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The equation for the vertex part of a Cooper pair is developed in the Wannier representation
to highlight the atomic nature of the electrons responsible for superconductivity in narrow en-
ergy bands. For a nondegenerate band and a short-range interaction between two electrons at
sites n& and n2, the transition temperature T, is determined by a small set of coupled integral
equations in n&

—n2 and in the energy variable &. With contact interaction, n& =n2, only a single
equation in remains as the defining equation for Te. The solution has the Bardeen-Cooper-
Schrieffer (BCS) form with an attractive interaction depending on a phonon Green's function
in site space and with a repulsive interaction determined by the intra-atomic Coulomb integral
U. The isotope effect is calculated as a function of U; the result can account for small nega-
tive or even positive effects, as observed in transition metals. For a degenerate band, the
vertex part depends on the site variables n and on the orbital indices i, the latter denoting a
set of localized orbitals which transform according to a degenerate representation of the crys-
tal group. T, is calculated in the contact model for a cubic 1"2& band. The result contains the
total density of states at the Fermi surface and the intraorbital and interorbital interactions
weighted with factors 3 and 3, respectively. The lowering of T~ by long-range Coulomb inter-
actions due to exchange effects is also briefly discussed.

I. INTRODUCTION

Most of the superconducting metals fall into one
of two classes: simple metals and transition met-
als. The conduction electrons of simple metals
have a large amplitude between the atoms, and their
eigenstates can be found from the orthogonalized-
plane-wave (OPW) method or from its pseudopoten-
tial formulation. The Fermi surface (FS) in the
extended zone scheme is similar to that of free
electrons. The phonon spectrum and the electron-
phonon interaction can be calculated by using OPW
states; the Coulomb interaction between the con-
duction electrons can be approximately evaluated
by using the dielectric screening function of a free-
electron gas. The results lead to a reliable esti-
mate of all the parameters which enter into the the-
ory of superconductivity of Bardeen, Cooper, and
Schrieffer (BCS).' This theory, and its extension
to cases of strong electron-phonon interactions,
have been remarkably successful in accounting for
the superconducting properties of simple or OPW
metals.

The BCS mechanism also applies to transition
metals, in that Cooper pairing is caused by the vir-
tual exchange of phonons between electrons. ' How-

ever, the evaluation of the pairing parameters in
the Bloch representation is so cumbersome that
only recently have any attempts been made to do

this. The difficulty lies in the presence of unfilled

and narrow d bands and the fact that d electrons
govern the superconducting properties of most
transition metals. The interactions of d electrons
with phonons and with one another are conceptually
less well understood and mathematically more dif-
ficult than those of nearly free electrons. The
d-d pairing interaction is usually more important
than the s-s or s-d interaction, because of a large
d-electron density of states at the Fermi surface.
While in the normal state the s electrons carry the
electric current, so that the d-electron-phonon
interaction is not of much interest here, the Cooper
pairs formed from d electrons carry most of the
supercurrent below T,.

The question arises of how suitably to formulate
the pairing of tightly bound electrons so that the
BCS parameters and especially trends of these pa-
rameters with alloying, pressure, etc. , can be esti-
mated. It is the purpose of this paper to present
such a formulation and to use it, as yet in rather
simple model cases, for a discussion of the transi-
tion temperature T,.

To this end, the atomic aspect of itinerant elec-
trons in narrow bands is emphasized. The wave
functions of d electrons, in particular, those cor-
responding to states near the top of a d band, have
much larger amplitudes at the atomic sites than
between them. ' The mean time-of-stay for a d elec-
tron at a given atom is of the order of r = 1/AE,
where n,Z is an appropriate bandwidth (5= l). For
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b,E values of a few eV, this y is much larger than
the time of revolution t = 1/8, where E is the bind-

ing energy of a d electron (~ 20 eV). In this situa-
tion one can speak of an electron on a particular
atom. Note, however, that an electron stays on a
site for a time much smaller than the atomic vibra-
tion period, except for extremely narrow bands.

In Sec. II we formulate the integral equation for
the vertex part of tightly bound electrons, using
the Wannier or site representation which empha-
sizes the atomic character of d electrons. From
the vertex equation, the transition temperature can
be determined. s The crucial ingredient in this
equation is the irreducible vertex part. It is derived
in Sec. III as a sum of two parts; the first is due
to phonon exchange and the second to Coulomb in-
teractions. The irreducible vertex part takes a
simple form in the special form of a contact model,
which corresponds to a situation where the electron-
electron interaction is of short range and the Wan-
nier functions are sufficiently localized. It is noted
that our contact interaction due to phonon exchange
has some similarity to the pairing interaction used
by McMillan and Hopfield in discussing T, for cer-
tain transition metals and alloys. In Sec. IV we
discuss the homogeneous integral equation defining

T, and derive an explicit formula in the contact
model. In a first step towards the problem of de-
generate bands, we formulate in Sec. V the equa-
tions for the vertex parts of a threefold-degenerate
d band in a cubic crystal.

II. VERTEX EQUATION FOR A COPPER PAIR IN

A NONDEGENERATE BAND

Above the superconducting transition temperature
T„ the two-particle Green's function of the elec-
trons can be decomposed into a free and a scattered
part, and the vertex I; occurring in the scattered
part, obeys an inhomogeneous equation of the gen-
eral forms

XG(x,'", x,")r(x,",x,",x„x,) . (2 3)

v& = i(z/p) (2j+ 1), j= 0, + 1, (2. 4)

Using the conventional Fourier transforms of G,
I, and I', and the notation z =- (r, ~, s), we have

I'(z„z„z» z,)

= —(I/2P) Z
~t t t0t t I ~ ~t t ddt t t

Z ~ 2

x I'(z,', z,', z,"', z2") G(z,"', z,")

the summations over spins being implied.
Next, we pass from the r representation to the

Wannier or site representation, characterized by
the atomic site vectors n. The creation operator
gt(r) is expanded as

g'(r) =Zz a'(n) wf (r), (2. 6)

where the wz(r) are the orthonormal Wannier func-
tions corresponding to sites n:

wz(r) =w(r —n) . (2 '7)

Since we consider here a one-band model, we have
omitted summations over band indices. The func-
tion w;(r) is related to the normalized Bloch wave
g„-(r) by the equation

Here x stands for (r, r, s), where y is the imaginary
time (0 & v & i/hs T) and s is a spin index; J d x de-
notes integration over r and z as well as summation
over s; the temperature Green's function is defined
as usual; and the irreducible interaction I will be
discussed in detail below.

We first Fourier transform Eq. (2. 3) with re-
spect to the imaginary time variables. The con-
jugate to z is

F=I- 2FGGI . (2. 1) |)f (r) = (1/N' ')Q w, (r ) e"' ' . (2.S)
Here the G's are the one-particle Green's functions
and I is the irreducible electron-electron interac-
tion vertex.

As the temperature approaches T, from above, I'
tends to infinity so that at T, it satisfies the homo-
geneous equation

r= --,'FGGI . (2. 2)

This equation may then be regarded as the defining
equation for T„which appears in the G's and,
though negligibly for our purposes, also in I. Equa-
tion (2. 2), when written out fully in coordinate
space, reads

I"(x»xppx»xz)= ——,J dxg dxz dx) dxa

x r(x,', x,', ,
"' x,'")G(x,"', x,")

From Eq. (2. 6), the unitary transformation con-
necting the r and n representations is

(n~r)=wf(r), (r~n)=w;(r) . (2. 9)

In the site representation, and with the notation
h =- (n, ~, s), the vertex equation (2. 3) has the form

r(h,', h,', h„h, )

= —(I/V)
pent

t gt t t ~ Pl. t y
t t t1'1'2'2 r(h,', h,', h', ",h,"')

x G(h,"', h,")G(h, ', h,")f(h,",h, ', h» h&), (2. 10)

where, for example,

G(h,'", h,")
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I I

n) &ftf

I I

n), fff n) &Of

I I I I

n) &off

= —I;..., , (lf, l2, lp, lf),1221
(2. 12)

which follows from the original definition of 1.
Furthermore, the irreducible interaction I, which
has an analogous antisymmetry property, can be
separated into a direct part and an exchange part

lg&,», , (l f & l2 & lf& l2) E(Ef & l2, l„ l2) 5,",5;.,

where

—E(lf & l2 & lp& Ef)5t& 8 5&&f &2 & (2, 13a)

E(lf l2 lf E2)=I(E2", l,",E2, lf) . (2. 13b)

Substituting Eqs. (2.12) and (2. 12) into Eq. (2. 10)
gives for the spatial part of the vertex

r(l,', I,', l„ l,) = —(I/P) Z
pt gttt &

hatt [ttt
2

= f ff2&, „(rf'")G(ef Zf' )fOjf (1 f )d f"1 d ~f
1 1

(2. 11)

A graphical representation of Eq. (2. 10) is shown
in Fig. 1.

This equation can be considerably simplified.
Let us begin by eliminating the spin variables. Us-
ing the notation l —= (n, &o) and writing the spin varia-
bles explicitly, we have the antisymmetry property

I I

n2, - n2, ftf
I I

n2&
- fjjf

II I I I

n2, -fff
I I I I

n2& Qf n2& -ftf

FIG. 2. Graphical representation of the equation for the
vertex part of a Cooper pair with zero frequency.

Hence

G(n', Id'; n, &d) = 5~ „G(n'-n; III),

where

G(m, (d) =.(1/N)Zg(e'™/[&—&(k)]) ~

From (2. 1'l) it follows that in Eq. (2. 13)
I / III /I III

Q)1 = 4)1 y 602 = (d2 ~

(2. 1V)

(2. 18)

(2. 19)

Further, using conservation of energy (see Fig. 1)
and the fact that the superconducting instability oc-
curs first for pairs of zero frequency, ~ we have

I I I I I// ~ I I I I I
I&tf + Id2 II&f + (Of Mf + M2 M f + (I&2 = 0 . (2. 20)

A graphical representation of Eq. (2. 14), incor-
porating the frequency conditions (2. 19) and (2. 20),
is shown in Fig. 2.

Next, we note that the variables l,', l2 enter I"

only in the sense of common labels and may there-
fore be dropped. ' We write

I'(lf, l2, lf, l2) - I', , (lf, l2)- I'(l„ l2)- I'(nf, n2, II&),

(2. 21)
where

&&G(lf", lf') G(l2 ', l2') E(lf"& l2", lf, l2) . (2. 14)
CO = Q)1 = —(d2 . (2. 22)

I

h) hl h) hill
1

h
I I

1

Next, we note that, in the Bloch representation,

G(k', &0', k, Id) = 5f I.5„„.[I&1 —2(k)], (2.15)

where e(k) is the band energy of the electrons with

respect to the Fermi energy. (This is the unre-
normalized Green's function. Renormalization can
be included as discussed in Ref. 2. ) The unitary
transformation connecting the n and k representa-
tions is [cf. Eqs. (2. 6)-(2. 9)]

(n k)=(1/N'~ )e'" ', (kIn)=(1/N' )e '"'
(2. 16)

Equation (2. 14) now becomes

r(n„n2; III ) = —(1/p) Z Z I'(nft", n2", &o"t
)

Qtt g tt gtlt ~ ptt' gttt
n1 ~ 1 in2 2

1j G(n«ttl n«ll tll) G(n«tll «tt tlt)

xf(nf, n2', Ilf"'; nf, n2, Id). (2. 23)

In view of the symmetry property (2. 13b) of the ir-
reducible interaction I, this equation has solutions
symmetric in n, and n2 (singlet) or antisymmetric
in n, and n2 (triplet). In this paper we shall only be
concerned with the singlet solutions.

Finally, because of the translational invariance
of the system, F must have the form

r(llf n2 M) r( 1 n2 (d) (2. 24)

h2 h2
I

h2 h2 h2

FIG. 1. Graphical representation of the homogeneous
vertex equation.

Such a solution corresponds to the common pairing
momentum q. The most favorable value of q, giving
rise to the highest value of T„ is q=0. ' Hence we
write
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I'(n„n„(u) = I'(n, (u),

where

(a. as) tive form for I (&», &o) is obtained by first summing
over energy shells:

n=n, -n3. (2. 26)
mkÃ

Z(p, , ~) = » i&I-„(~),
& + l~l (2. 33)

Now, the equation for I'(n, &o) [cf. Eq. (2. 23)t can
be written as

1 (n, &o) = (1/P) Z Z I'(n', ~') K(n', ~'; n, ~),
(2. 2V)

where

1 cos(k p) „8~3
6~CORSt

(a. 34)

K(K', ~';~, ~)=-Z Z G(m, ~ Tl, ~') G(m„—~'))
m2

i)I8(e), the largest of the N-„(&), is just equal to the
electronic density of states N(&).

xZ I(n '+ nl' —p, n2", &o'; n, 5, ~). (2. 28)

III. ELECTRON-ELECTRON INTERACTION

A. Phonon Exchange

Or, defining the function

I (p, (o) =-&~ G(m3+ p, (o) G(ml, - (o), (2. 29)

which describes the propagation of an electron pair,
and the contracted interaction vertex

I'(n', a&'; n, ~) = Z;i. I(n'+ n~", n&&', ~'; n, 0, &g),

(a. 30)

we may write

K(n', u)';n, )d) =-Z„- &(p, (o') I(n'-7&, (o';n, (o).

(2. 31)

Equation {2.2V), with X defined in (2. 29)-(2. 31),
represents our final form of the equation which de-
termines the transition temperature T, .

%'e shall see in Sec. IG that, for the most im-
portant interactions, the kernel I(n,', n~, n„nz)
is of short range in the sense that it tends to zero,
unless all arguments are near each other, within
about a lattice spacing. Consequently, in view of
Eq. (2. 28), K(n'n) is of short range in n, and
hence, by Eq. (2. 2V), 1'(n) is substantial only for
small values in n. Therefore, the summation over
n ' in Eq. (2. 2V) may be truncated after inclusion
of only a small number of n' vectors. This is im-
portant for practical uses of the site point of view
which is being developed in this paper.

The functions(7&, ro), defined by Eq. {2.29), may
be written, by virtue of Eq. (2. 18), as

+ggx(kl ~ k&) g))(kR) k2) +x(P1 Pl) 8p~&-p&, p~-p) ~

(3. 1)
Here X is the polarization index and

I&x(q) = »x(q)n~'- ~x{q)t (3. 2)

ls the phonon Green s function given in terms of
the vibration frequency &o),(q). The matrix element
for the emission of a phonon with momentum
q=k', —k, is given by

g„(k,', k, )

1/2

„ex q

gf*.(r) 'V'V(r —m) &jf, (r)d'r
1

In this section we shall discuss the phonon contri-
bution to the irreducible interaction vertex
I(n,', nz, &u'; n» nl, &u). This vertex is well known in
the Bloch representation. %e shall simply have to
transform it into the site representation, interpret
it, and finally form the contracted kernel I(n', ~';
n, e), Eq. (2. 30), required for the solution of Eq.
(2. 2V).

The phonon vertex consists of only one diagram
since vertex corrections may be ignored. " Accord-
ing to Fig. 3, and using the notation p—= (k, v),

Iph(P 1 & P3 t P& ) PR)

&&f (m3+u& &f"m2 I/2
e (q~) e&)1'm e&(-t& ~ n~&+f&'))&&

2MN&o„(q)

(2. 32) ao r-n, ' VVr-m sv r-n, d

Since the factor [la& l 3+ e (k)] ' in Eq. (2. 32) is posi-
tive definite, E (regarded as a function of p, ) attains
its maximum for g=t&; dimensional considerations
show that it becomes negligible as soon as ) p l is
much larger than a lattice parameter. An alterna-

Here M is the atomic mass and e),(q) is the polar-
ization vector; V(r —m) is the effective ionic poten-
tial at site m; and '0 is the crystal volume. The
matrix element for an absorption process has the
same form, except that q is replaced by —q. Mo-
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9(k~, k2)

q = p) -p) = -P2 +P2

I

g(kt, k) ) P)

X
I

~n

FIG. 3. Diagram for the phonon exchange behveen
electrons; g(k~&, k~) andgo|;2', k2) are the matrix el.e-

ments for an emission and an absorption process.

$1,%1.,f2, f2
1 1 25 (f1 ~ n 3+ j7$ n2- jf: ~ n - PT ~ n2)

&& I»(kl, ka, kl, kz,' al)

5 L a(m;al) (n,' IV V;In, ) (na iVaVf "Ina).
1am fya 8

(3.4)

Here &@=a&,—a&', =ala-a&'a, L a(m;&o) is a lattice
Green's function in site space,

(3. 5)

(n')V V;~n)= f ay*(r —n') V, V(r-l) te(r —n)d x,

(3. 6)

where V -=V„. A graphical representation of the
phonon vertex in the site representation, Eq. (3.4),
is shown in Fig. 4. Two electrons initially at sites
n,' and nz are scattered to n, and n2 by an atomic
displacement which propagates between 1 —m and l.
The summation is over the sites 1 and m.

According to Eq. (2. 30), the required vertex
I»(n', ar'; n, &o) is obtained from I»(n,', na, n„na; &o)

by partial summation. Since the latter is invariant
under simultaneous translation of n1', n2, n1, and n2,
lt ean be wrl'tten as

mentum conservation follows from the translational
invariance of the last integral against equal dis-
placements of all three sites.

We now substitute Eqs. (3.2) and (3.3) in (3. i)
and transform to the site representation. This
gives

I»(lit q na q 11l i Ila q co)

FIG. 4. Phonon vertex; electron 1 transfers from n&

to n~, electron 2 from n2 to n2. A lattice distortion prop-
agatee between 1 and T-nl.

It describes an atomic displacement of frequency m

propagating between, say, site 0 and all possible
sites —m, while two electrons, initially separated
by the lattice vector n', scatter into new positions,
where they are separated by the lattice vector n.

The interaction I» is significant only when all
four site variables are near each other. This may
be seen as follows. Clearly the matrix element
(3. 6) is small unless all three sites are near each
other. Furthermore, the function I a(m, &u) is,
Eq. (3. 5), the Fourier transform of a function of q
with a characteristic scale of a, where a is the
lattice constant. Therefore L &(m, ap) is negligible
for t m )» a. With these facts, inspection of Eq.
(3.4) now yields immediately the asserted short
range of I»(n,', na, nl, na,' ar). The contracted vertex
I,„(n', n; &o), defined by Eq. (2. 30), is then also evi-
dently of short range in both site variables.

B. Short-Range Coulomb Interaction

We now seek the Coulomb contribution to the ir-
reducible vertex part. As is well known, in simple
metals the effective Coulomb interaction is given by
the bare interaction screened by a dielectric func-

1I

n +n&

I»(n, n; al) =Z Z I a(m; al)
m f2, 8

x Z (n', +n'(v. V;(n, +n)(n,')&,V-)n, ). (3.&)
n2an2 FIG. 5. Short-range Coulomb vertex.
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tion. '2 This interaction is of short range and may
be assumed to be frequency independent.

In the present case the interaction has the form

I,(n&, nz, n&, nz) = fd r d r ' m*(r —n f ) to*(r ' —nz )

the screened interaction between the charges of the
two electrons on the same atom.

For the phonon vertex we have in the contact
model

x V,(lr' —rl) ao(r —nq) so(r' —nz), (3.8)

where V,(r) is the effective interaction between d
electrons. The contracted Coulomb vertex, Eq.
(2. 29), is given by (see Fig. 5)

I,(n', n)=g ~l d rd r'w*(r —n'-nz") co (r'-nz")
zz J2

x v, ( l
r ' —r

l
) cu(r —n) m(r 0)—(s.9)

It is evident that I,(n,', nz', n„nz) is negligible unless
all site variables are near each other, and that

I,(n, n') is negligible unless n and n ' are small.
We mention that in some narrow-band supercon-

ductors, the Coulomb interaction has, in addition,
a long-range part due to exchange effects (see Ap-
pendix B).

C. Contact Model

Equation (2. 2V), in general, represents a set of
coupled integral equations for the quantities F(n; &o).

We believe that these may in the future be useful
for quantitative calculations of the transition tem-
perature of d and f-ba-nd superconductors. How-
ever, for qualitative insight, we now adopt the so-
called contact model characterized by the assump-
tion

x Z (s'
l
v V( 0)

l
s) (s'

l
v V(- m)

l
s).

(3.14)

Here the contributions from s —s' = 0 vanish because
of the parity selection rule. The phonon Green's
function L~z(m; e), defined in Eqs. (3. 5) and (3. 2),
is of short range in m; in fact, for an Einstein
model, it vanishes unless m = 0. It is reasonable
therefore to assume that the dominant contribution
to (3.14) will come from m=0. For a cubic lattice,

L,(0;&o)=5 z L((o),

where

(s. is)

I, (&u) —= (1/M) f" [g(z) dz/(v z)], — (3.18)

&oo is the maximum phonon frequency, and g(z) is
the normalized density of frequencies,

f"o g(z)dz= i.
Keeping only the m= 0 term then gives

(3.17)

I,„(~)=L(") ~ ~ 1(sl v V(r)l s')I'
%~I' e

(3.18)

We now offer some additional remarks on the con-
tact model. The term I»(0, 0;~) [=I»(n =0,
n= 0; &)] is related to the interaction in momentum
space as follows:

I(0, 0; &o)» I(n', n; &o) for n or n' 0 0. (s. io) I»(0, 0; ~) = (1/N ) Q I~„(k', k; (u), (3. 19)

Thus we set

I(n', n; (o) = 51 o 5;., 0 I((o). (s. 11)

where the sum goes over the Brillouin zone. The
contact approximation (3.11) is equivalent to the
approximation

With this assumption and the notation F(0; &u) =—I'(&o),

Eq. (2. 2V) reduces to a single integral equation,
which will be discussed in detail in Sec. IV.

The assumption (3. 11) means physically that we
consider only scattering processes in which the two
electrons are initially both on one site, say, n,'= n2,
and finally again both on one site, n, = n2.

This is certainly a reasonable assumption for the
Coulomb vertex, Eqs. (3.8) and (3.9), for which,
when n = n' = 0,

I,(~)=Z; fd'rd~r'm*(r —s) m (r'-s)

x V.(I"-rl) ~(r) ~(") (3»)
In fact, here the leading term corresponds to s=0,

I,(su) = II=- fd r d'r '
l
ao(r')

l

' v, ( l

r' —r
l

)
l
m(r) l,
(3. 13)

I,„(k,k; ~) =I,„(0,0; ~), (s. 2o)

independent of k and k'. As we have seen, this is
a good approximation for a very short-range inter-
action and for sufficiently localized Wannier func-
tions. In a more typical situation, I»(k', k; &)
varies somewhat as a function of the momentum
variables on a scale of the order of a reciprocal-
lattice vector. To allow for this variation in site
space would require including interaction matrix
elements I»(n', n; &), where In'I and In l are of the
order of a lattice parameter, in addition to the term
with n'=n= 0.

Our contact approximation has some similarity
to approximations used by other authors, especial-
ly McMillans and Hopfield, ' in which also a single
effective interaction is used, However, Hopfield,
after writing the phonon interaction in an angular
momentum representation, makes the approxima-
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At this point we turn back to Eqs. (2. 27)-(2. 31},
defining the transition temperature T,. We make
the contact approximation for the Coulomb repulsion

Io(n n'(d) = 6E 06@ ()U (4. 1}

where U is given by Eq. (2. 13) and is independent
of +. As we have remarked, this is certainly a
reasonable approximation for the short-range Cou-
lomb interaction (we do not make the contact ap-
proximation for I»). Inspection of Eqs. (2. 27)-
(2. 31) shows that since I does not have a frequency
cutoff, I'(n, (d) tends to a finite limit when ~- m.

With Eq. (4. 1), we may write

r (n, (d) = I', (n, ~) + I', (0)6I, , (4. 2)

tion Eq. (21) in order to derive his main conclusion,
Eq. (26). In our development the only approxima-
tion is the truncation of the coupled system of equa-
tions.

IV. TRANSITION TEMPERATURE

approximation, Eq. (3.11), also for I». Then
(4. 6) reduces to the following equation for r, ((d)
[= I', (0, (d)]:

r, (a)) = —— Q F(0, (u') I»((u —(()')
P

x I'q v' —— I"q ru" E 0, +"

[1 + o(0) In(a ox,)]) (4. 8)

-I,„,
I»(()) —()) 0, otherwise.~

~ (4.9)

This is still an integral equation which, through
I,„, involves the details of the phonon spectrum and
requires numerical solution for each case.

We may, however, roughly parametrize I» by
writing, in the manner of BCS,

where

limI', (n, &) =O as
I

())l -" .
The quantity r~(0) can be eliminated;rom Eq.
(2. 27). We take the limit & -~, which gives

r,(0) = (1/p) Z 2 [r,(n' &u )+I,(0) 6,, (,]
n'

(4. 3)

This gives

l())l & ())0r, ((u)
o, leal& (oo

where F, satisfies the equation

r, = ~ Q F(0, ~'} r,Ih
lao' I& ep

(4. 10)

Hence

F(n', (d') U . (4.4) x 1 —— gp, ' 1+Up) p ln~p&&
1~'l g cop

r, (O) =- —P Z r, (n', &g')F(n', &o'

n

) + —7 s'(o, xt')) . (4. o)
P ~

(4. 11)
Now the sum over (d' is easily evaluated [N(s) may
be replaced by N(0)] and gives

(1/p) Q F(0, (g') = N(0) ln(n'p(d, ), (4. 12)

Now going back to Eq. (2. 27) for arbitrary (d, we
find the following equation for I', (n, (d):

where

o. '= 2e"/)T = 1.13 (4. 13)

r, (n, up) = —— Q Q F(p, , &o') I»(n' —p, n; &u' —(d)

x r, (n', (o') —6; ()
—Z Z r, (n", (u")

(y = Euler's constant). Substituting this expression
into (4. 10) and dividing by I ~ gives

N(0) U ln(n'P())0)
1 = N(0) I» ln(G p())0) 1

(4. 14)

x s'(ri", tx") () + — Z o'(O, tx"))
p

(4.6)
or

I =N(O) h (n'P~, ) (I,„-U), (4. 15)

The denominator in this equation can be evaluated
(see Appendix A):

1+(U/P)Q~N F(0, ())")= 1+U N(0) ln(nPe, ), (4.7)

where

U

1+N(O) U ln[(o./n')(e, /u& )]
(4. 16)

where n is a positive dimensionless constant, of
order unity [see Eq. (A 16)], and e, is an effective
half-width of the energy band [see Eq. (All)].

To continue further, we now make the contact

From (4. 15) and (4. 16) we see that the frequency-
independent repulsion U is equivalent to a much
weaker effective repulsion U limited to the frequen-
cy range ) ~), ((g)') —(gyp.
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FIG. 6. Isotope effect for the contact model.

case of a nondegenerate s band. For such a band
the central equations (2. 27)-(2. 31) for the vertex
part of a Cooper pair are mathematically relatively
simple. However, as mentioned in the Introduction,
of real interest are the superconductors with d and

f bands, that is, the transition, rare-earth, and
actinide metals and their alloys and compounds.
Therefore, we would like to extend the previous
discussion to the case of degenerate band structures.
As a first step in this direction we consider in
some detail a threefold-degenerate d band in a cubic
crystal. Possible hybridization with an overlapping
s-p band is not taken into account.

We write the Bloch waves for our degenerate
bands as

Solving (4. 15) for T, gives
g„,-„(r)= (1/N ) gZ a, (v, k) e'"'" ur, (r n)—

fi

(5. 1)

exp X I C
. 4.17

1
N 0 Iyh—

The isotope effect arises from the dependence of
(do and Uon M, in Eq. (4. 17). Using Eq. (4.16)
one finds

Here v is the band index. The (real) Wannier func-
tions m(r)) are characterized by an orbital index
j and transform according to a degenerate repre-
sentation of the crystal point group. We choose
band indices v and wave-function phases in such a
way that

(4. 18)

U 1O

lyh
(4. 19)

This expression is of the form discussed in Ref. 14.
It is clear that, in a narrow-band superconductor,
a small negative or even positive isotope effect
may well occur. For in these materials the Cou-
lomb repulsion U is primarily an intra-atomic ef-
fect, and may be expected to be considerably larger
than the screened Coulomb interaction between
the conduction electrons of simple metals. Figure
6 shows a as a function of U/I~„. o.'is positive
provided that

e(v, -k) = e(v, k)

g„„"(r)= +„*„(r)

a, (v, -k) =a~~(v, k)

(5. 2)

Since the Bloch waves and the Wannier functions
form orthonormal sets, the coefficients a, (v, k)
satisfy the condition

Q, a, (v, k) a, (v', k) = 6„~ . (5.3)

The generalization of Eqs. (2. 27)-(2. 31) to the
case of a degenerate band is straightforward. The
result is

For U/Ia, 0. 69 we see fro—-m Fig. 6 that n = 2.
Such a large positive value of 0. will be accompanied
by a small value of T,.

For some metals, at the ends of the transition
periods (Pd, Pt), the Coulomb interaction is not
adequately described by I,. Exchange interactions
can lead to a long-range Coulomb interaction I„„.
Their effect on T, is calculated in Appendix B,
based on a model interaction for I„„which takes
into account its long-range and low-frequency
behavior.

I"),(n, (o) = (1/P) Z Q Q I').q. (n,
' (d')

td' n' f', j'

Here
I ~K,.&. .;& (n (d; n, (d)

I
Fv yr .rsyw (p & (() ) Ivn

yet�

.U
~f7 gIN

x (n' —p, , &u', n, &()),

(5.4)

(5.5)
V. DEGENERATE BAND

A. Vertex Equation for a Copper Pair

In the preceding part of this paper, a theory of
the transition temperature was developed for the

where

F;&., ~-(p, , (d) = P G, ,-(m2+ p, &u) G~. ~-(m» —(d)
m2

(5. 6)
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I~P P
~ ««(n —««~ & i » &)

I t ~tl ~P 1 ~
~ n=Z I«te«ar ~ ««Pn +na & ng& &d & n& 0& Q7)

n"
2

(s. v)

Matrices in (n, i) space can be related to the Bloch
or (v, k) space by the unitary transformation

Equation (S. ],3) has solutions corresponding to irre-
ducible representations which are symmetric in i
and j (singlet). Denoting the dimensionality of the
representations by n, they have the form

(i) &1) (i) (i)r„=~„=r„=r, a=1

(i, nlv, k)=N ~ a, (v, k) e' '. (s. 8)

(2) (3) (8)I'ii = —1"33 = F, I=2 (s. 16)

For example, the Green's function G««(n'- n, or) de-
scribing propagation from n', i' to n, i is given by

&sk ~ (I'- n)

G, ,(n'- n, (u) = —Z, ~) a, .(v, k) a~«(v, k),N „p ~ —c(p, z
(s. 9)

where s(v, k) is the energy associated with «1«„„-(r).

B. Transition Temperature for a I"2& Band

As an example of the use of Eq. (5.4), we shall
now calculate, in the contact approximation, the
transition temperature of a threefold-degenerate
d band in a cubic crystal. The corresponding Wan-
nier functions, centered at the origin, are

«(r) =xy f(r), (oa(r) =ye f(r), (o,(r) =zopf(r),

(5.10)
where f(r) has cubic symmetry. '

The phonon vertex is, in the approximation corre-
sponding 'to Eq. (S. 18)

I«",.„(«d)=F(«d) Z Z (i', s')V V(r)~i, s)

Via = I'ai = F ', n=3.(3) (3)

All components of F&& not explicitly shown vanish.
The equations satisfied by X'"', I' ', and I' ' are
obtained by substitution of (5.16) in (5. 13):

1'"'(«d ) = (1/P) Q„.I'"((o') [If ((o', (o) + SK ((o', (o)],

& '(~) = (1/P) & ~ 1'"'(~') [&«(~', ~}-&a(~' &)]

(s. iv)
r"'((o) = (1/P) Q„.I'"'((o') [x,((o', «d)+K4(«d', «d)].

The first solution F'" has complete cubic sym-
metry while the others have directional properties.
Since no experimental evidence for cubic supercon-
ductors of the latter type exists, we shall from
here on only consider F,'i&).

By (5. 14), and again using cubic symmetry, we
have

K«((d & &L«)
=—Z««««((0 & (0)

Q, F-„„(0,«d'. ) I„,„((o' co} (5-. 18)

x(j', s'~v. V(r)
~ j, s), (S.ii)

where the phonon function F(«««) is given by Eq. (S.6)
and the matrix elements are defined in analogy with
Eq. (3. 6). The Coulomb vertex is

I«., „=J d'rd'~'«««*, ,(r) «««,
*.(x''}

x V,(~ r '—r
~
) «v«(r) «v, (r '). (5. 12)

Equation (5.4) now becomes

1';«(~) = (1/P) + & 1'; «(~') &; «', ««(~', ~),
(s. 13)

where

K«e« ~, ««((0 &
Q7)= Q E«t«a «ta«m(0& (0 )

f tl

xI«si«si ~ ««((0 (0) (5 14)

From the cubic symmetry it follows that K has at
most four nonvanishing independent components,
viz. ,

&3(~', ~)-=&«a2(~', ~)

=-Z, Z„.„(0,a') I„.„(~'-~). (S.19)

Substitution of (5. 18) and (5. 19) in (5. 17) gives

(~) = —(1/P)Z&u 1' («d')Z«&««;««(0~ «d')

x [i»,««(~'- ~)+ 2I««;am(~'- ~)l (5. 30}

Now, using cubic symmetry and Eqs. (5. 6) and
(5.9) we find

~ F«1'«J(0 + )

Z F« "««(0 (8 )

= (1/SN) Z Z ([(o'- «(v, k}][-«d'- &(v', k)]'} '
VgV

xZ a«(v, k) a,(v', —k) Z a,"(v, k) a, (v', —k).

(s. 31)
&3=&ii;u &3=&ia; ia &4=&ia;ai

(s. is)
With the symmetry re»tions (5. &) and th«»thogo-
nality condition (5. 3), the summations over i and j
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can be carried out. This leads, in analogy with
Eqs. (2. 33) and (2. 34), to

1 1
3N „" i&@' I +& (v R)

1 'max N(E) dE

I(d I +E
(5. 22)

1
aTc=1 13 vo exp (5.24)

as in Eq. (4. 16). I» is the average defined by
(5. 23), and U, the effective Coulomb repulsion, is
given by

(5. 25)

where U is the average Coulomb matrix element, in
the sense of Eq. (5. 23), and the other quantities
have the same meaning as in Sec. IV.

VI. SUMMARY

Generally the discussions of the superconducting
transition temperature are based on theories formu-
lated in terms of Bloch wave functions. However,
there is a great deal of experimental evidence"
that there is a strong correlation between atomic
properties and the superconducting transition tem-
peratures. This is especially true for d-band
transition metals and alloys. ' Therefore, in this
paper we have developed a theory of the transition
temperature in terms of wave functions localized
at atomic sites.

The central equations are Eq. (2. 27), for the
vertex part of a nondegenerate band, and its gen-
eralization to a degenerate band, Eq. (5.4). The
kernel appearing in (2. 27) is of short range provided
the electron-electron interaction in coordinate
space is appreciable only for small distances and
the Wannier functions are sufficiently localized.
The short-range e-e interaction has two parts, the
first of which, caused by the electron-lattice inter-
actions, is attractive, whereas the second, caused
by the screened Coulomb interaction, is repulsive.
When the kernel is of short range, the vertex equa-
tion reduces to a small number of coupled integral
equations in site space. In particular, only a single
equation remains in the contact model. This model
means physically that we consider only scattering

where N(e) is the total density of states
Using Eq. (5. 22), the integral equation (5. 20) has

the same structure as in the contact model for a
nondegenerate band if we make the identification

(5. 23)

Hence the transition temperature in a BCS-like
theory is given by

processes where the two electrons are initially
both at one site, say n~ = n2, and finally again both
at one site, n&=n2.

Assuming the contact model, we calculate T, for
a nondegenerate band in the manner of BCS. The
result contains the Coulomb pseudointeraction U
which is caused by the intra-atomic Coulomb inter-
action U. Thus, U takes the place of the screened
interaction between nearly free electrons in s-p
metals. When U is large, the isotope effect can
have either sign. It is positive if 2P is greater
than the attractive interaction; in such a case T,
is found to be small. Geballe, Matthias, Hull,
and Corenzwit'7 have first observed that in transi-
tion metals the isotope effect is not proportional
to M ', as in simple metals. In Ru there is no
observable effect, in Mo the effect is proportional
to M ' ', and in uranium it is positive. These
variations in the isotope exponents were considered
as indications for an attractive mechanism other
than phonon exchange. We believe, however, that
they may be accounted for by variations in the intra-
atomic Coulomb interaction U and, to a smaller
extent, in the electronic bandwidth.

The generalized vertex equation (5.4) in the
contact approximation is applied to the case of a
threefold-degenerate d band of cubic symmetry

The corresponding localized functions are
similar to xy, yz, and zx atomic orbitals. The
vertex equation has one solution with full cubic sym-
metry which is presumably the physically significant
one. The associated transition temperature depends
on the total density of states of all three bands at
the Fermi surface and on a pairing constant which
weighs the intraorbital and interorbital interactions
with —,

' and —', , respectively. This calculation is
considered as a first step towards a treatment of
real d-band materials.

The lowering of T, due to a long-range Coulomb
interaction, which can occur in transition metals
with nearly filled d bands, is discussed in Appendix
B. The interaction, due to exchange effects, is
given by an approximation that takes into account
its low-frequency and long-range behavior. For
weak exchange effects, the T, formula is of the
same form as that given by Berk and Schrieffer. '
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APPENDIX A: DENOMINATOR IN EQ. (4.5)

The denominator in Eq. (4. 5) can be easily calcu-
la, ted. We write, from (2. 33) and (2. 34),
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maa N(» )ZF(0 QP)= Z d» a
I

I2 1+ 3
p „' p„, &+~a)

where

Imin

1 ~ 'maa N(» ) —N(0)
»3+ I+ l~

emin

(A1)

that, as J-~,
Q- —(P/2) [ln(2J+ 1)+inn —ln Q ].

Substituting (A5) and (A7) into (A4) gives

J;= [N(0)/2] [ln(iI» ~)+g],
where

g = y+ ln 2 —ln m =0. 12563.

Hence,

J,=N(0) [ln(P», )+q],

(A7)

(A8)

(A9)

(A10)
and (o, = i v(2j +1)/P.

In J&, consider first contributions from & & 0.
These are

where Eb is an effective "haU-width" of the band de-
fined by

ln»a= —,
' (lnl» ~1+1 nl » &, I). (A11)

N(0) ~™ em~ d»
a a

p &. „0»+i&a&l

N(0)p 1 g»
P q Icoq I

In J~, the sum over ur can be replaced by an inte-
gral, because of the factor N(») —N(0), which van-
ishes at & = 0:

1 '" dx P
„»'+

I co, I' »'+ [(v/P)(2x+ 1)]' 2l» I

'

N(0) .
2 gv 1

P J „.02 level
Hence,

emaa N(» ) N(0)
2 I~ I

(A12)

(A13)

N(0) . g 1 ~ 2dx
p J 0 (2j+1) (v/p)(2x+1)

-1»maa v A4
g P 2x+1 2

where ~ is a dimensionless constant, depending on
the band of interest, given by

(A14)

Finally, substituting (A10) and (A13) in (Al),

Now
(1/P)g F(0, ur) =N(0) 1n(nP», ), (A16)

Z 2. 1--,' ln(2J+ 1)+-,' (y+1n2),
0 J + (A6)

2dx (, » ~ v

(./e)(2 .1) i (./O)(2x. 1)

where y = 0. 5VV21 is Euler's constant. In the inte-
gral in (A4) we introduce the variable y = (2x+ 1)v/
PE ~. This gives for the integral in question

ln n = g + II: = 0. 12563+ & (A16)

[see Eqs. (A9) and (A14)], and», is an effective-
band half-width [see Eq. (A11)].

APPENDIX B: EFFECT OF LONG-RANGE COULOMB

INTERACTION ON T,

where N(0) is the density of states at the Fermi sur-
face, e is a dimensionless positive constant of or-
der unity given by

71 0 2

p 1 dy -1 1
tanh

7T 2

(A6)

The first two integrals cancel each other, as may
be seen by the substitution y = 1/x in the first, so

For certain real metals which are narrow-band
superconductors (e. g. , metals at the end of the
transition periods) the Coulomb interaction has a
long-range part that reduces T,. This part is due
to strong exchange interactions between electron
spins. ' + Its quantitative effect on T, depends
rather sensitively on both the electronic band struc-
ture and the exchange potential. For a qualitative
understanding, from the site point of view, we
adopt the following model for the exchange inter-
action:
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IZ, , fee/ and f~'[ &~.
Ispjn(n p(0 I nj~)

~

~0, otherwise.
(a i)

approximation, with ls being a constant and

&, being a cutoff frequency which is a small fraction
of the FeIml energy, is reasonable because of the
long-wavelength low-frequency nature of I„„.It
means that the interaction is of infinite range, which
is strictly true only in the magnetic state, and that
it is retarded. In the latter respect it is similar
to I „.

With (81), in addition to a short-range interac-
tion, we may write the solution of Eg. (2. 2V) as

I'(ng, ~) = I'g(n, ~)+ I"gg(~),

where

lim I'z (n, u) = 0 as n- ~ .
The quantity I zz (a&) can be eliminated from (2. 2V).
To this end we write I'lz (&o) in the following form,
implied by (81):

Itt for I Qp I
&(o

In(&) =
'0 for

l
(o

l
& (o, ,

and take ln (2. 2V) the limit n ~& . This gives

I'l~ = —(I/P) Q Q [I', (n', (u') + I'„]
I a)'I &~8 Ii'

&& E(n', &o') I, . (8 5)

Hence,

I'zz = —~ Z Q I'I(n, &o) E(n, u
p I&ulgru~ 5

&+ E Z &(K, ra)) .(
~I

iv ) &cd It

Now we return to Eg. (2. 27) and substitute in it
Egs. (82) and (86). The result is

I'1(n, v) = ——Q Q ff(n,'&u'; n, ~)
p ru' g~

& I', (n', (o') -ff([(o'[ —(u,) ~

&& 2 Z Ig(p&co ) E(p, &0
(cd"I & cd g

tains only the short-range electron-electron inter-
action.

For simplicity, let us take K=-I~„and ignore the
short-range Coulomb repulsion I,. Furthermore,
to determine T, we introduce the contact model
for I», Eg. (3.11). Then I', (O, op) has the form
[cf. (4. 10)]

I'I for leal& ~o
I'~(~) =

0 for l~l », ,

and, according to (8 V), I'z is given by

(89)

I'~= ~ Q E(0, (u') I'~ I -H(~(o'~ —(g,) ~
lou' I& &o p

E(0, (o"
l cd"(&co8

+ ~ Z Z E(p, , (o")
I u&" Ig ~ Tt

(8 io)
The denominator in (810) contains

Z Z E(g, &o)
l cd I& cd8

1 1 e"'"

1 I, g (o, ~

z,=f,
l
1+ —

( )
tan (') l (8 ia)

and n'=1. 13 [cf. (4.13)]. Equation (812) may be
rewritten in the form

1 1, 13Qpo

N(0)I» ks T,

co~ I-X(0)Z, II ~ + ln ' . (Bi4)
vo a'ar

This is a quadratic equation with the solution

A solution exists for

Z1 1 1
tan '

P, „,& „ i &o I
'+ ~'(0) ve(0) e(0)

(8 11)
Substituting (811)and the sum (A15) in (810) and
dividing by I'& gives

i =~(0) I» h (n'P~, ) [1 -X(0) Z, h (a'P~, )], (812)
where

Here

1 + + Py(0 ~ BV
4J

For small J, one gets

1 ~Jk~ T~ = 1 13~o exp

(815)

1 for x&0
Hx =

0 for x&0 (88)
is the Heaviside unit step function. E in (8 7) con-

(8 iV)
This result is of the same:form. as the T~ equation
given by Berk and Schrieffer. - '8
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Surface Density of Normal Metal in the Intermediate State
of Superconducting Aluminum~
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Surface-impedance measurements have been made at 0.5 MHz on the intermediate state of
aluminum and indicate an increased fraction of normal metal near the surface as compared
with the bulk. This result confirms Landau'spredictionof the surfacestructureintheinter-
mediate state and suggests a sire. ilar interpretation for Pippard's early observation of the
surface resistance of tin at 10 GHz. Surface-impedance techniques are thus seen to provide
accurate information on domain broadening near the surface, and to corroborate the effec-
tive-field reduction there suggested qualitatively by bismuth-probe and magneto-optic meth-
ods.

The nonbranching Landau theory of the interme-
diate state of an infinite parallel-sided slab of a
type-I superconductor in a magnetic field II applied
normal to the slab surface postulates a structure
consisting of alternating laminar layers of normal
and superconducting metal parallel to the field di-
rection. The azimuthal orientation of the parallel-

layer structure is arbitrary, but can be imagined
to be set up, in practice, by a slight tilt of the ap-
plied field from the direction normal to the slab.
The thicknesses aN and as of the normal and super-
conducting domains give rise to a total repeat dis-
tance a whose scale depends on the surface ener-
gy+ & p.oH, 6 between the normal and superconduct-


