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The experimental peak in Fig. 3 shows all the
characteristics described above for HI( (100) and,
furthermore,

possible to calculate the EFG at the Fe II sites in

y -Fe4N. From Eq. (2), using the So values in
Table I, we find that for the Fe II atoms

r,/(r+~) =0.67. e2qQ= —0. 87 mm/sec . (4)

Thus, we conclude that the magnetic easy axis in

y -Fe4N lies along the (100) direction.
Knowing that the easy axis is along (100), it is

Using the known value of @=+0.2b, ' we calculate

eq= —7. 0 x10" esu/cm' .
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The analogy between the thermodynamics of the s-d model and those of a one-dimensional
classical Coulomb gas is exploited to calculate the impurity-spin susceptibility on the com-
puter. The numerical method is a special Monte Carlo procedure first used by Metropolis
et al. We find a Curie-Weiss form for the static susceptibility with a Neel temperature of
about one-third of the Kondo temperature. We discuss the connection between our results
and a recent scaling theory of Anderson, Yuval, and Hamann.

I. INTRODUCTION

In this paper we follow a recent development
started by Anderson and Yuval. ' This theory deals
with the fluctuation behavior of the impurity spin.
The essential result —and our starting point —is an

expression for the partition function for the Kondo

or s-d model2'3 which turns out to be at the same
time the grand partition function of a classical Cou-
lomb gas. The charged particles correspond to
spin-up and spin-down flips.

Although this result is not explicit with respect to the

physical properties of the s-d model, one can study the
thermodynamics and the correlation functions of the
classical gas. Thereby one obtains information
about the dynamics of the spin fluctuations and, for
example, the susceptibility of the impurity spin.

The static magnetic susceptibility of dilute mag-
netic alloys has been the subject of intensive the-
oretical investigations; the results, however, have
remained controversial. ~ While at high tempera-

tures a Curie-like dependence characterizes the
paramagnetic behavior of the impurities, at low
temperatures a degradation to less than Curie de-
pendence seems to be the general result of the cal-
culations based on the s-d model for antiferromag-
netic coupling. The current theories differ in the
degree of this degradation.

The experimental situation too is not very clear. 7

Qualitatively the behavior described above has been
observed on a wide range of dilute alloy systems.
However, even for comparatively low concentra-
tions, interaction effects seem to be present and
complicate the interpretation. Recent experiments
where proper attention to this difficulty has been
paid confirm the Curie-%'eiss behavior above and
near T» (for CuMn with 6 = 10 mK), while far below

T~ a constant plus quadratic term have been mea-
sured (for AuV with 6=300 K). ~

The problem is how to explain the "disappearance"
of the spin towards T=0. Essentially two views
have been suggested of the low-temperature be-
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havior of the impurity spin embedded in the "sea"
of quasifree electrons. Some authors' ' say the
spin is screened by a cloud of antiferromagnetically
coupled electron spins; i.e., the spin is compen-
sated. The formation of this cloud starts at a criti-
cal temperature T~. Below T~ the paramagnetic
behavior of the impurity is more and more sup-
pressed because of the surrounding spin cloud of
opposite spin direction. A rather different pic-
ture'2 '4 is the consequence of a spin-fluctuation ap-
proach. It suggests that the impurity spin fluctu-
ates rapidly at low temperatures so that the spin
is no longer "seen" in experiments which average
over a sufficiently long time. These two pictures
seem to contradict each other. However, one can
show that for a special case both approaches lead
to the same result. ' The special case is the An-
derson model with U= 0 and E0 = 0, which we will
call the resonant-level (RL) model in the following.

This RL model is of special interest in Ander-
son's classical-gas approach and the subsequent
development of a scaling theory. '~ Before outlining
the results and predictions of this theory as far as
it is relevant in this context, let us restate the basic
concepts.

The approximation used to derive the partition
function of the s-d model is quite different from
those applied before. A good way to get a feeling
for it is to replace all conduction-electron operators
in the s-d Hamiltonian by density-wave operators
in an adaptation of the Tomonaga model. ' This
means that in the neighborhood of the Fermi sur-
face all hole-hole, particle-particle, and particle-
hole processes are taken into account. This ap-
proximation stresses that the interesting physical
effects are due to what happens close to the Fermi
surface. Starting with this simplified Hamiltonian,
the derivation of the partition function is straight-
forward. The use of the Tomonaga model is equiva-
lent to the "asymptotic time approximation" ap-
plied by Anderson and Yuval3 and by Hamann in his
path-integral theory. '~

From the view point of the physics of the classical
gas, this approximation suggests the importance
of long-range interactions. The classical gas de-
scribes also the resonant-level model as a limiting
case. This has led Anderson et al. '6 to develop a
scaling theory comparing the RL model with the
antiferromagnetic s-d model.

We have studied the properties of the Coulomb
gas with the help of the computer. We report here
the method and results of the numerical calculation
of the low-field spin susceptibility. This is equiv-
alent to calculating the square of the dipole mo-
ment of the Coulomb gas. By doing this for gas pa-
rameters corresponding to the s-d as well as to the
RL model, in a way we test Anderson's scaling the-
ory and the validity of the basic approximations.

In Sec. II we restate our theoretical starting point
and discuss the connection between corresponding
thermodynamic quantities of the classical gas and
the s-d model. We will do the same for the RL
model in order to compare the susceptibility as
calculated by the computer to the correct one. In
Sec. III we will describe our numerical method which
is an adaptation of a method of biased random walkby
Metropolis et a/. Finally, the results and their rele-
vance to the scaling theory are discussed.

II. THEORY

The partition function of the s-d model can be ob-
tained by expanding

g S ur( w(HO+II~ ))

with respect to 0, . Here the Hamiltonian is de-
composed as

1
&0= &l! % +~z~z g~~ (ca+c!!'+ ca-ca'-)+gpBIf~

a, o

Hg =cT+$~ ~ cg cg~ ~+c ~ c.
ua'

with the usual notations, except that we distinguish
between the different components of the exchange
integral. As has been shown, 2'3 the partition func-
tion for S=—,

' can be written as

Z Z0 Z] p

Zo = Sgur8

n g

Z, = Z ~2 d~„~ d7, I'„,(v, v„) .
n=0, 2, ~ ~ . 0

fy =k. 0

(6)

Z, has the structure of the grand partition function
of a classical gas. The Boltzmann factor I'„, is

n

&„,=exp —p, -1 " "v v„-7& —a p,*HD„
v& v'

(7)
where

p~
= 2(l —Zg 7')

represents the gas temperature; the interaction po-
tential is

ln . for v&x& p —rsinvx/p
sinn' p

elsewhere .
The cutoff 7 is of the order of magnitude of the den-
sity of states of the conduction electrons at the
Fermi surface. We have chosen to avoid the sin-
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gularities for short distances by introducing a soft
core beyond the cutoff. We will come back to this
point below. D„has the form of the dipole moment

D„= 2 (-1)"~„-p/a. {io)

p.* contains the g factors of the electrons g, and the
impurity spin g:

V* = us(g -d.&&P/2) .

where p,, is the chemical potential. Then with

N=N, +N =2K,

for J,=J, we have

and with (14)

(18)

The form of P„, suggests that one deals with par-
ticles of positive and negative unit charges distrib-
uted alternatingly on a ring of length p. This
comes about by performing the trace over S, and 8
in the expansion of Z. Thus, spin-up and spin-
down flips alternate, and there are equal numbers
of each sort. Obviously, one can as well talk about
a spin-flip gas.

We will show now how the "electric" suscepti-
bility of the charged gas is computed and how from
this one obtains the magnetic susceptibility of the
8-d model. Differentiating the free energy of the
gas

(ia)

with respect to the "electric" field p*H gives the
average dipole moment, which, of course, vanishes
for zero field. Differentiating twice, one obtains
the susceptibility

x, = p, '&~') .
The free energy of the s-d model is

E~q = —p ln(Zp Zg)

=(p,/p)Z, —p-'h Z, ,

(13)

so that up to the Pauli term the susceptibility of the
8-d model is

x =(p,/p)x, =p'&D'). (is)

We put ILL*= 1 for simplicity. The average is to be
understood in the usual classical thermodynamic
sense. It means that one has to square the dipole
moment D„ for n charges, multiply by the Boltzmann
factor, and integrate over all position variables v„.
One has to do this for all n, to sum and to divide by
Z, calculated similarly. This, of course, is an
impossible task in practice. Instead we restrict the
calculation to a single ¹ We choose N as the mean
particle number in the volume p as given by differ-
entiating the free energy with respect to the chemi-
cal potential. This means we use the well-known
concept in thermodynamics that for large particle
numbers aQ sorts of ensemble averages should give
the same result. In order to derive N we point out
that —,

' J, must be proportional to the fugacity of the
gas:

(ie)

F~ is unknown, but there is a trick for calculating
its derivative. First, by rotational invariance,

holds. Using Eq. (14) we have to consider that J~
appears in Zo [see Eqs. (2) and (S)] and also in Z,
via P~. As to the Z, term, the derivative above with
respect to J~ leads to the average potential energy
( V), that is, to the grand canonical thermodynamic
average of the quantity

V, = Z (-1) v(v, —r, ) ~

v&v'

For the Zo term one can expand

o=-p ln&p
-1

(ai)

80(t)= . for 7&t&p 7. —sinvr/p
sinn t p

Outside this interval,

8 0(t) = 1 for soft core;

(24)

if one had chosen to use a hard core beyond the cut-
off, one would have

80(t) = 0 elsewhere .
The result for Fp depends on this choice:

Fp=--,'Z~ y for soft core, (as)

Fp= —8 J~2y for hard core.

With (25), using (19), (20), and (1V) we finally have,
with O'= 8& = J„

~= pZ'~+4m~( V) . (2V)

as usual in time-dependent perturbation theory, and
calculate it term by term (sum of "unlinked bub-
bles"). Here also one consistently uses the infinite-
time approximation for the electron propagator.
We restrict the calculation to lowest order in J~ as
it turns out that highex -order and temperature-de-
pendent terms are negligible in the numerical ap-
proach. In these approximations,

jt'0= —,J~'f, d~, f 'dr, 80(r, —v, ), (23)



SUSCE PTIBILITY OF THE s-d MODE L 2231

2x x/P
&(-+~)

2 2x

N= —p(a~/~) In(~7)

p, 1 Pa
xRL 2 3 ~ 2

(sl)

(32)

—2%10 where s = w V~v and (' is the derivative of the digam-
ma function. In Fig. 1 we have plotted y~'~. As-
ymptotically it behaves Curie-Weiss-like for high
temperatures:

y„~„=4(T+ b,/1. S5),

and for low temperatures as
Sy2-1 md+

(32')

(32")

hV~ 2.25%10

, l
tcmpcraturc V /P

5.10

FIG. 1. Inverse susceptibility of the RL model (solid
curve), asymptotic behavior for T «1 (dotted curve) and
for T»1 (broken line), and computer results (crosses).
The high-temperature asymptotic curve has the same
slope as the free-spin Curie law and therefore indicates
the vertical scale.

X~=P '&D~&. (as)

This procedure sounds more complicated than it is,
because we found a well-obeyed proportionality be-
tween N and & V„). This means that the volume p
and the number of particles N it contains are pro-
portional to each other, so that even for rather
small N the particle density is constant.

We also want to apply the numerical approach to
the RL model in order to check the quality of the
numerical procedure and also of the basic approxi-
mation by comparing numerical results to the exact
ones. For the BL Hamiltonian,

HRL =Z~ ~~n~+Z~ V~~ c„c~+c.c. , (29)

This relation connects the particle number of the
classical gas with the temperature of the s-d prob-
lem. & V) poses the same averaging problem as
&D~). If, however, we calculate ( V„) in the ca-
nonical ensemble of N particles, then (27) is a self-
consistent equation for N. Once N is determined,
one can calculate

(D') P,
and with (28)

(33)

(34)

This means that y,„' should show a straight Curie
behavior. For P» & 2, that is, for the antiferromag-
netic case and for the BL model, the system is in
a disordered phase. However, it shows domain
structure where groups of ordered pairs are sep-
arated by single + or —charges. For such a sys-
tem and for a volume large compared to the mean
domain length, the average of the square of the di-
pole moment should become proportional to the
particle number or the volume:

(35)

and, therefore,

y~ =const for Je- ~.

Therefore, the entropy vanishes as T-0 as it should
be. According to the scaling theory, 6 an impurity
spin described by H~ should behave qualitatively in
the same way as a resonant level described by H».
Therefore, we expect X,,' to obey (32) qualitatively,
that is, to have the same analytic form.

Now, before entering the numerical problem,
what is to be expected from the behavior of the .

classical gas and, therefore, of its dipole moment?
The particles tend to form pairs or dipoles. For
the ferromagnetic case (p, & 2), the system is pre-
dicted to be completely ordered, so that for all N
(or P) D„ is finite and approximately + p/2 or —P/2.
Therefore, in the limit of large volume P,

the corresponding gas temperature is

P»=1 y (3O)

For smaller p, when the domain length is compar-
able to the volume, the system appears to be more
or less ordered, so that

and the mixing potential V,„=V is proportional to
the fugacity of the gas. The free energy can be cal-
culated exactly and, therefore, also the relation
between N and P. The derivation of this relation
and of the susceptibility is given in the Appendix.
One finds

Xsa P y

as above in the ferromagnetic case.
Evidently, in this theory the degradation of the

impurity spin or the change from Curie to Pauli
behavior of the susceptibility is the consequence of
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(D ) reaching the thermodynamic limit. If one
wants to eharaeterize the regime where this behav-
ior changes by introducing a critical N~ or volume

p~, one expects the latter to be of the order of the
inverse Kondo temperature,

P ~-i e-r~')- (36)

Similarly, for the RI model this change of behavior
ean be characterized by

or

Z„=—(2/v) In(n, ~) .
III. MONTE CARLO METHOD

In order to calculate the thermodynamic averages
{D~ ) and ( V„), we use a particular Monte Carlo
method devised by Metropolis et gl. " It is fre-
quently used in statistical mechanics to evaluate
averaged quantities of the form

(f& = f„dxP(x)f{x)/f dxP(x), (38)

where P(r) is an unnormalized probability density
as our Boltzmann factor. The method allows one
to evaluate averages of this form as

&f&=—~ f(&).A
M „0

This is accomplished by starting with an initial con-
figuration xo=(g 0~, . . . , v0„$ of N particles. The po-
sition of a single particle is then changed randomly
to give a new configuration x~. In our case we have
to take care that the charges do not pass each other.
Then by comparing P(x~) and P(x'), one settles the
question of whether the new configuration is a "good"
one and if f(x') is to be added in (39). In practice
one calculates the change of the potential 4V pro-
duced by the change of position of the moved par-
ticle. If b, V 0or P(x') —P(x ), the x' is—the sec-
ond configuration and f{x') is added in (39). If d V
& 0, one calculates exp(- p, n, V) and compares this
with a random number y; 0 —@&1, provided by the
computer. If exp(- P~ hV)& y, the new configura-
tion is still chosen as the second one, otherwise the
initial one is used again and the old f(x') is added
again in (39).

This procedure is repeated on the second config-
uration in order to choose the third, etc. As we
deal with two kinds of charges which tend to stick
together, we also move pairs after having moved
single particles. This prevents "freezing" in cer-
tain configurations. In the limit M- , after long
random walks, a configuration x" occurs with fre-
quency P(x") independent of the initial configuration
chosen and independent of the special way of gener-
ating new ones.

In a problem like ours the biggest task is to oy-

timize the program. As the potential energy is to
be calculated for such an immense number of times,
one has to see that ln sin is calculated economically.
For this purpose, we devised a linear interpolation
scheme between tabulated ln sin values. They get
closer spaced in the region of larger variation of
ln sin with a scale where use is made of the pseudo-
logarithmic notation of floating-point numbers (hex-
adecimal base, on the computer IBM No. 360/91).
Then, 8 &10 steps of the sort described above take
10 min for N= 96. For smaller N, the calculation
gets fa.ster; for instance, 2. 4&&10 steps ean be done
in 10 min for N = 16. For each N we ha.d the com-
puter do 8000 steps per particle. One could see that
after a few hundred steps the initial configuration
was "forgotten. " The average {D'&was calculated
between the 1000th and 8000th run per particle.

IV. RESULTS AND DISCUSSION

The numerical results are plotted in Figs. 1-3.
Figure 1 shows the inverse susceptibility of the RL
model. The solid curve is the exact gRL with 4v'

=2. 25&10 . The dots are calculated with the Monte
Carlo method for particle numbers between 4 and
48 and Eq. (31) has been used for converting par-
ticle numbers into temperature. The reason for
this very small 47' is that we wanted to see the
change from Curie to Pauli behavior. Here we have
N, = 10. Bigger 4v involves smaller N„but then
all reasonable particle numbers, that is, N& N„
would fall into the "Pauli region. "

The agreement between the measured and exact
g

' values is quite satisfactory in three respects:
(i) One gains confidence in the theory, especially
the basic approximation, (ii) the Monte Carlo method
is adequate, and (iii) the method works quite well
already for small particle numbers N like 6, 8,
etch' ~ e e ~

Figure 1 shows in addition the asymptotic behav-
ior of ga'„according to Eqs. (32') and (32"). In Fig.
2 the computer results for y~ for antiferromagnetic
coupling (P, & 2) are presented. Calculations were
done for J,7=0. 175, Jar =0. 200, and Jg =0. 225.
These parameters were chosen for the following
reason. If one calculates the critical N~, inserting
(36) 1Ilto (27) one finds apploxlmateiy Nrg = 14, %~a
= 8, and Nr~-—6; from (2V) they do not come out as
even numbers, which, however, they must be. For
computer time reasons we did not go beyond N= 100.
Therefore, for small N~ like %~=6 one hopes to see
the turnoff to Pauli behavior, because then for all
N& 6 one moves below the Kondo temperature.

For the values chosen for J3 and J3 one should,

cover the region near and above TE. The solid
curves shown were obtained by the method of least-
squares fit, that is, we tried to fit the computer re-
sults to a straight line as well as a curve of the
form of (32),
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FIG. 2. Inverse susceptibilities
of the s-d model computer results
for Jv = 0 225 J7' = 0 200- Jv = 0 175
The free-spin Curie curve (solid line)
provides the vertical scale.

QM

j I

10 TK(375)

I I

540 3

temperature T/P
I I

10-2 T„(.225)

2m 6
Xes =

For Z&, (40) gave a better fit than a simple
straight line; for &p and 8, the straight fit and (40)
a eof the sa eq abty. Thepa a ete stand~
are supposed to indicate the modification of the ef-
fective magnetic moment and the Neel temperature—
from (32') it should be about n,/2-respectively. In
Table I we listed 6, 5, and T„ for comparison for

the three cases of J we studied.
The relatively large scatter of the dots for J'3 has

probably to do with the tendency of the particles to
build up domains of dipoles which move about in the
volume and fluctuate in size. Therefore, the con-
vergence of the Monte Carlo method is poorer below
than above T~, where for smaller volume the sys-
tem looks more or less ordered. Very much below

Tr (or for very large N) these fluctuations are ex-
pected to average out so that the convergence im-

FIG. 3. Upper curve: machine
calculations based on a hard-core cut-
off compared to soft-core results for
t'w = 0.200 (solid line) lower curve.
machine results for ferromagnetic
s-d coupling for p*=l; solid line; free-
spin Curie law.

Q 10 5&0

temperature�'t/P

I
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N= ,' PJ~r+4 —Jr(V„) (41)

for a particle-number-versus-temperature scale.
The results are plotted in Fig. 3; the solid line is
from Fig. 2 for J7 =0. 200. The computer's dots
are a little higher than the "soft-core curve, "
therefore, 5 changes a little, but the results are
the same in principle.

This confirms Anderson's argument that though

the use of the cutoff is extremely important, the de-
tails of its structure are not. So the result estab-
lishes self-consistently the. validity of the "asymp-

TABLE I. Parameters of the susceptibility (40) and

the Kondo temperatures (36) for three different values of
antiferromagnetic exchange integral J. p

i is the square
of the effective magnetic moment. p* from (11) has not
been taken account of; it changes p"i by a factor of
g (1—JT), jf we put ge=g.

proves. Obviously, N= 100 is not yet large enough.
Our results, of course, do not confirm the scaling

theory unambiguously. Especially the region where

g,„' is predicted to behave as

X~ =a+ bT 2

is very close to the vertical axis —closer than we
could go.

To study the region near T= 0 more closely, one
could think of the trick of choosing a very large Jv
with a small NE for an "enlarged picture" of the
Pauli region. This, however, is impossible, be-
cause the classical gas gets too dense, that is, N/P
gets too large. If the mean distance of the particles
becomes comparable to the cutoff z, the asymptotic
time approximation will certainly break down be-
cause the short-time (or short-distance) behavior
becomes crucial. Here, for J&7' we have for the
mean-particle distance P/N= 12', which we felt is
as far as one can go.

The results show convincingly that g,„is finite
at T=O, which is here the consequence of the dipole
moment saturating in the thermodynamic limit,
N- ~. If one extrapolates the curves one finds Weel
temperatures of about 3TE.

We also checked into the importance of how one
treats the cutoff region of the interparticle poten-
tial. All calculations for Fig. 2 were done using a
soft core as in Eq. (9). We repeated the calcula-
tions for Jv = 0. 200 introducing a hard core, that is,
v(x)=~ (or, on the computer, a very large number),
for x&7 and x&7 —P.

Instead of (27) one has then to use

totic time approximation, "or of the Tomonaga mod-
el, as long as one studies a dilute classical gas, as
indicated above.

In Fig. 3 we also plotted computer results for the
case of a ferromagnetic exchange integral p, & 2.
A rather extreme value of I Jr I

= 0. 225 (p, = 2. 45)
was chosen, because for P, —2 ordering of the sys-
tem is predicted, and we wanted to see whether for
a rather high density an instability in the order can
be noticed. It turns out that the system remains
completely ordered, and one finds a straight and
an unambiguous Curie line for y,,'„,. The figure
drawn is misleading in that we put p* = 1 through-
out. If one takes account of (11), the curve for
g,,'„,will be flatter than the free-spin Curie curve,

Xferro = P!2' 5 t

as compared to Xo„„,=-,'p (g=g, =2).

V. CONCLUSION

Two qualitative conclusions have emerged from
the calculation: (i) that the static magnetic spin
susceptibility is finite at T = 0 and behaves Curie-
Weiss-like for high temperatures with a Neel point
of about 3 T»; (ii) that using the asymptotic time ap-
proximation, the susceptibility of the resonant-level
model is reproduced very well and the results for
the s-d model are practically independent of the
treatment of the short-time behavior. Therefore,
this approximation must be supposed to reproduce
the physical properties of the s-d model correctly.

Our calculations confirm the scaling theory with
respect to the behavior of the classical gas: It is
completely ordered for ferromagnetic s-d coupling
and has a domain structure of rather wild behavior
for low temperature in the antiferromagnetic case.
The susceptibility (or mean-square dipole moment),
however, behaves quite undramatically. Especially
in the region below the Kondo temperature, the ac-
curacy of the Monte Carlo method seems limited
but sufficient for qualitative purposes.
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APPENDIX: PARTICLE NUMBER AND SUSCEPTI-
BILITY FOR THE RL HAMILTONIAN

Particle Number

As mentioned above, the RL model is a special
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case for the classical-gas approach. All its prop-
erties can be calculated directly from the RL Ham-
iltonian.

With respect to the classical gas, the mixing po-
tential is connected with the fugacity by

V cce~r~»,

where

V. =- Vid V =- VI*d= Vu .
Therefore, we have from (18)

(Al)

(A2)

N»= — =-P~ V» (As)

Eaz, — p (lnZp+ 1nZg) (A4)

where Zo refers to the kinetic energy alone, and

(As)Ii~= —
P~ inZi,

so that

The free energies of the classical gas and the RL
model are connected as in (12) and (14):

2N= ——hpln(b, v) .
7r

(sl)

The easiest way to evaluate this integral of the
form

cT= f ot((d) f (4)) d(0

is by decomposing it as

cT= f CV((d) 8( —(d) d(d+ f Q((0) [f ((d) —e(- ~)] d~,
(AlS)

where e is the step function. The first integral can
easily be done, the second has now a convergent
integrand so that one can evaluate it by contour in-
tegration methods with D- ~. The result is

N= ——Spin(n7) —4 —@ —+——ln—2 Pb, 1 ph Ph
71' 2g 2 2m 27t

(A14)

We checked that the second term is always small-
er than 0. 316, so for the numerical produce it is
sufficient to use

8FarN»=- P V»

If we write the RL Hamiltonian as

aR, =z„„+V,

(A8)

(AV)

Susceptibility

As has been shown before, ~ the cd~ and c„opera-
tors act like Pauli operators or like S' and S .
Therefore, the term which corresponds to the Zee-
man term in the s-d Hamiltonian,

V = V+~y cy cd + V„~p cd ct

one has

g~HSe= P,eH ,'(S'S —S-S'),

has the form

(A18)

N=N, +N = —P V, +V' 8V,

= p Spur[ V e ~(Z„,+ V )][Spure ~(E„„+V)] ',
(A8)

ga H2 (c~ c„—c~ cz) = Pe H (nz 2)

for the RL model.
The susceptibility

(A18)

so that finally

N= —P&V~a(ca'ca+cue )& (A9)
s &n, ——,')

gRL (A17)

where we put V, = V = V.
This expectation value is evaluated in the usual

way with the help of the Green's function

is evaluated using the Green's function G« for the
expectation value,

1
Gas(~ ) =

40- &q

V
co+ i 4 (A1O)

Gg g ((d ) = ((d —pe H+ i b )

Then

(A18)

Here, and in the following, use is made of the ap-
proximation &n, —l &= --' ue

Zy ((0 —tg+ Aj) '—l 6 = —i V vt . (All) x f„d(u f ((o) 1m[(&u —peH+i n) ' —(&a+i n) ']

Then the usual technique gives

N= ——
2 z f (&u) der,ph D 2'

71'
g) N + ~ (A12)

so that finally

(A19)

%here a band cutoff D=7 ' has to be introduced be-
cause of the approximation (All), and f (&g) is the
Fermi function.

p&2P, 1 bp
&RL 2~ 2 271

(S2)
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Previous spin-wave-renormalization calculations, even those including correlation effects,
have been unable to explain correctly both the temperature and field dependence of the mag-
netization of ferromagnetic CrBrs. However, these calculations were based on a simplified
model lattice, which has been shown by recent neutron-diffraction experiments to be only
qualitatively correct. In the following, we present a first-order renormalized spin-wave the-
ory which takes into account the true crystallographic structure of CrBr3. This theory ex-
plains simultaneously the temperature and field dependence of the magnetization and the mag-
non dispersion curves. Although the simplified model contains only two exchange parameters,
while the exact model contains five, we find that once the true crystallographic structure is
introduced, a two-parameter model can explain M(T, H) and the low-energy part of the mag-
non spectrum. We conclude that the previous discrepancies between theory and experiment
were not a result of any failure of spin-wave theory or of the presence of too few exchange
parameters, but were due simply to a misrepresentation of the crystal structure.

I. INTRODUCTION

CrBre is a rhombohedral insulating ferromagnet
with T, = 32. 5 'K. Because of its weak layered
structure, this system is particularly useful for
testing the validity of spin-wave renormalization
calculations. '

Nuclear-magnetic-resonance (NMR) measure-
ments ' have furnished a very accurate determina-
tion of the magnetization M(T, H) versus tempera-
ture and field. These results were explained by
means of various spin-wave theories. Because of
the complicated crystallographic structure of CrBr3,
a simplified model was introduced by Gossard,
Jaccarino, and Remeika, ~ involving only two ex-
change parameters: J~ between nearest neighbors
in adjacent planes and J~ between nearest neighbors
in the same plane. From their measurement of

M(T, O) versus T, Davis and Narath' calculated Jr
=0.497+0.013'K and Jl, =8.25+0. 10'K using a
self-consistent first-order renormalized spin-wave
theory. However, as has been recently shown,
while this set of values of the two exchange param-
eters gives a very good fit to the magnetization
M(T, 0) versus T in zero field, it does not explain
the magnetization M(TO, H) versus H at Ta= 18 K.
In fact, it is shown in Ref. 5 that even a more so-
phisticated spin-wave theory correct to all orders
in the magnon-magnon interaction is unable to ex-
plain simultaneously the M(T, 0)-vs- T and M(TO, H)-
vs-H data. The authors attributed this inability to
the inadequacy of the two-parameter model, citing
as evidence recent inelastic neutron scattering
measurements of the magnon spectrum. Indeed,
a five-parameter model (which takes into account
the true crystallographic structure) was introduced


