~/X "=1+18a 'x '(1 rI )-'1, (2o)

where x, or x3 apply with q along e or along a, re-

spectivelyy.

The theory given for the relative weight factor
X evidently requires InodlflcRtlon lf f y Rnd t'3 Rre
Rnisotropic. Indeed, as the argument leading to
(18) shows, a modification will be needed if the
relative amount of higher Fourier components
changes upon going from X„I(K) to X,'(K). This is
probably not an important effect.

In addition to the dominant coupling J3 described
above, one should consider the coupling J, of a
given spin to each of the two nearest neighbors in
the c direction, and the coupling Js to each of the
two nearest neighbors in the a or in the a' direc-
tions. This is discussed in Ref. 25, where it is
concluded that J2= —1.76 K, J,=+0.32'K, and

I J, I & 0. 05 'K. Then J(K) can be calculated and
the discussion of Secs. IIC1-IIC 3 above modified.
On this basis contours of equal susceptibility
should be ellipsoidal with minor-to-major-axis
ratio (e /a)( I+ ~,)'~'(1 +r,) '~', where ~I = J,/J1 and

el= Js/J'3. As this amounts to a change of less than

11%, the approximation (13) should suffice for our
purposes. Dietrich, 28 who looked into this experi-
mentally for the case of the transverse static sus-
ceptibility above T„, was in fact unable to find a
significant departure from (14), using (13) to de-
fine q .

Next consider the modification of (19). Suppose
that in analyzing the data we still obtain w through
(11), defining q through (13) without modification.
Then {for either the longitudinal or transverse
case) Eq. (19) becomes

where

C =g'iI38 S(S+1)/3ks

is the Curie constant, and T&=1.36'K. This nu-
merical result follows from the physically appar-
ent relation

X"."(0 K) =M.(0)/ff. (0),

X",~(r) M,(T)/Mo(0) "
x","(o) G(r)/G(o)

(24)

We expect that (24) should hold adequately as long
as T is reasonaMy well below T&.

E. Adopted Cross-Section Expressions

Now combining Eqs. (3), (V), (11), and (15),
and using the notation

AI, = 2AI(mg~y~s) I C, @sr; A„=A„(mgaiIsa) ' Qksr

when the value Mo(0) = Sg ps = 5ils is used for the
magnetic moment per ion at suMattice saturation,
together with the original value ' H~(0)=8800 6
for the anisotropy field at O'K. If instead we use
the value H„(0)= V800 6 stated by Foner, we ob-
tRln Tg = 1 20 Ko

In oux experiment we can obtain alternate in-
formation on the temperature dependence of X ~~
by studying the spin-wave gap G(T) = &uo(q = 0, T).
Indeed, assuming for T& T„ that

x","(r)= M,(r)/H„(r), (2

and using the Kittel formula ' 0 for G(T), taking
Bz proportional to Mo, and noting that Bz «H~,
we have

D. Anisotropy Field and Xlstag below T

In Morlya s mean-field calculatlony X g ls a1ld lleglectlllg 'Eg ~ Ill (3), we llave

(28)

dQ ding KI kf. +q~ 2 Ig+ ((0 (00) Ig + (4P + Mo)
(28)

dg
E(K)

I

'
)

K~ ~" I
dQ dQP

Kf+ q 2
~

If + {(0—G)0) Ig+(4) +(do)
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A~/XA~ = 2 (26)

The physical significance of X is clear from (27).
It represents the fraction of the scattering in the
mixed reflection due to the transverse fluctuations
at a q~ value large compared with both tc, and z„:
hence the term "relative weight factor. " The
meaning of (28) is also clear: In the mixed reflec-
tion we see the effect (proportional to XA„) of the
transverse fluctuations in only one of the two a
directions. In the pure transverse reflection,
however, we see the effect (proportional to A~) of
transverse fluctuations in both a directions. Hence
A~= 244„, giving (28).

Finally, using (11) and (25) we can write the

(relative) static susceptibilities as

y„(q, T)~A„(x,', +q ') 'r ' (29a)

X,(q, T) ~A J,(tc2 + q ~) ' T '

III. EXPERIMENTAL APPARATUS

A. Sample Crystal and Temperature Control

The 6. 5-cm single-crystal MnFz sample used
in this work, and the temperature control and

measurement system, were described in connection
with our earlier quasi-elastic scattering experi-
ment. The critical temperature

T„=(6V. 459 a 0. 00V) K

was also determined there.

(30)

B.Triple-Axis Neutron Spectrometer

All measurements reported here were made on

a three-crystal neutron spectrometer at the Brook-
haven High Flux Beam Reactor. This spectrometer
(see Ref. 29, Fig. 1 for the layout) included a
def ormed germanium- single-crystal masked
monochromator, and a flat pyrolytic-graphite
analyzer. This analyzer had a reflectivity approx-
imately 5 times higher than a germanium crystal
for the incident neutron energies (6. 6 or 13 meV)
employed. This was a very important feature, as
the scattering we wished to study was often low in

intensity. Soller slit systems, with 20-min hor-
izontal collimation, were used to define the neutron
paths. The vertical divergence, as determined by
the natural collimator heights, was measured to
be 48 min (0. 14 rad). The beam incident upon the

sample was monitored with the aid of a UF~ fission

Equations (26) and (27) describe the diffuse scat-
tering; in addition a Bragg peak should be added
to (2V) at q~ =0. In these cross sections, the param-
eters I'„, I;, and codepend on both q and T,
while A&, A~, z„, and w, depend only on T. From
(25) and (15) we have

counter. A BF3 detector was used following the
analyzer.

The spectrometer could be operated at constant
q (scanning &o) or at constant &u (scanning q). The
former mode was used in all the MnFz measure-
ments. Both modes were used for checking the
resolution func tion.

C. Instrumental Resolution; Experimental Checks

The instrumental resolution function R(q„~„
q, &u), which defines the probability of observing
a scattering process at q and co with a nominal in-
strumental setting «qo and ~0, was calculated
analytically from the theory given by Cooper and
Nathans. ~9 According to this,

4 4

+(tlD +D, Q, +)=ROSXP
(

8 Z My~XyX~ )0=1 l~l

(»)
Here (x„x~, xs)=q —qp and x4=(0 Q)p where the
1 direction is chosen parallel to KD-—qo+ 2', with
the 3 direction vertical. The prefactor Ro and the
matrix elements I» are calculable slowly varying
functions of coo and Ko which also depend on the in-
cident energy and the parameters of the instrument.
It follows from (31) that contours of constant prob-
ability in (q, &g) space are ellipsoids centered at
(qo ~0).

These calculations were checked by scanning
through the [100]magnetic Bragg peak, in energy
and in each component of the momentum transfer.
The resulting good agreement with (31) gave us
confidence in the theoretically calculated resolution
function. This was important, as no such check
was possible near [001], where magnetic Bragg
scattering was absent. Some additional checks
were made using the nuclear scattering at [002].

A numerical feeling for our instrumental energy
resolution at 6. 6-meV incident energy and near
[100]may be conveyed as follows. Suppose first
that the spectrometer were used to study a sample
for which incoherent (i. e. , q-independent) elastic
scattering occurs. Then upon scanning &0 at con-
stant qo, the detector count rate should be a Gaus-
sian function of coo, peaked at wo ——0, and of full
width at half-maximum 5Efg~h —0 13 meV. This
was checked experimentally by observing the scat-
tering from a vanadium sample. Next suppose that
an &0 scan is made through an elastic Bragg peak
at constant qo= 0. Then a Gaussian peaked at &0
= 0 and of full width at half-maximum 5E~,~,
=0.016 meV is seen. In practice, a measure of the

energy resolution will lie somewhere between the
two numbers just quoted.

Now suppose we make an &0 scan through an
elastic Bragg peak at a small constant qadi 0. Then
the count-rate maximum is found to occur at a



same count rate 5 was observed. This showed
that the contribution fx'om spin-incoherent scattex ing
%RS SmaQ.

[ioo]:: '

q(0)

FIG. 3. Intersection of the x'eao1ution ellipsoid vrith
the (~, q 2) plane (schema, tie).

For q, =(0, q,"', 0), »s
maximum occux'x'ed fox' I(gPO= Mg gp y where Mg
=6.4 meVA. This shift arises from the fact that
the intersection of the x'esolution ellipsoid with the
(&o, q~+')plane is a tilted ellipse as shown in Fig. 3.
It is clear that for qoW 0, an mo scan past the Bragg
peak gives a shifted maximum count rate. This
effect eras checked experimentally. It provided
unambiguous proof that, the central line observed
in the mixed reflection eritieal scattering below

. T„was not due to the passage of the Bragg peak
through the wings of the instrumental xesolution.

Vibth an incident neutron energy of 3,3 meV, the
instrumental energy resolution was poorer (5E„~
= 0. 4 meV; &Es,~,= 0.024 me V). The resolution46
in q was Rbout the same, however, and the count
rates were higher by a factor of roughly 5. Thus
the 13-meV measurements were used yrimaxily
at large q, where the critical scattering was rel-
atively weak, and where high resolution in energy
was not x'equlx'ed.

The observed count rate &{go, ~&) is the convo-
lution of the intrinsic cx'oss section with the in-
strumentRl resolution function, i.e. ,

x R(qo, ~o, q, &) d qda& . (32)

Here 5 is the background, and the factor P(~0) in-
cludes the (do dependence of the analyzer reflee-
tivity. We measured P(&oo) by a method due to
Corliss and Hastings ~: With the beam from the
monochromator incident directly on the analyzer,
the latter was set to the Bragg angle, and the ratio
of the detector count rate to the monitor count rate
determined. This was repeated at different wave-
lengths by reyositioning the monochromator. The
background was determined as follows. With qo
= 0, mo was set to a large value, far from the region
of appreciable critical scRttering. Next, with
zo= 0, qo was similarly offset. In both cases the

A. Data-Taking Procedure;;Data Samples

Measurements were made at R set of eleven dif-
ferent temperatures in R 16 K region centered on

the critical point. In each run the enexgy transfer
~ was scanned at a, fixed wave vector q. This was
repeated a,t values of q~ ranging from 0 to 0. 257

Each such run taken with K near [100]was
coupled with a run with K near [001]as discussed
in Sees. IIA and IIC 1. Above T& we emyloyed the
settings of Fig. 1(b), i.e. , the displacements q
were chosen parallel to the corresponding super-
lattiee vectors for both the "mixed" and "pure trans-
verse" scans. This geometry gave the greatest
freedom from asymmetxy, between positive and
negative values of {d, due to the focusing properties
of the instrumental x'esolution function. Below Tz„
however, we worried that perhaps the magnon fre-
quency might vary slightly with the dix'ection of

q a,t a constant value of q~. Then the settings of
Fig. 1(a) were used. In particular, q was taken
parallel to [101]. This latter choice was made in
order to have roughly comparable focusing for both
the energy-gain and energy-loss magnon peaks.

Incident neutron energies of 6. 6 and 13 meV were
used, the former value being xestx'ieted to the
smaller q values, the latter to the larger. Some
intermediate q values mere studied with both en-
exgies, pxoviding a, measurement of how the in-
strument constant P(0)R& changed upon going from
13 to 6. 6 meV.

Typi«data taken around the [001]or "pure
transverse position Rx'8 shown in Fig. 4. These
data are representative of the temperature regions
below' aty Rnd Rbove Tgy respectively, The three
lower enexgy scans are atq~=0. 0645 A~, the
upper three at q~ = 0. 129 A '. (The intensity units
here should not be compared directly, as -some of
these scans were taken at 6. 6 and some at 13 meV. )
Below Tz renormalized spin waves are seen, the
sepax'ation Rnd width of the IQagnon peaks increasing
with increasing q. At T'~ and at smRD q the sep-
aration (energy gap) apparently has collapsed to
zero, but the large-g data clearly exhibit a bvo-
yeaked structure. Even several degrees above Tz,
the flat-topped curves are indicative that a two-
yeaked function is required to yrovide a satisfaetox'y
fit to the data. The small-q data above T& are
weU. fitted by R single Lox'entzian, as might be ex-
pected in the hydrodynamic regime.

The corx'esponding scans taken near the "mixed"
or [100]position are displayed in Fig. 5. Below
TN the spin waves are again evident, although now
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FIG. 4. Some energy scans near the [001] position at
three different temperatures.

a central peak is unmistakably pxesent. The fact
that the intensity of this peak increased as 7 Tz
shows that it cannot be due to the passage of the
Bragg peak through the wings of the instrumental
resolution, confirming the conclusion reached
earlier on the basis of the properties of the res-
olution function. (See Sec. III C. ) Note that the
transverse component in the mixed sean at ~ = 0 is
never a sizable fraction of the total scattering there.
This is comforting, since it is then not necessary
to have a precise description of the transverse
component in obtaining the longitudinal component
by means of our subtraction procedure.

The solid lines in Figs. 4 and 5 are calculated
by folding the cross-section expressions (26) and

(2V) wltll the ills'tl'11111811tal I'esolllt1011 function Tile
excellent fits shown in these samples are typical
of those generally obtained.

8. Possible Systematic Effects

Corrections for several possible systematic
effects had to be looked into. These included
background and spin-incoherent scattering, mul-
tiple Bragg scattering, extinction, instrumental
misset, and magnetic Bragg-peak contamination
of the critical scattering below T„.

The background mas determined by the method
discussed in Sec. III C. It mas not very dependent
on the incident energy, being approximately l count/
min at both 6. 6 and 13 meV. The lack of any &
dependence at large q showed that the contribution
from spin-incoherent scattering mas small.

Multiple Bragg scattering can arise at relatively
short incident mavelengths when several higher-

EXPERIMENTAL DATA
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FIG. 5. Some energy scans near the [100t position at
three different temperatures.

order reflections simultaneously satisfy the Bragg
condition along mith the reflection of interest, pro-
ducing a small easily identified peak at the w = 0,
q = 0 position. This occurred in some of our q = 0
scans, and was easily corrected for by deleting the
single data point at & =0.

Extinction due to Bragg scattering did not affect
our critical scattering measurements as the
sample mas almost never close enough to the setting
for a Bragg reflection to produce any attenuation
of the incident beam. (Calculations show that at
worst one point in a given energy scan might have
been affected. ) Extinction due to diffuse magnetic
scattering —and in particular to the critical scat-
tering itself —should also be considered as the
Mn cross section for paramagnetic scattering is
not small, being about 21 b at long mavelengths.
At high temperatures this should lead to an attenu-
ation of the incident beam by as much as 40% under
the conditions of our experiment. However, de-
tailed estimates show that the change in this at-
tenuation produced either by changing the temper-
ature or the sample orientation is probably a
rather small fraction of the total attenuation and
can be neglected in the analysis of the present data.

Instrumental settings mere checked periodically
during the work by instructing the computer to
set the angles for a nuclear Bragg peak. It mas
yossible to see errors of + 0.01', which is the
limiting incremental angle for the spectrometer.
The lattice-parameter values used in the compu-
tations mere adjusted from the room-temperature
vallles (9) wl'tll tile Rld of tile tllel'111Rl-expRIlslo11
data of Gibbons. 4~ Inparticular, &(6& 'K)/~(300 K)
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N
2 (~ ~)-1g (fobs I cake)o

i=i
(33)

Here N is the number of data points, m the number
of free parameters, and

oo; =1/I;~

are the weighting factors appropriate to Poisson
counting statistics. If the assumed cross section
were correct we would have (oo) = 1 on account of
the counting statistics. For optimum parameter
values we obtained values of o2 between = 1 and 3.
This is statistically reasonable.

To perform the convolution integral (32) nu-
merically we employed a grid of 10000 points in
(&o, q) space, extending out to the contour R/Ro
= 0. 01. To check convergence, the result was
compared with the value obtained from a half-grid
of 5000 points. If this produced a change of less
than a few percent, the result was considered to
represent the integral.

We now describe the fitting procedures in more
detail.

1. Pure Transverse Data

In fitting to (26) above Tz, we fixed tc~(T) at the
value determined in our quasi-elastic experiment. +
Below TN we took z~(T) = (0.054 + 0.005) A ~, the
value found at T& in the quasi-elastic work. The
correctness of this choice was shown by the fact
that a single normalization constant A,z fitted the
data for all q at each T & T„.

Since the parameters I', and ~0 depend on q, it
was necessary to express their variation over the
resolution volume with a reasonably accurate
analytic form. The form chosen was a parabolic
curve inq~, i.e. ,

~5+1 2I i(&~ = c~+ &iq ~o('0) =so+ &oqq (34)

The coefficients in (34) were determined by a fit
to the data. Here we took advantage of the fact that
the sensitivity of the fit to each coefficient depended

= 1.00005; c(67'K)/c(300'K) = 0.998V. The effect
of the thermal expansion over the critical region
itself was not detectable.

For q «0. 0257 A we can completely rule out
the possibility of magnetic Bragg-peak contamina-
tion of the [100]critical scattering by the arguments
of Secs. IIIC and Dt A. Qf course, the Bragg peak
was absent from the [001]scattering even at q = 0.

C. Fitting Procedures

The cross-section expressions (26) and (27),
folded with the resolution function using (32), were
compared with the data as follows. For each en-
ergy scan, the goodness of fit was described by
the weighted variance

Having thus determined all the parameters ap-
pearing in the transverse contribution to (2V) as a
function of T and q, the data near [100]were fitted
as follows. The relative weight factor X was taken
to be 1.05 as discussed in Sec. IIC 2. Above T„,
x„(T) was initially set equal to the value found in
the quasi-elastic work. This permitted the most
accurate determination of the remaining param-
eters. The data were then reanalyzed treating z„
as adjustable. This second procedure, which was
used for almost all the measurements below T„,
gave the Kil values denoted in Fig. 8 by the tri-
angles. In this method we first guessed values of

for which the fitted normalization constant A&
came out essentially independent of q. Next, we
used this z„value, fitting at each q to A„, and then
constructing an Ornsteim-Zernike plot of the quan-
tity A„/(o„+q ). Our values of x„and y„~ below
T„are based on this latter method, which served
as a useful internal check.

The procedure for handling the variation of I'„over
the resolution volume was similar to that described
above for I', and wo. For example, consider the
determination of the q dependence of 1"„atT = T„.
The initial assumption describing this was

2I'„(a)= s„+b„q„. (35)

For each experimental q value, the coefficients
a„and b„were determined by a fit to the data.
(Here we were guided by the fact that the fit was
relatively insensitive to a„at large q .} Then I'„
was computed at each q, and a curve of I'„vs q
was constructed. This curve was in fact found to
be somewhat nonparabolic, being in better accord
with a ~-power law. Next an expression of the
form (35) was taken, but with the exponent 2 re-
placed by —,'. Then again a„and b„were determined
for each experimental q value, and a second curve
of I'„vs q was constructed. In this case the coef-
ficients a, , and b„remained truly constant over the

on the q region being investigated. For example,
at small q the values of b~ and bo were relatively
unimportant; the fitting program found values of
a, and ao which described the data best. (The values
so obtained varied slightly with q. ) Conversely at
large q, a, and ao were relatively unimportant and

bo and b~ could be found. At intermediate q, a,
and ao were held fixed at the values previously de-
termined, and b, and b, were treated as adjustable.
(The values so obtained varied somewhat with q. )
Having determined all four coefficients at each ex-
perimental q, curves of I',(q~) and &uo(q ) were con-
structed using (34). These showed that the initially
used parabolic curves provided an adequate rep-
resentation over the resolution volume.

2. Mixed Data
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entire set of q values (and in fact s, , 0) Further-
more, the second curve agreed with the first curve.
Evidently, then, the initial parabolic trial function
provided an adequate account of the variation in
I'„over the resolution volume, and the results cor-
rectly describe the q dependence of I"„.

D. Checks on the Relative Weight Factor X

Below T& we mere not sure of the correctness of
the theory (Sec. II C 2) for the relative weight fac-
tor A.. %e decided to look into this experimentally
by taking advantage of Etl. (28), which expresses
how the transverse component in a mixed scan com-
pares with the corresponding pure transverse scan.
This was done first above T„, where we were con-
fident that the result A, = 1.0 mas correct. For our
quasi-elastic data, taken at T = 68. 49 K and at an
incident energy of VV meV, we found A~/l. 05A.„
= 2.05+0.15. In other words, the transverse con-
tribution to the [100]data was what one would ex-
pect on the basis of the [001]data, taking into ac-
count the known ratio of form factors and the fact
that at [100]we see only one of the tv!o Cartesian
components of the transverse fluctuation. Alterna-
tively, on requiring this to be the case, ~ could be
measured, and mas indeed found to be close to
unity. Nom, still working at 68.49 'K, but with an
incident energy of 6.6 meV, our fitted values of
A„and A p gave A r/1. 05A„= 1.V2 a 0. 1V. This is
a 1V% discrepancy somewhat outside of experimen-
tal error. A possible explanation of mhy this oc-
curred at 6. 6 and not at 7'7 meV is as follows. At
6. 6 meV the neutron absorption in the sample is
really quite high: An estimate based on the sam-
ple dimensions and the known cross sections for
true absorption of manganese and fluorine showed
that the over-all effect was to reduce the observed
scattering by almost an order of Inagnitude. It
follows that with our noncylindrical sample, the
reduction factor might have changed appreciably
upon rotating from the [001] to the [100]positions.
This effect should be greatly reduced at 77 meV
where the absorption is down by a factor of = 5.
Another possible explanation is that there is some
slight error in the calculation of how Ro (the value
of the resolution function at the ellipsoid center)
changes in going from [100] to [001].

Since either mechanism should be temperature
independent, some of the 6.6-meV data were re-
analyzed by assuming that A~/M, & = 1.72 also holds
below T„. First the [001]data were analyzed,
yielding a value of A„. Then the [100]data were
fitted, treating A„as a free parameter in the first
term in (2V), but taking the product XA„ in the sec-
ond term to be A~/I. V2. This amounts to an ab-
solute subtraction of the transverse component from

the mixed scan. The fit yielded a value of A„, from
which A was computed by writing X =A~/1. V2A„.
This gave ) =1.1+0.15 at 66.61'K and X=1.12
+ 0.15 at 59.55 ' K.

From this me conclude that the use of the value
A. = 1.05 throughout the data analysis does not in-
troduce significant error in the final results. In-
deed we found that on varying A. by amounts con-
siderably in excess of the limits just mentioned,
the results were not affected to within the errors
stated in Sec. V.

E. Accuracy of Parameter Determinations

The error limits quoted for each parameter, or
for derived quantities, correspond to 1 standard
deviation (67% confidence limits). These standard
deviations mere obtained from the size of the least-
squares minimum in the fitting routine. They in-
clude the effect of correlation among the free pa-
rameters.

The stated errors do not include the uncertainty
in our knowledge of the resolution function. %e
measured the resolution function mith the ellipsoid
centered near [100], and this agreed with calcula-
tions based on the theory of Cooper and Nathans@
to within a few percent. Although this gives us
some eonfidenee in the calculated resolution func-
tion for other settings, we did not (and could not)
make explicit measurements at such settings.

Finally, there remains the question of the ac-
curacy of the assumed form of the cross section.
This form together mith the fitted parameter values
always provided a very good representation of what
me saw experimentally. Qf course, me cannot
guarantee uniqueness: There is never an absolute
warranty that a different assumed form, mith dif-
ferent parameter values, might not also represent
the data equally mell. Thus it is possible, in the
region where resolution corrections are severe,
that systematic errors in the assumed cross-sec-
tion form ean lead to systematic errors in the re-
sults of physical interest. This difficulty is in-
herent in the technique.

VVe can say, however, that the relatively simple
assumed form, fitting as it did over a mide range
of temperatures and wave vectors, consistently
describes the results, and that numerous tests for
internal consistency and continuity of the results
were well satisfied.

V. RESULTS

In the remainder of this paper, including figures
and tables, all mave-vector values refer to the
quantity q„defined in Eg. (18}and now referred to

simply as q.
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+65. If we use T„=l. 20'K (see Sec. IID) we find
C„=255 +75. A second method of calibration relies
on Eq. (19), together with data~'40 for x„and X„".
This gives C„=260+ 35. This assumes that the
curves of Fig. 2 are sinusoidal. If instead we'
employ (20), computing x, from the measured+ ex-
change constants, we find Cx = 220 + 35 [The use30

of the Fisher-Burford modification of (19) reduces
these estimates by 4%. ] Still a third calibration can
be obtained by applying'0 (19) to the transverse sus-
ceptibility. ' Using the data ' for w, and X",'",
together with the determination of X'„™c/X,"~dis-
cussed above, we find C„=255+ 85. On considering
all these results we take

50 ~x~ (0
stag

I

58 62 66 70

Temperoture in 'K

FIG. 6. Experimental results for the transverse (XJ)
and longitudinal (Xll) staggered susceptibilities plotted on
the same scale. A theory for p~, together with experi-
mental data for the anisotropy field, then permits a rough
absolute calibration. The quantity X~ = C/Tz is the sus-
ceptibility of an ideal Curie-law spin-& paramagnet at
T= Tg =67.46'K.

C„= 240 .

y= l. 27+0.02, (Sea)

~ ~ I ~ ~ ~ ~ y ~ ~ ~ I I I I I I ~ I ~ ~ ~

This is probably accurate to within a 25%.
The anomaly in the longitudinal susceptibility is

shown most clearly in Fig. --7, which includes the
longitudinal data obtained in our quasi-elastic~
work, normalized to the present data, and put on
an absolute basis using (SV). On fitting these data
to X„(T)=b, (T —Tz)" for T &T„and X„(T)=b (T„
—T)" for T&T„, we find

A. Static Behavior
IO 000

Staggeld Susceptibil ities;
Bough Absolute Calibration

Relative values of the longitudinal and transverse
staggered susceptibilities were obtained from (29)
by setting q = 0, and are displayed in Fig. 6. The
ratio x'„'~/x,"~was obtained above T„ in our quasi-
elastic work. ~ For example, this ratio was 4. 65
+0.9 at T„+1 K. (See Ref. 24, Fig. 2. ) This al-
lows us to put both curves of Fig. 6 on the same
scale.

For reasons to be discussed in Sec. VI it is of
interest to put these data on an absolute basis.
I et X,=g' peS(8+ I)/Sks T» denote the susceptibility
of an ideal Curie Law S= —', paramagnet at the MnF,
critical temperature. %e seek the quantity

Cii- Xii(T, +1 K)/X. .
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An approximate determination of this calibration
constant may be made in a number of ways as fol-
lows. In the first method, Eq. (24), together with
our data for G(T) (see below) and the NMR data"
for Mo(T)/M, (0), is used to estimate that

(59. 6 'K)/X~""(O'K)= 1. IV+0. 1. Then Eq. (21)
with T„=1.36 K may be used to establish the
vertical scale in Fig. 6. This leads to C„= 225

IT-Tf4 I in 'K

FIG. 7. Temperature dependence of the longitudinal
staggered susceptibility above and below T~. The scale
of susceptibility has been chosen in accord with the ap-
proximate absolute calibration discussed in the text.
Closed triangles denote the quasi-elastic measurements
of Ref. 24. Open circles correspond to the present in-
elastic data.
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PIG. 8. Temperature dependence of the longitudinal
inverse correlation length above and below Tz. Closed
triangles denote quasi-elastic measurements of Bef. 24.
Open circles correspond to the present inelastic data.

y'=1. 32~0.06, (38b)

5, /5 = 4.8+ 0. 5 .

The ratio in (39) is a good measure of what our data
give for x,„(T„+i nTi)/y„(T„—i &Tl). If we let
X„(T)/y, =C,[(T- T„)/T„] "for T & T„, we find

C, = 1.15+0.3 .
2. Inverse Coxxelation L engths

(40)

The behavior of the longitudinal inverse correla-
tion length Kg(T) ls displayed ln Fig. 8. These data
include measurements (triangles) made using the
quasi-elastic technique. The consistency of the
quasi-elastic and triple-axis results is good. On

fitting to x„(T)= ~.(T —T„)"for T &T„and K„(T)
= ~ (T„—T) for T ~ T„we find

v =0.634+0.02,
v' = 0.56 + 0.05,

with

~, =(0.032~0. 004) A-',

~ = (0.055+0.005) A-'.

Figure 8 shows that the ratio

~ /~, =1.V+0. 3

(41a)

(41b)

(42a)

(42b)

is a reasonably good average measure of z„(Tz
—

l &Ti)/z„(T„+ i &T I).
Our transverse data below T„were in accord with

a constant inverse correlation length g~ = (0.054

&„(T„+[n,T[)/X„(T„-
f

n, T))=4.8, (44)

in agreement with our finding (39).
It may be observed that this susceptibility ratio

is apparently larger than the square of the z ratio
in (43). Similarly the discrepancy between y' and
2v' appears to exceed that between y and 2v.
[See Egs. (38) and (41).] In view of the large ex-
perimental uncertainties, however, this requires
a more careful investigation. This may be done
as follows. According to (19), the ratios

(45)

should be constant and equal to unity. Using the
present results (together with quasi-elastic data

y 0.005) A, i.e. , for this value a single normaliza-
tion constant AJ, fitted the data for all q at each
temperature below T„. The behavior of z~ above
Tz was described earlier. ~

3. Some Intexpxetiv e Discussiog

The fact that X'™is roughly constant below T„
is a reflection of the approximate proportionality
of the anisotropy field to the sublattice magnetiza-
tion, as anticipated in Sec. IID. The situation
above T„has been described earlier. In this con-
nection we note that the fact that the curve-fitted
divergence temperature T, came out such that
T„—T, & Tz = 1.3 'K can be understood qualitatively
as follows. Imagine curves of C/y'„™gand C/lt,'"
versus temperature drawn on the same plot for
T &T„. (Here C is the Curie constant. ) Each curve
will be straight with a unit slope at high tempera-
tures, but will become concave-up in the critical
region. From the results of Fig. 6, the ordinate
of the upper (transverse) curve will be about 0.VT„
at T~. This is, of course, where the lower-curve
ordinate vanishes. Because of the curvature near
T„, the slope of the upper curve will be appreciably
less than 1 there (e.g. , it will be = 0.4). It fol-
lows that T„which is the temperature at which the
upper curve extrapolates to zero, will be such that
T„—T, is appreciably larger than 0.7T&. The re-
sultM Tg -TL =2Th ls not surprising

With regard to the behavior of X,
'„' above T„,

the coefficient C. given in. (40) is about 15/0 higher
than the value" stated for the BCC S= —,

' Ising
model, and is thus consistent to within our large
uncertainty. (In view of the difference in spin,
it is not clear what this means, however. ) Com-
parisons of our values of y, v, and x, with Ising-
model calculations have been given earlier. 4

The ratio X„(T„+In, Ti)/g„(T„—in, TI) can be ob-
tained from the linear-model parametric-sealing-
law equation of state of Schofield, Litster, and
Ho. This theory requires y = y'. If we use
y = l. 2V and P = —,

' in Eq. (5) of Ref. 52, we find
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for z~ and y~), these ratios were computed for a
number of temperatures throughout the critical
region, and are displayed in Fig. 9. They do ap-
pear to be constant in the paramagnetic state.
(This fact allowed us to make the absolute calibra-
tion by the second method, thus fixing 8„=1. The
fact that R„=B,for T &T„ led to the consistency
of the second and third calibration methods. )
Below T„, however, A„seems to be departing ap-
preciably from 1. This tendency is also exhibited,
though less conclusively, by 8,.

The results of Fig. 9 may be interpreted as
due to a change in shape of the X '-vs-K curves
(Fig. 2) as T goes from above to below T„The.
fact that A„becomes greater than 1 is equivalent
to the dip near q = 0 becoming narrower and more
rectangular below T„.

B. Dynamic Behavior

1. Transverse I"/uctuations: Magnon Erequencies

The dependence of the magnon frequency pa-
rameter ~0 upon temperature and wave vector over
the entire range of our critical measurements is
displayed in Fig. 10. (The uppermost curve is
the 4. 2 'K data of Ref. 25. ) We thus see how the
magnons "renormalize" with increasing T.

To provide an idea of the extent to which the
magnon peaks represent well-defined propagating
excitations, we have listed values of the ratios
vo/I', for various values of q and T in Table 1.
This shows that at each temperature below T„,
the magnons are most sharply defined at small q.
(A single exception to this rule occurred at 0.03 'K
below T„.) This is the situation expected theo-
retically for the isotropic antiferromagnet. The
situation above T„was quite the reverse. Here
two magnonlike peaks were observed only at large

2.8
2.6
2.4
2.2
2.0
1.8
1,6

m 14
1.2

E

Bo 1.0
.8
.6

S PI N-WAVE RENOR M A LI ZAT IO N

I
/

I
J

I (
I

1
I.68 'K

.086 'K

TN = 67.46 'K

71.604 'K

~75 59 oK

I

.04 .08 .12 .16,20 .24 .28
A1

q. (See Fig. 4. ) The ratios ~0/F, become pro-
gressively smaller as q is decreased. This is rea-
sonable physically: Above T„it should only be pos-
sible to propagate spin-wave-like excitations within
a region of correlated spins. Thus a propagating
character can only be expected at large q.

Now consider the energy of the q=0 magnon,
i. e. , the gap G(T). Our results for this are dis-

TABLE I. Ratio of magnon frequency to magnon width.

r (K)

59.68

64. 09

0
0. 1289
0. 257

0
0. 0645
0. 1289
0.257

24. 6
11.9
6. 6

11.7
7.6
4. 6
3.0

FIG. 10. Temperature and wave-vector dependence of
the magnon frequency parameter ~0 throughout the critical
region. The extent to which the magnons are well-defined
excitations is shown in Table I.
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1.0

0.5
56 60 64 68 72 76 80

T in'K

FIG. 9. Temperature dependences of the ratios Rll and
R~ defined in Eq. (45). Filled and open circles correspond,
respectively, to T& Tz and T &T~.

66.61

67. 35
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0
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0
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0
0. 0645
0
0. 0645
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0
0. 0645
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0
0. 0645
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3.7
2. 5
2. 2

2. 3
1.7
1.7
1.0
0. 95
0. 82
1.15
0
0 ~ 41
1.13
0
0. 36
1.0
0
0. 3
0 ~ 95
0. 9
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FIG. 11. Temperature dependence of the energy gap
G(T) below T&.

FIG. 13. Temperature and wave-vector dependence of
the longitudinal relaxation rate throughout the critical re-
gion.

played in Fig. 11. The solid line through the data
points is a computer fit to a power law in I & I

= (TN —T)/Tz. We find

G(T) (1 36+0 04 meV)
~

&~o.ov~o. oo (46)

Here T„has been treated as a free parameter,
giving T„=(67.47+0.03) K, which is consistent
with (30). [Alternatively if we fix Tz at the value
given in (30), we obtain an exponent of 0.37 a 0.01.]
We also measured the gap at 4. 2 'K, finding

G(4. 2'K) =(1.113+0.005) meV . (47)

I I I I I I I I I I I I I I I I I

TRANSVERSE ENERGY WIDTH IJ {CI,T)

I.2—
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O .8—I-
O
IJJ

W

o $ n
g 0
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T I 68 70 72 74 76

N
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FIG, 12. Temperature and wave-vector dependence of
the transverse relaxation rate throughout the critical re-
gion.

This is very close to the result obtained by anti-
ferromagnetic resonance, ~ namely, (1.081+0. 006)
meV. As no significant change is expected between
4. 2 ' K and T = 0, we write (46) in the form

G(T)/G(O) =(1.20+O. O6)
~

~ ~""'" (48)

for 0. 1 & I E I & 0. 0006. This is quite similar to the
behavior of the sublattice magnetization, "namely,

Mo(T)/Mo(0) = (1.20 + 0.01)
I

o
I

'""'"' (4&)

for 0.08 & I E I & 0.0000V. As discussed in Sec. II D,
this similarity implies the approximate constancy
of Mo/Jf„and hence of y, ',

™abelow T„.
2. Transverse Eluctuations: Decay Rates 1 ~

The detailed behavior of the transverse relaxation
rate (or magnon width) parameter I", (q, T) is dis-
played in Fig. 12. Note that for the staggered
mode, I', does not vanish at T= T„, in contrast to
the behavior of the corresponding longitudinal rate
(see Fig. 13). We have in fact I', (0, Tz) =(0.18
a 0.01) meV. Below T„, I; becomes small at low

q where we have well-defined magnons. At a fixed
temperature (either above or below T„), I', (q, T)
—I"~ (0, T) is roughly proportional to q .

3. Longitudinal Decay Bates ~~~

I'„(0, T) = (2. I + 0.I me V) &o'o"'oo . (6o)

Riedel and Wegner have predicted that the aniso-
tropy should produce a change in the power law

Our results for the longitudinal relaxation rates
I'„(q, T) are displayed graphically in Fig. 13. Since
the data below T„and at small q above T„are not
easily read from the graph, we have also listed
them in Table II.

Above T„ the staggered mode relaxation rate
I'„(0, T) appears to decrease roughly linearly in
temperature, vanishing at T„. This is shown in
more detail in Fig. 14, where the solid line is a
computer fit to a power law in e = (T —T„)/T„. This
fit gives
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from an exponent (= 1) characteristic of the isotropic
antiferromagnet to Rn exponent (= 1.3) close to
T„; this crossover shouM occur where ~„=g
= Kl (T„)= O. 054 A ', i.e. , at ~ 2 'K above T„. Un-
fortunately on account of resolution limitations it
was not possible to extend our measurements suf-
ficiently close to T„ to obtain a direct check on this
prediction. Our data are not inconsistent with the
theory: Riedel points out that with the exception
of tile p011lt closest 'to Tg (wllich ls 2 'to 5 stRIldRI'd

deviations high) the data of Fig. 14 are in accord
with the detailed micxoscopic calculation of the
crossover effect. The experimental difficulties
being what they are, we also feel that the exponent
111 (50) should Ilot be 11ltel'pl'eted Rs sllowlllg that
the behavior of MnF2 is really that of an isotropic
antiferromagnet. For simplicity, however, we
will retain this exponent value in our dynamic
scaling law analysis (Sec. VC). This is, of course,

I-
0
II

CF

Cw

I,O

,OI.I

t [ i I I I I I I ) I I I t I I

LONGITUDINAL DIFFUSIVE ItIIIlDTH (q =0)

I.O

r (K)

59. 55

64. 090

67. 351

67.430

67. 70

67. 982

q (A I)

0. 0257
0. 1289
0. 258
0. 0257
0. 0645
0. 1289
0. 258
0.0257
0.0645
0. 1289
0. 0257
0. 0645
0. 1289
0. 0257
0.0645
0. 0257
0. 0645
0. 1289
0
0. 0257
0. 0645
0
0.0257
0. 0645
0
0. 0257
0. 0645
0
0. 0257
0. 0645
0
0. 0257
0.0645
0
0. 0257
0. 0645
0
0.0645

I'II (meV)

0. 015+0.01
0.041+0.01
0.10 +0.1
0.009+0.009
O. 043 + 0. 015
0. 086+0.02
0.408 +0.07
0. 017+0.005
0.023+0.007
0. 135+0.02
0. 017 +0. 003
O. 052+0. 01
0. 176+0.02
0. 021 +0.01
0. 079 + 0. 01
0. 019+0.005
0.075 +0.008
0. 219+0.03
0. 01 +0.005
0.025+0. 01
0. 093 +0. 01
0. 025 +0.002
0. 032 +O. 003
0. 110+0.008
0.039+0.002
0. 048 +0. 003
0. 126+0.008
0. 0699+0.004
0. 088 + 0. 005
0. 134 +0.013
0.119+0.01
0. 117+0. 01
0. 199+0.025
0. 150+0.01
0. 152+0.01
0. 212 + 0.02
0. 312+0. 03
0. 302 +0.04

FIG. 14. Temperature dependence of the longitudinal
staggered relaxation rate above Tz.

1„(q,r„)=(V. O+O. Q meV)q'"". (51)

Again it was not possible to take meaningful data

l.o

LONG lTU

I & I I I I I

81

X

~ .IO

,OI

,OI , IO

q %AYE VECTOR

I I I I I I I

I.O

FIG. 15. Wave-vector dependence of the longitudinal
relaxation rate at the critical temperature.

an approximation, but to go beyond this is really
not justified by the data.

The q dependence of I,"„at T„ is shown in Fig.
15. The straight line corresponds to the power-
law fit
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FIG. 16. Replot of the T& TN data of Fig. 13 in the
form suggested by the dynamic-scaling theory. The or-
dinate is the scaled longitudinal relaxation rate; the ab-
scissa ls the scaled %'ave vector.

far enough into the region q «K~ to obtain a direct
check on the predicted exponent change. Riedel
has shown, however, that our data are consistent
with the detailed microscopic calculation of the
crossover. According to this, the slope of the

data of Fig. 14 should really be intermediate be-
tween the values 2. 0 and 1.5 appropriate to the

regions q «Kg and q && Kg respectively.

form (53), although the scaling function branches
0, and 0 might have different behaviors for small
values of the argument x= q/a„. Consider first the
situation for T ~ Ty. In Fig. 16 we plot Z, ~(q, T)/
[Ktt(T)] against q/Kg(T) The points lie within

1 or 2 standard deviations of the drawn curve,
with no systematic departures as a function of T
and q. The scaling function A, (x) thus defined may
be fitted to a polynomial. For example, taking

Q,(x) =A+Bx +Cx +Dx

we find (in meVA~ 'units) A =6.95a0. 2, B=2.63
+0.16, C= (-9+2)x1Q, and D=(1.4+4. 6) xlQ

Now consider the data for T & T„. Again we plot
I ~ (qp T)/ [x~~(T)) against q/xg(T) The results are
displayed in Fig. iV. The data points scatter about
a function (solid curve) which thus defines 0 (x).
For large x, the behavior of 0 (x) merges with that
of Q, (x) (dashed curve). This must be the case
since our data at finite q are continuous at T = T„.
The behaviors of Q, and 0 are very different at
low values of x, however. The sojM line corre-
sponds to

0 (x) = 2. 5 x' for x & 2 .
While this representation is a satisfying one, we

would like to raise some cautionary notes. First,
the data for T & T„are not very accurate. Thus for
the 0 branch, the deviations about the "universal

&. Appr'oximate-Scaling-Lax Analysis of the I'~I(q, p) Data

Dy»mic sealing predicts that the exponent ex-
pressing the dependence of I'„(0, T) on x„(T) above

T~ should equal the exponent expressing the q de-
pendence of I'„at T„. Using (5Q), (41a), and (42a)
we find~ fol T & T~~

Ol

os
0
4P

F

I000, .

IOO—

I t I ~ I I I ~ ~ ~ ~ L ~ ~ g 0 I g l I I)

r„{0,T)=(6.6+0.6 meV) [~„(T)]"'"
when K„ is expressed in A '. The exponents in

(51) and (52) do agree to within experimental error.
They are consistent with the value z = —,

' expected
theoreticallyv for the isotropic antiferromagnet,
although this may be due to our inability to take data
close enough to the origin of the (z, q) plane, as
discussed in Sec. V B3. Pursuant to that discussion,
however, we adopt the value g = —,'. We then inter-
pret our data according to the general scaling pre-
diction

Ol
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with g= ~.
At the outset of the present work, Hohenberg

suggested that it might be possible to represent
our data both above (+) and below (-) T„ in the

FIG. 17. Replot of the 7.'& T& data of Fig. 13 in the

form suggested by dynamical scaling. The dotted curve

is taken from Fig. 16. Note the use of a logarithmic

scale for the abscissa.
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curve" (and the allowed errors, too) are quite
large —a factor of 2 being not atypical. Second,
for any one temperature below T„, the range of
q/x„values spanned by the data is not large. For
example, q/x„ranged from 0.15 to 1.5 at 59.8 'K,
from 0.8 to 4 at 67. 06 'K, and from 4 to 17 at
67.43 'K. Thus the "universal curve" is obtained
in pieces. These do overlap to within the substan-
tial errors mentioned above, forming a single curve
which we can adopt as the scaling function 0 (x).
Although it may be true, we cannot demonstrate
that a continuation of any one of these pieces would
really agree with the adopted curve.

The situation for the 0, branch is on a firmer
footing. Here the accuracy of the data is higher
(due to the larger linewidths). Also, the range
of q/x„values spanned by the data at any one tem-
perature above T„always includes the value = 0.
The pieces of the universal curve thus always over-
lap at the left-hand end.

We can also carry out the scaling analysis for
comparison with the theory of Rdsibois and Piette. ~

For this purpose we can rewrite (53) for T &T„as
I' ll(q, T)I/I' (q TN) =f(x /q) (54)

IO

Mn F&

zI-
CJ

4
I-
CJ

4 Og

Isotropic Anti ferrornagnet
(Resibois and Piette)

Oi I i I I I II

0.05 O. l 0.5

«„/q

lO

FIG. 18. Replot of the T& TN data of Fig. 13 in the
form suggested by the dynamical-scaling representation
of Resibois and Piette. The result of their calculation
for the isotropic antiferromagnet is also shown.

where f(x) =Lx A.(l/x) with L =- lim„.„u'/Q, (u).
In Fig. 18 we plot the left-hand side of (54) as
ordinate with x„/q as abscissa. This plot includes
all our data for T &T„ for which q0. The drawn
solid line defining the scaling function f is evidently
applicable with an accuracy of 1 or 2 standard
deviations; there are no systematic departures a
function of T or q. The dotted line is the scaling
function calculated by Resibois and Piette for the
isotropic antiferromagnet.

VI. DISCUSSION OF BEHAVIOR OF r)) BELOW T~

One of the most interesting aspects of the data
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LONGITUDINAL DIFFUSIVE WIDTH vs q~

TEMP.
K

75.593
7 I .604
68.494
67.458

a .6—

, ,~~Ra

q 'A
I

'01 L02
q, A .0645 .I289

.0257

64.090

59,55

03
I
'04 .05 .06

I
'07 08 '09

.I 93 .258

FIG. 19. Replot of the data of Fig. 13 in a way which
best illustrates the change in longitudinal relaxation be-
havior upon going from the paramagnetic to the antiferro-
magnetic states.

is the behavior of the longitudinal relaxation rates
for T & T„. At the outset we expected the staggered
mode rate to "slow down" as T- T„', and then
"speed-up"again with decreasing T below T„. The
latter part of this prediction certainly was not ful-
filled as Fig. 13 clearly shows. On the contrary,
below T» I'„appears to vanish as q-0 for all tem-
peratures. To see this, and to see how the be-
havior above T„merges with that below T„, we
have replotted the data of Fig. 13 in Fig. 19. Here
the abscissa is q~ and the temperature is a param-
eter. Well above T„we find a roughly linear de-
pendence on q . Closer to T„, the curves are ap-
parently becoming steeper for low q, in keeping
with the fact that at T„a power law of degree
g & 2 fits the data best. Below T„ the data for I'„
appear to extrapolate into zero as q -0, although
the data are not inconsistent with a small nonzero
value. It is possible that a diffusion law I'II = Dq
applies at low q values, although the data by no
means require this. The best one can say is that
if such a law holds for our one or two lowest q
values, then D is of the order of magnitude of
10 meV A (or = 10 ~ cm'/sec) at a few K below
TN

Theories pertaining to this behavior have been
given by Halperin and Hohenberg ' and, inde-
pendently, by one of us (P.H. ).M A more detailed
theoretical description has recently been provided
by Huber, using the hydrodynamics of Schwabl
and Michel. '7 In these basically hydrodynamic the-
ories, it is argued that a portion of the longitudinal
scattering function should behave diffusively below
T„. This diffusivity is a manifestation of thermal
diffusion taking place within the spin system. We
may restate this as follows: Below T„ the local
staggered magnetization is coupled to the local en-
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the over-all relaxation wiH. no longer break up into
two distinct yarts. Indeed this is the case above
T„, Rnd the shape of the relaxation function should
vary continuously as we go around the critical point
in the (x, q) plane. Thus in the lowest curve of
Fig. 20, we have depicted the relaxation function
at a moderate wave vector q& by a single decay
cul ve.

In dx awing the bottom curve of Fig. 20, we have
also'assumed that the decay rate continues to in-
crease with increasing q in this region. This is
certainly reasonable, Red has the following impor-
tant consequence if we wish to use these .theories
for the interpretation of our MDF3 data: It is quite
possible that the experimentany observed increase
of I'„with increasing q took place entirely within
the region q-q3. In other words it is entirely pos-
sible that the breakup of the relaxation into two
parts took place only for q smaller than the smallest
experimental value (0.025V A '). lf this is true,
then the apparent sloye of the I'„-vs-q curve need
not be related to the thermal diffusivity.

In view of the dynamical-scaling theory, one
might be tempted to think tha, t the crossover from
the behavior of the middle to that of the lowest curve
of Fig. 20 should occur for q = g„. If this were
tx'Qe Rnd lf scRllng did indeed describe the thermal
relRXRtlon I'Rte Tth fox' g'«g„, lt would follow from
(59), (60), and(53), win n (~) ~', that A/pC,*
~ (T, —T)' 2. However, there is theoretical
evidence that the energy fluctuation does not fit into
the fx'RIDewox'k of dyDRInlcR1 scalingy Rnd ln pR1 tlcu-
lar that A/pC„ is slowly varying with temperature
(e.g. , like I/O„). There is therefore no reason
to suppose that the condition q& g„wouM ensure the
separated behavior of the middle curve.

An additional complication arises when we con-
sider the possibility of energy exchange between
the spin system and the lattice. This can clearly
yrovide a nondiffusive decay process for the spin-
system energy-density fluctuations. ' In this case
a plot of I',„versus q shouM effectively extrapolate
into R vR1Qe I L, c4RrRctex'lstlc of the splD-1Rttlce in-
teraction. [Of course, for q values corresponding
to a truly macroscopic distance, such a plot mill
drop to zero with the very steep slope (= 1 cm~/
sec) characteristic of the bulk thermal diffu-
sivity, al'' assuming macroscopically large anti-
ferrornagnetic domains. j These considerations
Rlso determine the bghavior of the acoustic RttenQR-
tion neax the critical point. ' From such data,
from measurements of the anomalous change in the
sound speed„or from theoretical calculations,
it has recently been possible to obtain some infox"-
mation on the syin-lattice coupling. Thus, Huber
estixnates F~ = 10~ sec ' = 10 ' meV, while RD es-
timate by Kawasaki and Ikushima" (for T & T„
+0.2 K) gives 1~=3&&10 sec =2&&10 4meV. If

TABLE III. Observed versus calculated energy-Que-
tustlon scattex'lng be10%' 2 ~.

0.883
0.950
0.987
0. 994

~x~() ~/x, ),~t
3.3+1.3
8.5+3, 5
51 ~20

160+70

Xgh / Xc ~calo

2. 9+0.4
7.8+1.5

39+10
93 +25

these estimates are applicable, the lattice involve-
ment shouM not be very important at the experi-
mental q values (see Table II).

For conditions where the. middle curve of Fig.
20 provides a coxrect description of the relaxation
function, the scattering function 8„(q, co) will con-
sist of a narrow peak superimposed on a broad
base. For small q the area of the narrow peak
corresponds to X&h~, that of the broad base to X~'~,
while total area corresponds, of course, to X&'~.
It is then of interest to look into theories fox the
ratio yr'~/yah . On applying the linear-modelpa-
rametric scaling-lawequation of state, 5 it may be
estimated that" yr'~/y, h~ =1.8+0.4 in the critical
region below T„. In the Ising model computations
of Baker and Gaunt, '~

Xr/){,„&1.1 for reduced tem-
peratures below 0.93, though this ratio increases
as T T'", to values consistent ivith the result of the
linear model at the temperatures of interest to us.
In any case, if v'z is large compared with both I'~h
and the experimental energy resolution, the Darrow
peak mould dominate the observed scattering, and
the experimentally deduced staggered susceptibility
should equal X~„~. ID other words the observed
susceptlblllty should ln this cR88 cox'l espond to the
energy-density fluctuation.

We ax e then led to compare the numerical value
of the longitudinal staggerai susceptibility, ob-
tained with the Rid of the approximate absolute ca.li-
bration discussed in Sec. V, with the value of
Xth~ calculated from (62) using experimental data
on the magnetic specific heat Rnd sublattice mag-
DetizatloD. ' This compar lsoD ls px'esented ln
Table III. %8 see that for reduced temyeratures
below -0.95, the observed and calculated sus-
ceptibilities are consistent. In other words the ob-
served scattered intensity was consistent with the
value expected on the basis of the energy-density
fluctuations. Closer to the critical point, e.g. ,
at T/T„~ 0.99, there is an indication that the ob-
served scattering may exceed the energy Quctuation
yart by a numerical factor between 1 Rnd 3. A yos-
sible interpretation of this lattex result is as fol-
lows: Close to T„, and for even the smRGest ex-
perimental q values, either the description of the
lowest curve of Fig. 20 is correct, or if the middle
curve is applicable, both parts of the scattering
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were lumped under the instrumental resolution
)unction. Then the observed susceptibility was
larger than yth~ by a numerical factor = yr~~/

The observations are thus consistent with
the above described theoretical values for this ratio.

It will, of course, be asked: Do the experimental
data for the longitudinal scattering function exhibit
a two-time-constant structure'P The answer is that
it is not possible to use the present data either to
demonstrate this structure, or to contradict it.
There are several technical reasons for this. The
main difficulty is that the data for the longitudinal
scattering were obtained essentially by subtracting
the transverse scattering from the mixed [100j
scattering. Since the transverse scattering is non-
negligible, slight errors in the subtraction process
may simulate the appearance of two time constants.
Thus, while we do have some energy scans having
this appearance, we cannot draw any reliable con-
clusions from them. Very close to T„, where the
subtraction effect is less severe, resolution effects
are more serious, particularly if I/v~ - 0 as
T~ TNr

While the hydrodynamic theories are helpful in
understanding the numerical magnitude of the sus-
ceptibility, and in explaining the small and relative-
ly temperature-independent values of X'„observed
at the lowest q values below T„, other aspects of
the data of Fig. 13 are not dealt with at all. Why,
for example, does I'„exhibit such a steep drop with
decreasing temperature at large q values'? The
most important question, however, remains the
following: Barring the involvement of the lattice
in the thermal relaxation, it is surely reasonable
to expect the description of the middle curve of
Fig. 20 to be correct at sufficiently small q values.
But how small is "sufficiently" small? In other
words, where is the boundary of the hydrodynamic
region of the (q, T) plane below T„?

VII. CONCLUSIONS

A detailed inelastic neutron scattering study has
been made throughout the critical region of the
uniaxial antiferromagnet MQFz. It was possible to
separate the transverse and longitudinal scattering
behaviors. The static susceptibilities, both longi. -
tudinal Rnd transverse, were found to be adequately
described by Ornstein-Zernike expressions both
above and below T» with x, remaining nonzero and

roughly constant below T„, but with z„approaching
zero as T„was approached from either side. Well.
below T„, the numerical value of the observed

1ongitudinal staggered susceptibility is consistent
with the value calculated on the basis of the energy-
density fluctuations; closer to T„ it may exceed the
calculated value by a numerical factor between 1
Rnd 3.

The dynamics of the transverse fluctuation is as
follows. Below T~, the energy gap vanishes as
T T„ in a way which approximates the behavior
of the sublattice magnetization, while the ratio
of the magnon frequency to the magnon width de-
creases with increasing q. Above T„heavily
damped magnonlike behavior is observed at large
q, the peaks merging at small q. The spectral
width of the transverse fluctuations at a given
wRve vector lncreRses monotonlcally with ln
creasing temperature throughout the critical region.

The longitudinal relaxation behavior changes
markedly in going from above to below T~. The
data above T„define a scaling function A, (q/x„)
to within the statistical errors of about 15/0. The
staggered-mode relaxation rate vanishes as
T- T&, being roughly linear in T —T„. Below

Tz, however, I"„'~ appears to vanish at all tem-
peratures, the data for the q dependence of I"„
being consistent with, though by no means requiring,
a diffusion law, These data may also be described
by a second scaling-function branch 0„. However,
in this case the experimental uncertainties are
larger, and the range of q/a„values spanned by
the data at R given temperature is more restricted
than for the data defining the 0, branch.

It ls possible that the behRY101' of the longltu(ilQRl

relaxation rates below T„and at low q is associated
with thermal dlffuslon within the 8pln systeIQ. Ho%'-

ever, the extent and accuracy of the present data
do not permit a determination of the true boundary
of the hydrodynamic regime below T„. Further
work will be required to clarify the conditions under
which it is possible to separate out the thermal
part from the over-all longitudinal fluctuation as a
function of wave vector and temperature. Further
work is also needed to clarify the role played by
the lattice.
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Magnetomechanical Ratios for Ferrites with Composition Zn„M1 „Fe204
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Magnetomechanical ratios have been measured for 2 1 different ferrites having the eomposi-
tional formula Zn~& „Fe204. Boom-temperature g' values were determined for four different
series where M=Mg ', ¹i', Fe ', and (0.5 Li', 0.5 Fe~'), and g' values near the Noel tem-
perature were determined for M = Ni2', g = 0.73.

INTRODUCTION

Magnetomechanical ratios (g') have been deter
mined by the Einstein —de Haas method for 21
different fer rites fitting the compositional formula
Zn„M, „Fe~04, where M is Mg ', Ni", Fe ', or
(0. 5 Li', 0.5 Fe '). Details of the experiments
and a discussion of errors are given in earlier
papers.

The samples used for all of these determinations
were made by the usual powder sinte ring process
and furnace cooled. They were then accurately
ground to cylinders having a diameter of 0.561 in.
and a length of about 0.V5 in. These short cylin-
ders were placed in a hollow pendulum producing
a cylindrical sample about 84 in. long.

+= (O.s u+, o.s Fc'+)

Magnetomechanical ratios g' were measured at
(295+ 2} 'K on seven different ferrites in the lithi-
um series with the results shown in Table I. In
these ferrites, Fe ' is the only magnetic ion in-
volved. Although the values of g are all close to
2, there is (except for x = 0.65) a very definite
trend toward lower g values for higher values of
Xo

In this ferrite series it is known that Zn ' always
occupies a tetrahedral (A) position and Li' an
octahedral (B) position in the spinel structure. s'~

A formula for this series can therefore be written
as

A(Zn„Fet. „)B(Li0.5 Q.5g Fet, s $,5g) 04

TABLE I. g ' measurements for the ferrite series
Zn„Lip, 5 p, 5& Fee.5 p.5g04 ~

0. 00
0.50
0.60
0.625
0. 65
0. 70
0. 75

2. 005 + 0. 002
l.998+ 0. 002
l.994+ 0 ~ 003
1.989 + 0 ~ 003
2 ~ 000 + 0. 002
1.982 + 0.005
1.964 anomalous at room temp.

(measured below 20 'C)

Using this ionic distribution, we have accounted
for the saturation magnetization values appearing
in the literature' by assuming a Yaffet-Kittel (YK)
structure in which the 8 site Fee' ions are arranged
in two sublattices having magnetizations directed
at an angle e&K to their resultant magnetization
which is in turn antiparaQe l to a single A -site
configuration as is apparently the case for the NiZn

series. 6 With 5p. ~ for Fe3', the expression for
the resultant magnetization for this model would be

M = 5(1.5 + 0. 5x) cos &„„—5(1 —x).

cos ~K was calculated from this expression for
each value of x using values of I from Ref . 5.

If we now speculate that the g values for Fe '
ions on the sublattice s are dependent on the value
of the VK angle and have the spin-only value of
2. 000 for of&K = 0, we can compute values of g&

using our measured values of g effective. TaMe


