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The temperature dependence of the elementary excitation energy in a dipolar Hamiltonian
has been studied by the Green's-function equation-of-motion method. The result differs from
that given by Charap and reduces to it for 8 =F = 0. The magnetization calculated at zero or-
der of an iterative procedure coincides with the Holstein-Primakoff result. The criterion of
stability of the ferromagnetic state has been found to be temperature dependent.

I. INTRODUCTION Heisenberg and dipolar terms:

Several models have been introduced in order to
explain the properties of Sd electrons in magnetic
solids in connection with the concept of itinerant
versus localized nature of these electrons. Con-
siderable interest has also been shown in recent
years by experimentalists on the reliability of these
models. In particular an extensive effort has been
made in two directions: measuring the magnon dis-
persion law for a wide range of momentum transfer
and studying their temperature dependence. '

The dispersion law has been studied as a function
of the temperature for various materials with dif-
ferent experimental methods such as spin-wave
resonance, neutron diffraction, energy analysis by
triple-axis spectrometry, and small-angle scatter-
ing techniques. ' Since the temperature dependence
is different in different models, we can distinguish
among them.

Theoretically the temperature dependence of the
magnon dispersion law in the Heisenberg model has
been found by a perturbation method4 and by solving
temperature-dependent Green's -function equations
of motion in some approximation.

In this paper we consider anisotropy effects. %e
assume a more general Hamiltonian as a sum of the

where

a, =-+Ji„sr 8 +2ps&Lsf
lm

Hl —h 2 de~[st S~ —3 Yl~( tsar~~)(8~' Ff~)] ~

l &m

Magnetic quadrupole interactions, also invoked to
explain ferromagnetic anisotropy, are neglected;
in fact their ratio to the dipole-dipole interaction
need only be -

&~. %e can express B„in terms of
ralslng and lowel lng operators:

H~=Hq+Hd+Hq+Bq +Hq

H g
= Z Ei„s;8„',
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H~'=Q Br S;S'
lcm

&g =~Br~SrSm ~

/Am

2E, = ——'d, [1 —3(r',„/r, )'],

2F,„= ',-d,-„[r*, (r," ir-', „)/rr' ],
= —rrdr [(r"r irr )/rr ]', (2)

to that of HP' at T=O.

II. DISPERSION LAW: GREEN'S-FUNCTION EQUATION
OF MOTION

For simplicity we shall limit ourselves to the case
in which each atom has only a single ferromagnetic
electron. Under this hypothesis we can introduce
the Pauli operators

S'=b, S =b, S*=—
« n-, n =b b, (&)

which satisfy the following commutation relations:

with standard use of symbols.
If we retain only H~ in the dipolar Hamiltonian,

the magnon energy presents, as has been shown by
Charap, a T term besides the T term appearing
in the isotropic case.

In our work we also take into account H'„' and H&
which play an important role in the Holstein-Prima-
koff (HP) theory of anisotropy. ' These terms can-
not be neglected with respect to H„, since 8, and

E, are of the same order of magnitude and there
is no a priori reason for assuming that S'S' (and
S S ) terms do not. contribute at low temperature
The unrenormalized spin-wave energy found by
HP, ' to which our calculation reduces for T =0,
confirms our statement.

We shall express the Hamiltonain in terms of
Pauli operators in the spin--,' case and write the
Green's-function equations of motion for their trans-
forms in wave-vector space. We break the chain
of equations at first order. This procedure is justi-
fied by the results which we get in the Heisenberg-
model case and which can be compared with well-
known calculations.

The dependence of magnon energy on temperature
will be derived. Moreover it is well known that the
dipolar Hamiltonian must satisfy a particular crite-
rion for the stability of the ferromagnetic state.
This criterion is temperature dependent and reduces

I

[b, b„]=(1 —2n )& „, [b, b„]=0,
b2 (bt)2 0

The general Hamiltonian takes the form

H=C oZ+(Jr +2E,„+2prrX)nr -Z (Jr„Er )b-rb
lm lm

+Q(Br~brb +Br*„b,b„) -Z (F,„brn +F,*„b,n„)
tm gm

-Q (d, +2E,„)n,n„. (5)
lm

I.et us introduce the Fourier transforms of b and
t .b

«r m

It is an easy matter to verify that the following com-
mutation rules in the wave-vector space hold as a
consequence of the commutation relations [Eq. (4)]
in the direct space:

[b„, b;]=0, [b„b,".]=6»». —(2/N)Z e'r ' ~n„.
(7)

Moreover the summation rule g«b» «b» „=0 holds
for every X and p as a consequence of the condition
b~ = O. We can rewrite the Hamiltonian in terms of
these operators:

H= Co+5 ([J(0)+2E(0)]—[J(k) —E(k)]+2PrrX}b„b, +[B(k)b,b, +B*(k)b,b"»]

1 Z, b, «. b»b„.+ F
I

— b»b». b„; ——Z [&(P)+2E(P)] b„b», »b». b„. ..
N g~. Ik-k'I Ik-k I Ok' p

(8)

where

d'(k)=~~dr e"''™
r E(k)=~ Er~e' '"

F(k)=Z F, er"'~r~, B(k)=Z B, e'"'~r~.

We find

2E(k) = 4rrMo sin'8«, 2B(k) = 4rrMosin 8» e

I

in HP notation. All these functions, except J(k),
depend only on the direction of k. Our Bor) and

Eor) are one-half of those given by HP. The other
coefficients relevant in our calculation are given
by HP. The retarded Green's-function equation of
motion for two operators A and B and a given Ham-
iltonian H in the & representation is in standard no-
tation (see Ref. 9)

err ((A; B))„=(1/2rr) ([A, B])+(([A, H]; B)) . (9)
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Qnce the Green's function is known the mean value
(BA ) can be written in terms of it:

where p= 1/ke T in standard notation.

A. Heisenberg-Model Case

We first discuss the equations of motion for the
isotropic exchange. We consider the retarded
Green's function «b~ b„. )) and write for it the equa-
tion of motion assuming the Heisenberg Hamiltonian
(with zero magnetic field):

&o (( b~ b„. )) = (1/2m) (1 —2n)6~~.

+ [j(0) J(X)]((b„; b„, )) (2/N)

x& [~(k —k') —~(&')]&&baba bk. a ~ 'b~v)) .
kk'

This equation involves higher-order Green's func-
tions. We expect that as a first approximation only
those Green's functions of the general form
((b~~b~, b„; b~, )) will appreciably contribute to the
sum for which at least one of the two indexes k' and
x is equal to k, and we substitute b~b, with its
mean value (n, ). The equation becomes

I(o —[J(0)—J(X)+(2/N)Z &n )'(J(X)+J(b)

—J(k —X) —J(0))])((b„;b'„)) = [(1 —2n)2v]5„, .
(i2)

The pole of the Green's function gives the excitation
energy which is formally identical to the formula
given by Brout and Englert'0 without proof and by
Tahir-Kheli and ter Haar in the first part of their
second paper on the subject, on the basis of a first-
order Green' s-function calculation.

By using formulas (10) and (12) we get for &n, )
the following equation:

& g„)= (1 —2n) [e~"& —1] ',
which differs from the Tahir-Kheli-ter Haar for-
mula' for the presence of a factor 1 —2n instead of
1. The extra factor has its origin in the fact that
Pauli operators are not bosonlike as are Dyson
operators used by Tahir-Kheli and ter Haar. They
can be considered as approximately bosons only in
the limit of low temperature when 2n is negligible
compared to 1.

Equation (13) is an integral equation because its
second side is a functional of &n„) through n and
co,. We can solve it by an iterative procedure. At
zero order we put n = 0 and &n~) = 0 on the right-
hand side of the equation. This is correct for low
temperatures. In this limit our results coincide
with those of previous authors and give dependence
T' for the energy and T' 3 and T' for the mag-
netization.

So we think this procedure will give a simple and
essentially correct method for investigating the
anisotropy effects at least in the limit of low tem-
peratures.

B. Anisotropic Effects

We take into account H„" and H„ terms but for
simplicity we neglect in the full Hamiltonian the
terms H„' and H„, the contribution of which at low

temperature will be small compared to that of H„
and H~

ZF&„b&n - ZF& b&&n)=0 asZF, =0
~c»

in an infinite lattice) even if the moduli of the coef-
ficients I' and 8 are of the same order of magnitude.
The terms H~ and H„cannot be discarded with re-
spect to d~ because IB, I and E,„are of the same
order of magnitude, as can be seen in the definition
(2). In the first-order decoupling we need only two
Green's functions ((b„;b~. )) and ((b ~ bt. )); hence
we must calculate only the commutator [b„H] since
[b~ H]= —[b~ H] as a consequence of a Hermitian
property of the Hamiltonian.

We get the following equations:

~« bg,' bg. )) =
2 &),„.+A(&) &(b)„b„,)) ——Q [A(k)+J' (k-k')]

x«b,'b, , b. .. ,, ; b„'.))+2B*(X)((b'„; b,'. )) ——Q B*(k)((b,', b', b, ,„,+b,', b,'b„, , ; b„', )),
JA'

(u &&b'„; b,'. )) = -A(&) &(b'„; b„'.))+—Q [A(k)+Z(k-k')]
aa'

x((by b~g y by& bg )) —2B(A.) (&bg& bg ))+—Q B(k)((b~i g ~ b» b~a+ by g y baby q bg ))& aa
(14)
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where A(7), A(7), and Z(7) are

A(x) =z(0)+az(0) -z(~) -E(~)+a~,x,
A(X) =E(R) -Z(X),

Z(i) = z(~)+ az(i) .
Now we proceed in exactly the same way as for the
Heisenberg case in order to decouple the higher-
order Green's functions: We take only the diagonal
terms in the sums and substitute for n~ its mean
value &n~&:

x P„[B+(j)+ B+(j)]&s, &/ « y'„b„',»

= [(1 —an)/av] a„, , (15)

By using the identity

o(~' —[w(i)]') = (1/2~) [a(&o —w(x))+ v{~+w(1))j

and inserting the formula in the spectral repre-
sentation (10), we have

1 1 1
&n), &

= (1 —an) —
~~ +

2 e —1 e —1

1 1
+ 2~ Pg 1

w'

This equation can be solved with an iterative pro-
cedure A.t zero order we must put n= 0 and &n~&

= 0 in the right-hand side of the equation. It is
equivalent to the following substitutions: Wo(X)
-A(7) and W(X)-([A(7L)] -4IB(i}ii)' . For the
Heisenberg model the zero-order magnon number

&nl) will be

{B{X)—(2/N) Q» [B(i)+ B(k)]& n, )]
0) [ Blz(0) z(x)3 1]-1 (2o)

W,(X)=A(X)+—g [Z(X)+Z(k) -Z(k-l) -J(0)]

Because the anisotropic effects are quantitatively
small, the difference &n„& —&neo& will also be small.
So we can use the trivial identity (nl& = ((n, ) —(n„))
+ &neo) and substitute in the difference, for all the
integrals we have to calculate, the exponential with
their first-order approximation. In this way we
obtain

2E
~

+ 2E(0)+ E(k)+ E(X) (n1,) .—Xl

It is easy to verify that the poles of the Green's
functions are the solution of a second-order equa-
tion:

Qf course one must have

~
W,(X) ~' 4)B{X)-(2/X)p, [B(i)+B{k)j(n,&)'

for a stable ferromagnetic state (otherwise ~ would

be pu1'e illlaglllal y).
The given criterion for the stability of the ferro-

7nagnetic state is temperature dependent through

&n1,). The Green's function &(fl„bl1)) is given b.y

In the exponential we take the first- and when nec-
essary the second-order expansion of Z(0) —J(X),
while in the other terms [including A(x)] it is suf-
ficient to take the first-order expansion Z(0) —Z(X)
=Ja A. . We get the same magnetization found by
HP. 8 This can be understood if we consider that
the T = 0 spin-wave energy determines the low-
temperature dependence of the magnetization and

our renormalized spin-wave energy reduces to
that of HP in this (T=o) limit.

We discuss now Wo( X, T) which we will derive
in the Appendix:

W,(i, T) -A(~) =@a'l'(o., T —~„,T"')

-2[z(~)+f dI E(i)](l,T -o„,T'")

« fl;bl»={1-») a W ~ 3 .~+ Wn(~)

Of course,

((b„f,'»„,.-((b„f „'))„,, = —ave(1 —as) [~+W,(X)]

x 5{1d —[W( X)]2) . (18)

—(2/&)Z;E( ) '(1- "')( T- /
T"') ~

(22)
We get similar results for

g, [B(i)+B(i)](n,&
= [B(i)+f ChB(5)]

x (ll T-os(2 T"') .
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A linea, r T term appears with opposite sign from
the other terms of the temperature series. We
want to compare the linear term in respect to the
T term. If y, T- n3/3 T their effect cancels
out, If we choose a temperature range in which

+3/g T it is possible to appreciate the de-
viation of the temperature law from the Ts' be-
havior. It is impossible to find a temperature range
in which y, T overcomes the other term. By using
the HP expression for y~ we find that the condition

y, T/&sqz T -—, is satisfied for nickel and iron at
T-60'K and H about three or four times 4gMO in
HP notation. The situation is more favorable in
the hcp cobalt, the anisotropy of which is much
stronger. In this case, however, the ealeulation
cannot be directly applied since we assumed in our
treatment the cubic symmetry.

Since the magnon energy is given by formula (16),
we see that the dependence on temperature is very
cumbersome. However, if we develop ro), (T}as a
function of T we find that at the very low tempera, -
ture in which we are interested, it is still linear
in T. In inelastic neutron scattering only a T~/

term has so far been measured. In fact, its co-
efficient is much larger than the others appearing
in formulas (22) and (23). We would expect, how-
ever, that the T and T I~ terms can be observed
only by looking at the directional dependence of the
dispersion law and at relatively low temperature
and with a magnetic field three or four times 4ghgo.

III. CONCLUSIONS

The Green's-function method allows us to find a,

temperature dependence in the dispersion law and
in the criterion for the stability of the ferromag-
netic state in the dipolar Hamiltonian. The method
of decoupling the chain of equations in the first ap-
proximation is justified by the fact that the results
are correct for the Heisenberg model at low tem-
peratures (up to and including the T" term in both
the magnon energy and the magnetization). The
divergence with other theories we get in the Hei-
senbexg ease for terms with power higher than -,'
is due to the kinematical interaction arising from
the nature of Pauli operators which only in the
limit of low temperature can be considered boson-
like operators.

The principal results we get are the following:
(i) Our magnetization coincides with that given

by Holstein and Primakoff and differs from
what we could obtain from Charap's Hamil-
tonian.

(ii) The temperature dependence of magnon en-
ergy differs from that given by Charap' as
it should, because we retain more terms in
the Hamiltonian. These terms cannot be
neglected since the coefficients are of the
same order of magnitude of those retained

by Charap. Moreover, if we also neglect
the B terms (but not the E terms), the oc-
cupation number n~ will still retain the form
of E(l. (21) which simply follows from the
statement (n,&

= ((n„& —(n', &) + (n', &, (n'„& being
the isotropic Heisenberg-model occupation
number. And this implies a linear depen-
dence of the magnon energy on the tempera, -
ture.

(iii) The criterion of stability of the ferromag-
netic state, which has been found tempera-
ture independent in the Holstein-Primakoff
approximation, 8 really depends on temper-
ature.

In our decoupling we used the simple Hartree-
Fock approximation in which the correlation func-
tions (b),b „) and (bt)b~~& are neglected. They are
identically zero for B=0 and smallerthan (b~b, &

which we retained. However, they do not modify
the behavior as a function of the temperature.

APPENDIX

We wish to show how the temperature dependence
of the magnon energy can be derived. We limit
ourselves to the calculation of Wo(X, T). The term
g), [B(X) + B(k)] (n~) can be deduced in a similar

way�.

We use the expression (15) for Wo(X) and the ap-
proximation (21) for (n~&. Some coefficients in the
Hamiltoni. an depend only on the direction of the
wave vector; this is specified with the use of a
caret on the wave vector:

((' (i, 7) —A (x) = —Z I[X(l )+ z(() —z(k —&) —z(0))

2E --- +2EO yEQ +gg g

%'e consider first

(2/~ Z, [ZP)+Z(b)-Z(a-X) -Z(0)](~, &

where use has been made of the definition J(q)
=g„J'(r) e' *

and the property Z(r) = 4(—r) which im-
plies Z(q) = J(- q). With the aid of Eq. (21), E(l.
(A2) can be rewritten as

A(k) + n'B g 3 4 lpga p Ia g p2
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where the first term gives the linear contribution
in T whereas the second one gives higher-order
contribution in T. As far as the first term is con-
cerned a good estimation of the coefficient of the
linear term is obtained by retaining only terms of
the order k2 in 1 —e '" ~ following a similar argu-
ment in HP. Similarly we evaluate the second
term where the presence of the Bose occupation
number (n~o) legitimates the expansion in k2 of the
integrand at low temperatures. The second term
can be written

2 E(~)+E(k)+E „& -E(P)

—3 [Eg)+ E(A.)] (ny) . (A4)

Here the first contribution is

—QE(r} (&-e'"'}, (k ~)

= Ek dk 202 dk

V
(2w)'

A(i)
[A(f)] —4 (B(k)] Jgk~

has been evaluated by HP. We do not attempt to
evaluate

(2m}'J [A l, ]' 4 ~B(k}[' ga'8

but we merely state that a, «y, . In fact, the
integrals can be written in polar coordinates:

can be evaluated in the standard way. The integral

A(k) 1
[A(k)]2-4 iB(k) i Ja k~

1
8J'a2H

Thf 'difference in the tgro cases is of course that
J(r) is isotropic while E(r) is not.

The second contribution is

3 - - ( A(k)

[A$)] -4 IB(k) I

fk' dk f(k r)~ f (k) dk and fk~ dk f f(k) dk.

Both integrals get the main contribution from the
region where

477 pa Mp+ 2paX
J

as has been stated by HP. It is obvious that since
in this region k2«1 the integral involving the higher
power of 0 is much less than the other:

n, -10"y

1 1
Ja ka ea«2&2 —].

(Ae)

We can conclude

Wo(X, T) —A(X) = J'a X (e,T —o.'~~3 T'~2)

The integrals

2 1
3/2 T ggg2y2 1 dk p

(i r)'
+5/2~ gg 202 1 d

—3[E(&}+f dk E(k)] (y, T- n„,T»'}

—(2/Ã) P~ E(r)r (l —e' '') (o.,T —o.~~~ T ),
7)

where all the n and y are positive.

~G. Shirane, V. J. Minkiewiez, and R. Nathans, J.
Appl. Phys. ~39 383 (1968).

T. G. Phillips, Phys. Letters 17, 11 (1965); R. Weber
and P. E. Tannenwald, J. Phys. Chem. Solids 24, 1357
(1963).

3M. W. Stringfellow, Proc. Phys. Soc. 1, 950 (1968).
4W. Marshall (unpublished); P. E. Tannenwald, J.

Phys. Soc. Japan Suppl. 17, 592 (1962); T. Oguchi,
Phys. Rev. 117, 117 {1960).

R. A. Tahir-Kheli and D. ter Haar, Phys. Rev. 127,
95 (1962); J. F. Cooke and H. A, Gersch, ibid. 153,

641 (1967); W. Marshall and G. Murray, J. Appl. Phys.
39 380 (1968).

6F. Keffer, inHandbuchde~Physik, editedby S. Flugge
(Springer, Berlin, 1966), Vol. XVIII/'2, Chap. III.

'S. H. Charap, Phys. Hev. 136, A1131 {1964).
T. Holstein and H. Primakoff, Phys. Rev. 58, 1098

(1940).
D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) [Sov.

Phys. Usp. 3 320 (1960)].
R. Brout and F. Englert, Bull. Am. Phys. Soc. 6

55 (1961).


