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for the t' integration is released to —~. The error
caused by these procedures is estimated to be bounded

by the order eE&/q~&~ and is negligible. On the other
hand, the current expression is convergent without the
restriction.

~6Equation (11) can be obtained from Eq. (15) in Ref.
9(c) apart from a factor of 2 caused by the difference
between P and P ', if we assume &,«k& T, as is the
case for ordinarily dirty materials. In this case, the
Bose character assumed by Masket et al. makes no
effects. Although when &~~& k~T (which may occur in

the case of extremely dirty materials), the assumed
Bose character leads to Eq. (16) in Ref. 9(c), we will
not make this assumption; therefore, Eq. (11) is cor-
rect in both cases.

The magnitude of the value of &0' in Ref. 9(c) is
half that of the present value. The factor of 2 in our
expression is due to the use of P' instead of P.

Rgi and $(0) are given in Table I, and T, =1.9191 K.
The quantity &(0) is determined by &(0) =h /2m/ (0),
and 7 by 'Y=~&(0)/8k~T, . To determine P we use P
=1.02I /nl m where n=5. 56 &&10 cm and i=32 A

(Ref. 25). o'0' can be obtained from Eq. (7) with the
above-mentioned values of T, and p, and 0' from Eq.
(10) with the values of o'0 and P. This value of & is in
plausible agreement with the value obtained by & = —n(0)&
= 7.3 && 10 erg.
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The Hubbard Hamiltonian for the system of one-electron atoms is solved in the presence of
sublattice magnetization. In the limit of the fully antiferromagnetic state, the results repro-
duce those of Slater's split-band model by splitting a nonmagnetic band into spin-polarized
bands. As magnetization decreases, antipolarized split bands appear and increase their
strengths while the band gap remains constant. In the limit of no sublattice magnetization,
the strengths of the two types of bands become equal, yielding the Hubbard nonmagnetic in-
sulating state.

I. INTRODUCTION

Many of transition-metal oxides are good insu-
lators, even though their d band is only partly filled.
At low temperatures, they often exhibit some anti-
ferromagnetic spin ordering but remain insulating
well above the Neel temperatures where the spin
ordering has completely disappeared. ' An insulat-
ing antiferromagnetic state may be weil described by

Slater's split-band model, but the band gap involved
is proportional to the sublattice magnetization and
hence vanishes as the antiferromagnetic spin order-
ing disappears. Therefore, this model is incapable
of describing the insulating state of transition-
metal oxides properly.

Hubbard" suggested that such an insulating state
is a consequence of strong correlation effects in d
bands. He further argued that, since the intra-
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X= Z eRR cR cR +~ERR &R
RR'c 8

(2 l)

where R, R' label the lattice points, c~„c„,are
creation and annihilation operators for an electron

atomic interaction I in the iron-group elements is
of the order 5-10 eV and larger than the width of
the d band, even many-body perturbation expansions
may not be able to handle the interaction correctly.
Thus he applied the Green's-function method devel-
oped by Zubarev' and solved the equation of motion
for the one-particle Green's function in such a way
that solutions give the correct description of atoms
involved in the limit of an infinitely large lattice
parameter. The results obtained by Hubbard are,
in fact, quite different from perturbation results
and exhibit the splitting of bands in the absence of
magnetization and under a finite lattice parameter.
As the lattice parameter decreases and the density
of electrons increases, the band gap of the improved
version of his solutions decreases and vanishes,
demonstrating a nonmetal-to-metal transition. '

As Herring has suggested, a Hubbard-like ap-
proach should be appropriate to describe the insu-
lating state of transition-metal oxides since the d
band has the sole responsibility for both electrical
and magnetic properties of these materials. The
lattice, however, exhibits insulating antiferromag-
netism in its ground state, while the Hubbard solu-
tions are limited to a nonmagnetic state. Since the
Hubbard mechanism responsible for creating the
insulating state is the dynamical interaction between
two electrons which happen to meet at the same
atomic site, the interaction can become stronger
than the Hartree-Fock interaction responsible for
Slater-type antiferromagnetism. Thus we can ex-
pect the insulating characteristics to stay longer
than the m, agnetic ordering at higher temperatures.

In this paper, we shall solve the Hubbard Hamil-
tonian in the presence of sublattice magnetization
and show that an original nonmagnetic band splits
into spin-polarized bands just as in Slater's model.
In fact, the split bands become asymptotically equal
to Slater's split-band solutions in the limit of the
fully antiferromagnetic state. As the sublattice
magnetization decreases, the band gap of Slater's
model will decrease, while in the present model
the gap, being generated by the Hubbard interaction,
remains constant and instead antipolarized bands
will appear and increase their strength. In the limit
of vanishingly small magnetization, the strengths
of the antipolarized bands will become equal to those
of the polarized bands, yielding Hubbard's nonmag-
netic insulating state.

II. ANTIFERROMAGNETIC SOLUTION UNDER THE
HUBBARD APPROXIMATION

The Hamiltonian used in the Hubbard model is

rR'R'=&(CR XR C-R, ))E

where the spin 0 is opposite to o and

(+)+Re Re,

(2. 3)

(2. 4)

The desired Green's function GRR. can then be gen-
erated from the above two functions by the trivial
relation

e (+)e (-)e6„,= I',„,+r„, . (2. 6)

With the Hamiltonian (2. l), the equations of mo-
tion for I'~~" come out to be

«(CR. &R; CR. ))E =(6RR &») &~R' )

++Ri eRR ((CR ~ NARY i CR~m))E
(+) .

+6 f«CRaXRCr' CR's))E

+JR, , (ERR r(&CRscgg CR~ ~ g y CR'g))E

—ER. ~ R((CR.CR ~ ~ ACRE,' s~C)R) ),E(2.6)

where 5"=1 for the equation of I'RR", but 5"=0
for that of I'R~", illustrating the absence of the term
involving I in the equation of I'„R'.

The above equations are those used by Hubbard,
and his results may be reproduced if one assumes
that the mean number of electrons at a lattice site,
&XR,), is a constant independent of the site and the
spin, that is,

(&R)=(&R )=2n. (2 ')
Consequently, his results are applicable to a non-
magnetic state only.

Here we assume a two-sublattice structure such
that the nearest neighbors of an atom on sublattice
A are on sublattice B and vice versa. Let R(A) and
A(B) be atoms in sublattices A and B, respectively,
and assume a finite sublattice magnetization M.
Hence the density of electrons with up- and down-
spins at a lattice point R(A) in sublattice A, de-

of spin o = 4 or 4 in the Wannier state on atom R,
and &~,= ~~, c~, is the number of electrons in the
state Rcr. The first term in K describes hopping or
kinetic energy and is diagonalized by a set of Bloch
functions. This is possible because the translation
periodicity of the lattice makes E». a function of
the distance R -R' only. The second term gives a
repulsive interaction between two electrons on the
same site, and I is the measure of the interaction
and a positive constant.

We shall use the energy Fourier transform of the
one-particle double-time Green's function'.

GRR ((CRg' CR s))'E (2. 2)

for the calculation of excitation spectra of the sys-
tem. To calculate this Green's function, however,
it is more convenient to construct the equations of
motion for the Green's functions:
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noted by (StR&A&, ) and &BIB&A&t), respectively, are
constant and equal to the density of electrons with
down- and up-spins at a lattice point R(B) in sub-
lattice B, (XR&B&t) and (SIR&B&t). That is,

(+R&A & ) (+R &B&' ) (2 + S)

(+R&A &t ) (StR&B&t ) (2 S) &2

(2 8)

(2. 9)

where the total density of electrons at a lattice
point, n, is a constant independent of the sublattice
magnetization M, while 2cn gives the value of M

per atom:

(~R&A& )+(+R&A& ) (+R&B& )+(SIR&B& )
(2. io)

( IR&A&t ) (+R&A & ) =
&&R&B & ) &+R&B&t )

(2. ii)
We shall solve Eqs. (2. 6) under the assumption

(2. 8) and (2. 9). In addition, we shall introduce the
decoupling approximations used by Hubbard in his
first paper. These are to assume that (i) if R" t-'R,
the Green's function &(CR",KR'&, cR., ))B which ap-
pears on the right-hand side of Eq. (2. 6) can be de-
composed into a product such that

((CR",XR', cR., ))B =(KR'B) GR"R. when R" k&R

h)a
RR when R"=R,

(2. 12)
and (ii) the last two Green's functions on the right-
hand side of Eq. (2.6), which involve four c's, can
be neglected:

gr (+)XV' a+ & "Rtri~R" fRR" GR' ~ R'

(2. 14)
where the new notation

((CRtt CRttCRt tt 'CRttttt))B = ((CRtt CRt t ttCRtt t' CRttt ))B —0,
(2. 18)

where R"&R. As has been pointed out by Hubbard,
the above decoupling scheme has the disadvantage
that solutions obtained may remain insulating and
the metal-nonmetal transition may not be demon-
strated. Since we are not interested in the Mott
transition but rather in the transition from an anti-
ferromagnetic insulator to a nonmagnetic insulator,
the above approximations may be sufficient for our
purpose of demonstrating essential differences be-
tween Slater's two-band model of antiferromagnet-
ism and the Hubbard-type insulating solution. Even
more sophisticated decoupling schemes do not have
mathematical justification, and, if the Hubbard
solutions have any validity at all, the following re-
sults would reflect the characteristics of the Hub-
bard solutions.

The approximations described above reduce the
original equations (2. 6) to the following form:

(E —I'2 S'"&f)~R'R'=(SR-R /») &SIR';&)

To RR tRR' ~RR' ~RR ~RR' (2. iS)

COSOk + ljlk Q COSek

&&tk q = —gksin8k+&ttk q cosek,
(2. 16)

where 6jk = 8k, is an arbitrary spin-dependent param-
eter to be determined later, and k runs over the
inner-half-zone and 0+ @ is the corresponding wave
vector of the outer half-zone. The Fourier trans-
formation, which takes cR„CR,NR,- to

~-1/2Q ikR
Cka R Ray

(C~)ktt + +R e CRttSIRtt t

(2. IV)

(2. i8)

will then transform Eq. (2. 14) into the following
form:

(E —T, —6"I)I'""= (I/2&&) n""+n""t G' .
(2. i9)

Here we have used the matrix representation
merely to represent eight equations for eight dis-
tinct I'kk", I'k'k", Q, . . . by regarding them as the
(1, 1), (1, 2), . .. elements of the 2&& 2 matrices
I "". The notation used is as follows:

I &k&tt
kk

lt&k&tt

I'k'k 'Q

(+)aI'k.q k.qj
&&'Gkk

Gk+Q k

Gk k+Q

Gk~q k~q J
1

(~)a P Pl + Gtl
n 1~ Cn —,n (2. 2o)

1(), , (), 1 —~n +cn t, 0n =1 —n = 1, t=
+Cyg 1 —2n ' — 0 tk Q

where upper signs involved in the expressions forn'" and n' "are taken for o = 0 and lower signs for
(T= 0 and

ik(R-R')
tk ~Re tRR' y

while I'„'", G», etc. , are obtained from I'RR" and
G», respectively, by replacing CR„cR,~~, etc. ,

is introduced to facilitate the Fourier transforma-
tion of the original equations under the approxima-
tion (2. 12). Here the spin o involved in OtR'&is op-
posite of the spin (r involved in the Green's function
GR„. and the average value (StR'-,') is given by Eqs.
(2. 8) and (2. 9).

The sublattice magnetization reduces the sym-
1netry of the lattice by forcing two neighboring unit
cells of the nonmagnetic state to form a single
magnetic unit cell. This, in turn, introduces a
single translational vector Q in the reciprocal lat-
tice of the antiferromagnetic state and splits the
nonmagnetic band into two subbands. Hence any
Bloch function pk for the split bands can be repre-
sented in terms of the Bloch functions gk of the orig-
inal band by
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by c»„(cst)„, etc. The simple relation (2. 5) is
still valid for I'"' and hence

Go p(+)cf p ( )0 (2. 21)

By inserting (2. 19) into (2. 21), we find the one-
particle Green's functions G' to be given by

where
n (+)cr n&-&'

(F') = +E —T-I E —T0 0

(2. 22)

(2. 23)

The form of the above equation is the same as
that obtained for a nonmagnetic state by Hubbard
under the simplest decoupling scheme, but the pres-
ent equation is spin-dependent and written in the

matrix representation, and hence the equation for
G~&, for instance, involves G~,, and so on. This
is a consequence of the sublattice magnetization,
which has split the reciprocal lattice of the nonmag-
netic state in two, creating the coupling between the
two states k and k+Q. The expression for the
Green's function G» will be obtained by diagonaliz-
ing the matrix (F' —t) by a unitary transformation:

cos8~ —sin8~
sin8, cos8„

(2. 24)

which takes c„ to c,= c„cos8„+c„,z sin 8„and the
original Bloch function g~ to g, of the split bands.
After a straightforward calculation, we find that the
matrix (F'- t) in the split-band scheme should have
the following form:

(F' —t) =U ( F' —t) U

L + n. L'sin28» —t» cos 8„—t„,q sin 8», &L'cos28» — (t»,F
—t„)—sin28»

t»L'cos28» ——,'(t», q
—t») sin28», L —&L'sin28» —t„sin 8» —t».q cos 8,

~

~

~

~ ~ (2. 25)

where

(E —To)(E —To I)[E —To-—(1 —2n)I ]
[E —To —(1 —,n+nc)I] [E——To —(1 —', n nc)I]-—

(2. 26)

(E —T)(»E —T» I)ncI-
[E —To —(1 —»n+nc)I][E —To —(1 —&n -nc)I]

(2. 27)

and the (+) sign is for q. L' and the (-) sign for
&L' In order t. o make the matrix ( F' —t ) diago-
nal, the parameter 8~ involved in U should be de-
termined by

tan28„, = 2&L'/(t», q
—t»), (2. 28)

and consequently, 8~, = —8~, . The Green's functions
are then written as
(L +&L'sin28» —t»cos 8» —t», q sin 8») G» =1/2F,

(2. 29)

(L —&L'sin28 —t sin 8 —t,q cos 8 ) G', q .q =1/2F,
(2. 3O)

where G,'„gives the spectra of the inner half-zone
and G~, „, those of the outer half-zone. The above
two equations are now effectively spin independent
as 4L' sin28„, = &L ' sin28~, . Before we start to in-
vestigate the nature of the spectra obtained above
in Sec. IV, we shall demonstrate how Slater's split-
band model will come out by the present method.
This will make it easy to compare the present re-
sults with the Hartree-Fock solutions by Slater and
illuminate the characteristics of the Hubbard-type

~F — ~ ERR' cRcR»»+I QstR» (RM)
RR' fy

(3. 1)

The equation of motion for the Green's function
GR„. turns out to be

(E —Tp —(stR6)I) GFn. = 5RR. /2F+Q„"t„s.iGR. i„. ,

(3 2)
and it can be solved exactly. In the presence of the
sublattice magnetization described by Eqs. (2. 8)
and (2. 9), the Fourier transform of Eq. (3. 2) can
be written in the form

(3.3)

which is similar to the result (2. 22) in Sec. 11 ex-
cept that the matrix F' has been replaced by FH~:

F'„F= 1 ( E —T,) —n ' "I . (3.4)

Again, the Green's functions G~, and G,'~ „~may be
obtained by a unitary transformation which makes
the matrix ( F„'F —t) diagonal. The parameter 8„
of the unitary matrix U is then given by

solutions in the presence of an antiferromagnetic
ordering.

III. HARTREE-FOCK APPROXIMATION: SLATER'S
SPLIT-BAND MODEL

The qualitative formulation of Slater's model, un-
dertaken by Matsubara and Yokota, may be repro-
duced by the present method if the Hartree-Fock
effective Hamiltonian is used in place of the original
Hubbard Hamiltonian (2. 1). The Hartree-Fock ef-
fective Hamiltonian may be generated from Eq.
(2. 1) by replacing the interaction term StR, St+; by

R»(+RF ) + R» (+R») ~
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tan26q, = —,+I (0) =+ncI2+1' (0) &y

4+Q ~k

instead of E&l. (2. 28), and we find that

(E —Tp —2 n I+ nL
&0& sin28»

(s. 5)

—f» cos 8» —f» o sin 8») G»» = 1/2&&, (3.6)

(E —Tp —
2 n I —&L

&0& sin28»

fs»in'8-—» t».o cos'8, )G» Q» Q =1/2« . (3.7)

Let us assume, for simplicity, a finite energy
gap between the split bands so that all states k in
the inner half-zone lie below any of the states in the
outer half-zone. When the number of electrons nN
is less than the number of atoms N, the lower band
will be filled up to the Fermi state kF, leaving the
upper band empty. The magnetization M can be
calculated from the difference in the densities of
electrons with up- and down-spins:

k'F

M =2cn= 2N Z sin28, , (3.6)

and the total energy 8 is given by

8 = const+ 2Z (t» cos'8»+ f„osin'8, ) ——2 sin28,

(3.9)

By using the expression (3. 5) for 8, in E&ls. (3.6)
and (3.7), the Hartree-Fock energy parameters in
the antiferromagnetic state are written as

E» Tp 2nI+ 2(f»+f» Q) + 2 [M I +(t» &2
—f») ]

(s. io)

where the magnetization M should be determined
self-consistently by E&l. (3.6), that is,

kF

N
0 2 [M2I2+ (f, —f„)2 ]

&/2 (s. is)

If the number of electrons nN exceeds Ã, me have
to make only trivial modifications to E&ls. (3.6),
(3. 9), and (3.11), so that the summations extend
over the upper band. The results obtained here
are parallel to those obtained by Matsubara and
Yokota and by des Cloizeaux. Since the present
results are exact solutions of the Hartree-Fock ef-
fective Hamiltonian, the optimum condition for pa-
rameter 8», E&l. (3.5), is valid independent of the
Fermi energy and the number of electrons involved.
In fact, the results obtained here are valid even if
the tmo split bands overlap, provided the summation
extends over the tmo bands simultaneously up to the
Fermi level. The procedure of calculating the con-
dition (3. 5) followed by des Cloizeaux as well as
Matsubara and Yokota is to minimize the expression
for the total energy 8 and hence their results appear

to be meaningful only when the inner shell is com-
pletely filled and the lattice exhibits insulating anti-
fer romagnetism.

The Hartree-Fock approximation in the present
formulation is to replace the Hubbard-type operator
F', which describes the resonant properties of
atoms, by the Hartree-Fock average F„'~. In the
limit of n =1 or 0, the resonant operator F' be-
comes identical to the Hartree-Fock average F'„F.
If the intra-atomic interaction I is small as com-
pared with bandwidth parameter t~, the resonant
operator F' mill also approach the Hartree-Fock
average F HF asymptotically. In these limits,
therefore, Hubbard-type solutions should reproduce
the Hartree-Fock results obtained here.

IV. ASYMPTOTIC EXPANSIONS OF ANTIFERROMAGNETIC
SOLUTION

A, (r) +A 2(r) +Ap(r) = 1 . (4. 2)

Use of the explicit expressions (2. 26) and (2. 27)
leads to

A, (v') = [$,(&) —(1 —~zn+nc) I)[$,(&) —(1 —
2 n —nc) I]

R.(r) -&,( )][&.( ) -&.( )l
(4. 3)

where a, b, c, respectively, take 1, 2, 3, or 2, 3, 1,
or 3, 1, 2, while the three roots g&(r) & $2(r) & $2(r)
are obtained by solving the cubic equations

f, [$]= f($ 1)[g —(1 —pn vn-c sin28»)I]

—2i, [$ —(1 —pn+nc)I)[I, —(1 —pn -nc)I]=0 .
(4. 4)

Here the upper sign (-) is for r= @, the lower sign
(+) for r = )'2 + Q, and

gI, =t~cos e~+t„,+ sin 8„,
q„. =—t„sin 6)„+t~,& cos 8~ . (4. 5)

Figures 1 and 2 show the schematic behavior of
f,[(]as a function of $. Especially, we note that
f,[& =-)=-, f [~ = --]=--
f,[$ = (1 —,'n —nc)I] & 0, and f,[$ = (1 - ,'—n+nc)I]&—0,

while the signs of f,[$), for ) =0, (1 —»nunc sin28„)I,

Let us now investigate the asymptotic behavior
of the Hubbard-type solutions in the presence of
sublattice magnetization, and expand them in a power
series. The Green's functions G~„and G~,+„,
given by Eqs. (2. 29) and (2. 30), may be written in
the form

A, (r) A2(r) Ap(r)
2v t —]&(r) ( —&2(r) &

—$2(r)

for 7 =k and k+Q, mhere (=-E —To. The coefficients
A&(r), A2(r), Ap(r) yield the probabilities of finding
the states described by g, (r), $2(r), (2(r), respec-
tively, and hence are positive and obey the condition
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so that

g, (k) or t'»(k) = » (1 —»n —ncsin28»)I+c»($)q»

+
~
(1 —»n —nc sin28»)I —c»($)((}»

~

4ne (1 —sin28~) Ics($ )g~
[(1—» n nc sin—28») I —c»(g) r{»]

F/G. 1. f~[$] as a function of g, where n= r, &= s

a = (1—~n —nc) I, b = (1 —2n+ nc) I, c = (1—yn —n& sin2 ez)I.
The k-dependent solutions of f„[$]= 0 are marked by O.

and I, are determined by the sign of g, as illustrated
in the figures. Since 0&c& ~ and 0&n& 2, the order
of the three points

(1 —»n —nc)I, (1 —»nunc sin28„)I, (1 —»n+nc)I,

is fixed on the abscissa and lies between 0 and I,
yielding the following bounds for each of the solu-
tions t, (r).

For g, &0, we have

0& $,(r) & (1 ——,'n —nc)I,

(1 —» n +nc sin28»)I & $2(r) & (1 —
» n+nc)I, (4. 6)

I& (»(r) .
For q, & 0, we have

&i(r) &0,

(1 —» n —nc)I & (»(r) & (1 —» nunc sin28»)I, (4. I)

(1 —
» n+nc) I & $3(r) &I .

The above inequalities imply immediately that (i)
if the band is nearly emply (small n) and q, & 0, both

$»(r) and $»(r) approach I and $~(r) approaches the
Hartree-Fock result t, regardless of the value of
c since 8, of $,(r) determined by Eq. (2. 28) van-
ishes. As we shall see in Eq. (4. lla) following,
this is also true for q, &0. (ii) If the band is nearly
full (n = 2) and rl, &0, c becomes zero and t~(r) and

$2(r) approach zero, while $»(r) approaches the
Hartree-Fock value t, . This will be also true for
rl, &0, as is seen in Eq. (4. 17b). (iii) If c is small,
the bounds for $»(r) will become stringent, making
$»(r} nearly a constant independent of k, that is,
= (1 —m)I, regardless of the density n of electrons
in the band. However, the probability of finding
such a state, A»(v'), is vanishingly small.

Since the three roots are bounded separately, Eq.
(4. 4) may be solved by successive approximation.
For instance, the lower two solutions $,(k) and

$»(k), for r = k, may be found by assuming that

c»($) = [$ —(1 —»n+nc)I]/(g -I) &0 (4. 8)

is a slowly varying function when $ = $q(r) or g»(r),

$, (k) and $»(k) may be calculated from Eqs. (4. 8)
and (4. 9) self-consistently. If t)»&0, the second
term in (~ ~ ~ )"' on the right-hand side of (4. 9) will
be small for both the weakly magnetic case (c-0)
and the nearly fully magnetic case (c = » sin28, = »'),

and (~ ~ ~ )" may be expanded in a power series.
The value of c,(g) will then be calculated easily,
yielding the following results:

case(A) q»&0:
I

$, (k) = (1 —»n+nc)q» —~ ~ ~

(»(k) = (1 —»n —nc sin28»)I+ ~ ~ ~ .
(4. 10a}

(4. 10b)

When p~ &0, such an expansion is valid only if

(1 —,'n —nc sin28»)—1»c»($)q», case (Bl)
or

(1 —,n —n—csin28»)I«c(»$)q» caes(B2) .

Solutions for case (Bl) are the same as those for
~a«:

case (Bl) (()» &0; (1 —,'n —nc sin28»)I —&c((3)q:»

nc (1 —sin28, }Ic,()») q»+ 1 ~ ~ ~

(1 —»n —nc sin28„)I —c»($») q»
(4. 11b)

with c»($») = c(1+sin28»)/(»+ c sin28»). For case
(B2), however, we have

case (B2} r{» &0; c»($)r}» & (1 —»n —nc sin28»)I:

$, (k) = (1 —»n —nc)I

jk+ Q(%l

gk q&0

)0
r k+Q

fq~ [$] as a function of ( where n = 2 c = g
a = (1—yn —nc) I, b = (1- 2n + n&) I, d = (1-2n+ n& sin2 8&)I.
The k-dependent solutions offI„~ [$] = 0 are marked by O.

$, (k) = (1 —»n+nc)rl»

nc (1 —sin28») I
((—,— r. s 2(( ((—(( ——,

'
r. )'q )

(4. 11a)

(»(k) = (1 ——,n —nc sin28»}I
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with

nc(1 —sin28»)I (1- »n —nc sin28»}I
c»((,)q»- (1 —»n —nc sin28»)I

(4. 12a)
where

nc (1 —sin28»}I( ,'n—+nc}rl„q
(-,'n —nc sin28, }I+(-,'n+ nc)rl~q

(4. 17b)

$3(k)=I+ (»n —nc)ri»I/(I+&») ~ ~ ~ (4. 13}

for both q» &0 and q» & 0.
The above calculation may be extended for the

cases with T=k+@ Ne shall summarize the re-
sults in the following. The lowest root (,(k+Q)
for both q»~ &0 and q». & 0 is

f»(k)= (1 —»n+nc)q»

1+(
nc(1 —sin28»}I

~ 0 ~

(1 —»n+nc)g» —(1 —»n nc si-n28»)I
(4. 12b)

c»((&) = 2c/(»+ c)I .

Here the second terms in the expansions are added
since the denominator of the second term in (~ ~ ~ )'
being the difference between two quantities, is
smaller than the case for g»&0. The corrections
are useful in demonstrating the validity as well as
limitations of the expansions used. In fact, it can
be shown that the above results (and also the fol-
lowing results} satisfy the exact inequality rela-
tions (4. 6) and (4. 7). We note, in particular, that
the leading term in (4. 12a}was in the same form
as that in (4. lib) but was modified by the correc-
tion term as it stands so that $, (k) is now shown
to satisfy the required inequality (4. 6). The third
root t'»(k) may be calculated similarly, yielding

)
(1 ——,'n+ nc}(I—q»)I- (1 n+—2nc)q,

while, for $, (k),

A„,(k) =A, (k) = ""-"'{""'
I- (1 —n+2nc)g» '

and, for nearly k-independent states,

A, (k) =0 .
Similarly, for t', (k+ Q), we find that

(4. lg)

(4. 20)

(4. 21)

A...(k, Q) =A, (k, Q) = "-'"-"'f-"" }
I —(1 —n —2t1c)g»iq'

(4. 22)

and, for $(k+ Q) =I+ (—,'n+nc}r)», q, that is, $»(k+ Q)
in case of q», q & —(-,' n —nc sin28, }I, and $, (k+ Q} in
case of q„q & —(-,'n —nc sin28, )I, we obtain

c, (g) = [t' —(1 ——,'n —nc)I]/5,

c, ($») =nc(1+ sin28, )/(1 —,'n+nc —sin28,), (4. 18)

c, (t'») = 2nc/(1 ——,'n+ nc),
The probabilities A, (r) of finding those states may

be calculated easily by Eq. (4. 3). The probability
of finding the states whose energy spectra is given
by t'(k) = (1 —,'n+ nc—}rl„that is, $, (k} in case of
g» & (1 —

» n —nc sin28»)I and $»(k) in case of
'g» & (1 —,'n ——ncsin28, )I, is

t', (k+ Q) = (1 —,'n —nc)g», Q—I/(I+ q»,q) ~ ~ ~ . (4. 14)

Then we have
(-,'n+ nc)(I+ q„q)I- (1 —n —2nc)g~q

(4. 23)

case (C) q„q &0:

$»(k+ Q}= (1 —,'n+nc sin28»)I+ ~ ~ ~-

&,(k+ Q) = I+ (-', n+ nc)ri„q—

(4. 15a)

(4. 15b}

while, for nearly k-independent states,

A, (k+Q) =0. (4. 24)

case (Dl) 'g», q &0;
~
c, (()g~q~ & (»n —ncsin28»)I:

$a(k+ Q) = (1 —nc+ nc sin28»)I+ (—'n+ nc)g», q

nc (1 —sin28„}I(—,'n —nc sin28„)I
(»n+ )gncQ+»(»n —nc sin28»)I

(4. 16a)
$»(k+ 8) = (1 —»n+ nc)I

nc (1 —sin28»)I( —,
' n —nc sin28»)I

cg(t3)17» q+ (»n —nc sin28»)I

case (D2) 7i»,q & 0; (-,'n —nc sin28»)I &
~

o, ($)q»,Q~:

~»(k+ Q) = (1 —»n+nc sin28»)I

nc(1 —sin28»)Ic, (&,}g~q
( )

(-,'n —nc sin28, )I+ c,($»)q~q

k»(k+ Q) = I+ (-,' n+ nc) q».q

V. NATURE OF THE SOLUTIONS AND DISCUSSIONS

To illustrate the nature of the solutions obtained
in Sec. IV, we shall draw schematically the energy
spectra assuming a simple band in which t„ in-
creases monotonically as k increases from 0 to 2Q.
The Bloch energies in the sublattice structure, g»
and g„q, are, as is seen from the definition (4. 5),
averages of t, and t„z. As magnetization M in-
creases and 8» defined by Eq. (2. 8) increases, the
deviations of g» and g», from the unsplit-band en-
ergy t» increase.

Under the perfect magnetization where M = 1 and
(9» = -,'g, the present results reproduce the results
of Slater's split-band model given in Sec. III;
$q(k) for rl» & (1 —n)I and $»(k) for ri» & (1 —n)I give
the Slater's lower band, and $a(k+ Q) for ri„q& 0
and $»(k+ Q) for q„&0q, the Slater's upper band,
while the other solutions disappear altogether be-
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FIG. 3. Energy spectra
P, &(k), $3(k+Q), p~, and p&, Q

for the fully magnetic case
(M= 1).

k+Q

cause the probabilities of finding them, A(~), vanish
exactly. The two nonvanishing bands are separated
by the intra-atomic interaction I as is shown in
Fig. 3. If the number of electrons is the same as
the number of atoms and n = 1, the lower band is
completly filled and the upper band is empty since
Ai (k) A»(k+ Q) 1

As the magnetization decreases from M = 1 and
c decreases from the maximum value &, the values
of the two boundaries (1 —,'n —nc)I and—(1—,'n-
—nc sin28„)I increase in parallel. The spectra $&(k)
will behave like (1 —»n+ nc)q» when c»(()q» «(1 —»n
—nc sin28„)I but becomes - (1 —

m~
—nc)I when

c»($)g»» (1 —
~&

—nc sin28, )I. The spectra $»(k), on
the other hand, will stay constant - (1 ——,'n —nc
x sin28»)I when c»($ }q»«(1 —i»n —nc sin28„)I, but
turn to (1 —»n+ nc)ri» when c»($)ri»» (1 —»n —nc
x sin28»)I. Our expansions are not valid in the in-
termediate region but the spectra may be interpo-
lated as is shown in Fig. 4. The result looks as if
the Slater's lower band is split into two by the
Hubbard interaction.

According to the exact inequalitites (4. 6), there
is a finite gap between $,(k) and $»(k) when 8»& 0,
and hence the second term on the right-hand side
of Eq. (4. 9) will remain finite; in particular, the
k-dependent part of this term will not vanish. Con-
sequently, we can speculate that one of the two
solutions of Eq. (4. 9) maintains a k-dependent
term much larger than»(1 —m nc)q+» and the other
much smaller than -', (1 —,'n+ nc)q». —

This implies a sharp splitting of the bands, and
solutions of case Bl given by Eq. (4. 11) will prob-
ably turn fairly quickly to those of case B2 given
by Eq. (4. 12) and vice versa at the "crossing point. "
Since the probability of finding k-dependent solu-
tions, Ac(k), is practically zero, this band splitting
will introduce little physical consequences as long
as the "crossing point" is far from the Fermi sur-

I

CL
Ch

C
td

b ~

$2{k+Q)

FIG. 4. Energy
spectra for the inter-
mediate case (0&~&1):
a=(1—2n —nC) I, 5
=(1—2n+n&)I, and c
= {1—2n —n& sin2~z) E.

k+Q

face. Thus the k-dependent parts of the two bands
may be regarded as a quasi-single-band which
corresponds to the Slater's lower band.

As magnetization M decreases, the "crossing
point" moves upwards and eventually disappears
leaving only the lower solution $,(k). At the same
time, the k dependence of this Slater-like spin-
polarized lower band decreases while the third
spectra $|(k+ Q), which was zero for all k in the
fully magnetic state, will begin to acquire a k de-
pendence. The probability density for the polarized
lower band, A, (k), decreases from unity while
that of the antipolarized lower band $,(k+ Q),
A, (k+Q), increases from zero and eventually
these two become equal to the Hubbard value A, (v)
= (I g, )/—2I, yielding Hubbard's nonmagnetic solu-
tion in the limit of M=O.

A simi;ar splitting will appear in the Slater-like
spin-polarized upper band because of the crossing
of two types of solutions $»(k+ Q) and $»(k+ Q), pro-
vided g~, Q & 0. The crossing point will appear near
I when M= 1, and goes downwards as M decreases.
At the same time, the polarized upper band becomes
flatter and the third branch $»(k) appears. As the
probability density A„,(k+ Q) decreases, A„,(k) in-
creases, and finally they become equal to the
Hubbard value A„,(v) = I+q, /2I in the limit of I= 0.

In the limit of M=O, q, andy„Q become equal
to t, and t„Q, respectively, forming a continuously
increasing single band t„ for 0 & k & 2Q. The three
boundaries (1 —m+nc)I, (1 —mane sin28»)I, and
(1 »n —nc)I are con—solidated into a single bounds. ry
(1 ——,n)I. The originally polarized and antipolarized
lower bands, $,(k) and (,(0+ Q), will lose the polar-
ization and form a continuously increasing single
lower band and lie below the boundary value
(1 —m)I, while the polarized and antipolarized
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upper bands, (s(k) and 4(k+ Q), wiII form a, con-
tinuously increasing nonpolarized upper band and

stay above the boundary (1 —~2)I. The other two
solutions, gz(k) and $z(k+ Q), having vanishing
probability density A, (7 ) = 0, disappear completely.

Since the probability density for the lower band,
A, (r) = (I -&),)/I, is less than one, a system of 8
electrons and lV atoms will not be an insulator be-
cause the lower band cannot accomodate all the N

electrons. Herring speculates on this defect as if
it were a fault of the Hubbard solution, but it
might be a fault of the Hubbard model itself. The
Hubbard Hamiltonian (2. 1) has only the repulsive
interaction I and no attractive force, so that it is
not possible to create bound excitons responsible
for the excitonic insulating state. With only the
repulsive interaction, the lower band may not be
able to accomodate all the N electrons as long as
each of them carries a finite kinetic energy. This
situation might be compared with the traffic on a
highway. If the density of cars exceeds a certain
limit, the flow of cars decreases suddenly, allow-
ing stop and go motion only. To maintain an opti-
mum flow, the density has to be below a critical
value (I &&,)/I, whi-ch should be much less than the
maximum number of cars that can be piled on the
highway.

In Slater's split-band model, the gap parameter
MI is proportional to the magnetization, and as the
magnetization decreases, the gap as well as the
spin polarization decreases and, in the limit of
M = 0, the gap disappears, yielding the nonmagnetic
nonsplit band t~. In the present results, the gap
is introduced by the Hubbard interaction, which
is a constant independent of the magnetization. As
the magnetization M decreases, the k-dependent
spin-polarized lower band, which is described by
t'&(k) or $2(k), and which has been responsible for
stabilizing the fully magnetized state, is suppressed
and the antipolarized band $&(k+ Q), which is popu-
lated with electrons with opposite spins, will ap-
pear and its probability density, A„(k+ Q), in-
creases until the spin polarization of the system is
completely cancelled and the Hubbard's nonmagnetic
insulating state is obtained. This is precisely the
reason why the system can remain insulating above
the Neel point.

In the Hartree-Fock approximation, the kinetic
and interaction energies can be identified separate-
ly, as in Eq (3.9). In t.he present results, energy
spectra contain both the kinetic and correlation en-
ergies and the total energy 8 can be calculated by

8/IV = f g,(s) ds, (5 1)

where t'r(n) is the Fermi energy of the system con-
taining nN electrons, that is,

t'F(n) = (1 —~~+ nc)

( &&&z&
cos 8k«&+ tk&»+o sm 8&&n&)

' ', (5. 2)

when the lower-band contribution is being calculated.
Here 8»&„& is given by Eq. (2. 28) and is a function
of M, while k(n) is defined on the basis of the ori-
ginal band t~ and is equal to the Fermi momentum
of the system with nÃ electrons. The terms pro-
portional to (~n —ns) on the right-hand side of Eq.
(5. 2) give rise to the correlation energy. If the
original nonsplit band t~ is given, then the
total energy can be calculated by Eqs. (5. 1) and

(5. 2) as a function of M. The magnetization M at
the aboslute zero of temperature will then be de-
termined so as to make the total energy minimum.

As the temperature increases, the magnetization
will decrease but very slowly until the temperature
reaches a certain range near the Noel point. Then
the magnetization will drop sharply. Before the
sharp decrease of magnetization, the system may
be represented by the highly spin-polarized lower
band together with a small contribution from a
weakly k-dependent antipolarized lower band as is
shown in Fig. 4. As the temperature reaches the
Neel point, the strength A„(k+ Q) of the antipo-
larized band will grow rapidly, abruptly trans-
forming the system into the Hubbard's nonmagnetic
state shown in Fig. 5.

For the purpose of simple illustration, we have
discussed the nature of our solutions solely based
on power expansions. In practice, the original
cubic equations can be solved precisely without
difficulties.

Finally, we shall discuss brieQy the question of
finding a ferromagnetic state instead of an anti-
ferromagnetic state. The Hubbard Hamiltonian cer-
tainly admits a ferromagnetic solution. According
to Herring, however, there is only fragmentary
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FIG. 5. Energy
spectra for the nonmag-
netic case {M=0).
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evidence that the ground state of the Hubbard Hamil-
tonian can ever by ferromagnetic. For any spin
state, there are many opportunities for hopping
without having an extra pair of two electrons on the
same atom. Since a nonmagnetic state has the
possibility of lowering the energy by allowing an
optimum number of doubly occupied atoms, while
the fully ferromagnetic state has no such opportu-
nity, it is very unlikely that the exact ground state
is ferromagnetic.

In the case of a linear chain of atoms with the
hopping matrix elements &». nonzero only for
nearest neighbors, Lieb and Mattis' have proved
that the ground state is always a singlet or a
doublet but never ferromagnetic. Hubbard has
calculated the ferromagnetic instability of a non-
magnetic state and shown that such instability can
occur only if the density of states at the Fermi
level is much higher than the average over the band.

These results incline one to suggest that the
present model can never be ferromagnetic and the
present treatment on the stability of an antiferro-
magnetic state against a nonmagnetic state will be
justified even though the ferromagnetic instability
is not .onsidered. Ferromagnetism is expected to
appear if the degeneracy of d electrons is explicitly
taken into account, and then it becomes necessary
to investigate the ferromagnetic instability of an
antiferromagnetic solution. However, the spin
polarization of bands which yields the antiferro-
magnetic stability against a nonmagnetic state is
different from the splitting of spin-up and spin-
down bands which leads to the ferromagnetic stabil-
ity against the same nonmagnetic state. The ferro-
magnetic instability of an antiferromagnetic solu-
tion is not known, and we have to compare the ener-
gies of the two-distinct state to see which one of
the solutions is more stable than the other.
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A general magnetic-pseudopotential theory has been developed for Bloch electrons in a
magnetic field. This theory is a generalization of the earlier formulations of Misra and
Roth, and Misra, and it includes the effects of spin and spin-orbit interaction. In this meth-
od, tight-binding and orthogonalized-plane-wave functions are constructed which have the
symmetry of the magnetic Bloch functions and which form a complete set for the wave func-
tion of the Hamiltonian of the crystal in a magnetic field. These are used as basis states
for the wave function of an eigenstate of the problem, and an effective Hamiltonian is ob-
tained which includes the magnetic pseudopotential. The magnetic pseudopotentials due to
Misra and Roth, and Misra, and zero-field pseudopotentials, are obtained from this general
magnetic pseudopotential in appropriate limits. The expression for the magnetic pseudopo-
tential has been obtained in a form such that it can be calculated to any order in the magnetic
field. This expression is further simplified for metals. The immediate purpose of this
formulation is to calculate the total magnetic susceptibility of metals and alloys.

I. 1NTRODUCTION

Recently, Misra and Both' have introduced a

modified pseudopotential method in the theory of
Bloch electrons of simple metals in a magnetic
field. Misra has extended this method, which he


