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Current experimental techniques of hvo-photon angular correlation in positron-annihilation
studies measure the probability distribution of one or two components of the total momentum
of the electron-positron pair. We discuss the problem of deducing the probability distribution
of the total momentum itself from the experimental data. It is shown that information about
two components of the total momentum can in principle determine the probability distribution
of the total momentum.

INTRODUCTION

Several different geometries are used for two-
photon angular-corr elation experiments in studying
positron annihilation in various substances. I.et
p(p) denote the probability that the total momentum
of the two y rays (and therefore of the annihilating
electron-positron pair) is p. Now the experiments
do not determine p(p) directly, but only the prob-
ability distribution of some component of p, ob-
tained by suitably integrating over p(p).

The most common setup uses bvo long slits. '
Ttns geometry measures the probability that the
photon pair has the z component of momentum equal
toP, :

&(P.)= f" f ~P.df, p(p) . (l)
A second type of setup uses two point counters
moving in one planea; this gives

&(p.)= f" f"df. df, tt(f,) p(p) .
A var1atlon of this geometry proposed by
Fujiwara, 3 uses bvo pairs of crossed slits, and
can give useful information about the Fermi-surface
anisotropies.

A new technique recently introduced4 uses a point
counter together with a spark chamber. The line
joining the sample to the point counter defines the
s axis; the plates of the spark chamber are parallel
to the xy plane. This geometry yieMs

&(P.P,)=f „" p(p)df. . (&)

In each case, one can try to determine p(p) itself
from the exper1mental data. In th1s paper we shall
discuss the mathematical solution of this problem.
In particular, we describe how the data supplied by
Eq. (S) can be analyzed to yield p(p).

This problem for the two long slits was discussed
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by Mijnarends. ' He deduced an integral equation
and found its solution on the assumption that N(P, )
as given by (1) is differentiable. This assumption
does not hold for the Fermi distribution at 0 'K.
It is possible, however, to find a solution to
Mijnarends's integral equation without making this
differentiability assumption. We shall show that
there is an inherent drawback of the long-slit geom-
etry, in that the solution for p(p) cannot, in gen-
eral, be unique. The determination of p(p) from
Eq. (2) with two point counters leads again to an
integral equation, which can be solved. However,
this method also suffers from lack of uniqueness.

The two-dimensional information available from
Eq. (8) can be inverted through an integral equation
to get p(p). We shall argue that the solution can be
made unique from the point of view of physics.
The reason for the advantage is eough1y this: The
knowledge of the distribution of two components of
momentum provides information about the azimuthal
quantum number (m values), so that one can put a
limit on the number of partial waves (l values)
present and thus reduce the problem to a deter-
mination of a finite number of quantities. Nothing

can be said about the azimuthal quantum number
from the experimental results on the distribution
of one component of momentum. Finally, we make
some remarks on the practical aspects of the var-
ious methods.

I. INFORMATION OF ONE MOMENTUM COMPONENT

We shall confine our discussion to cubic crystals
throughout this paper. Two coordinate systems
are defined as follows: (i) R„ fixed to the crystal
with coordinates $gg along the crystal axes, and

(ii) R, fixed suitably by the experimenter to the
measuring apparatus, with coordinates denoted by

xyz. The subscript c denotes the system R„ thus

~, will denote the orientation of p in the coordinate
system R,. All experimental numbers, of course,
refer to the system R.

In R„ the distribution function p(p) can be ex-
panded in cubic harmonics K,„(Q,) of angular mo-

mentum l and type v,

monies transform according to the well-known

relation'

I'i.(8.4.) =&. &.'.(~)F,;(84) . (7)

Utilizing (4), (5), and (7), Mijnarends shows that

Eq. (1) for the orientation (P n) of the s axis with

respect to the crystalline axes R, becomes

N,.(p,) =2 &K,.(u~)g,.(P.),
lv

with

g,(P.)= f, P,.(P)P, (P./P)PdP (P, &0) .

(8)

(9)

To determine p, „(p), one first obtains the func-
tions g,„(P,) from (8), and then solves (9). The

solution to (9) given by Mijnarends is

p (P)= —
p dp

—
2

g (p)
1 dg. (P) I(l+ 1)

P

+
po a.(s)Pi ~&/P)«

0

(10)

It is, however, easy to see that for the simple
Fermi distribution at 0 'K, go, (P) is not differenti-
able at the Fermi momentum. N(p, ) is the well-

known inverted parabola in this case,

N(p, )=2m(n', —p',), p, u,

=0, P» k'p . (12)

As the experiments are done at finite temperature,
this usually does not matter, since the Fermi dis-
tribution at finite temperature is differentiable.
It is possible, though, to solve (9) without this re-
strictive assumption.

Consider the Mellin transform' of g,„(P,)/P, with

Res & 2 (the transform is indicated by a caret on

top):

P, (x) is the second derivative of the Legendre poly-

nomial P, (x). In particular,

1 dgog(p)poi(p)=-
p

p(p) =& p~. (p)K~.(II.)

= + s"r pr (P)Ct (fl )

(4)

~0

k.(s) = P."a.(P.) dP.

where
Cio(II.) = Fio(II.),
C,„(II,) = (I/&2)tF, (II,)+ F, (&,)] (m vo) .

(6)

a", can be obtained from the work of Mueller and

Priestley. ' Note that l is even (l = 0, 4, 6, 8, 10, . . .)
and m=0 (mod 4) and positive. Let ~= (npy) be
the rotation that brings R, into coincidence with R,
so that (P n) are the polar and azimuthal angle of

the z axis with respect to R,. The spherical har-

Pz dP» Pt.'v P +l
0 , Pz

dp pi. (p)p' ' x' 'Pi(x) «
0 0

„'~o I'(s —2)2o '
I'(—' ( l I))1'(—' (s+ I))

(12)

By Mellin inversion formula. we get (o &2)
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1 ds
W. (P) = 2„. p. g&.(s)

g ja

I'(—,
' (s —I —I))I'(—,

' (s + l))
„~&a2a-~ I (s

(i4)

the "fixed configuration" measurement, in which
the axes of the cubic crystal are coincident with the
xyz axes of the measuring apparatus. Then Eqs.
(4) and (5) hold in the R system as well; using the
explicit form for spherical harmonics, ' we get

It is easy to check that the inverted parabola pre-
sents no difficulty here.

Let us now examine the solution of (8) more care-
fully. Notice that the set of quantities g,„(P,) is to
be determined from a highly underdetermined sys-
tem. Mijnarends proceeds as follows: He collects
the data for several directions (Pn}. Then he
arbitrarily truncates the summation at convenient
l values such that he has just as many g,„'s as
Na, (P,)'s, or even fewer g, „'s. In the latter con-
tingency, he uses the method of least squares to fit
the data. The procedure is arbitrary and cannot
lead to unique solutions for p(p), unless, of course,
one guesses luckily the correct number of /'s pres-
ent.

We shall briefly consider the inversion problem
for Eq. (2). Substituting (4), (5) 1 and (6) into (2),
and using (7), we get

with
lVfft fft'=0

di".'(P.) =
(1 pa p-a) i ~a Pi.(P)Pi™(P.IP)

(i6)
The solution of (16) can be obtained by Mellin trans-
form. Note that the solution of (15) suffers from
the same nonuniqueness difficulty as described
above. We shall later return to the practical
aspects of the problem.

II. INFORMATION OF TYCHO MOMENTUM COMPONENTS

We shall now turn to the problem of determining
p(p) from Eq. (3). For simplicity, let us take first

p(p) = g b", P, (cose) cosmic p, „(P) (m & 0) .
lvm (17)

We express N(P„P,) in polar coordinates (Rp)
and write the Fourier series

Ã(P, P,) =g(R&—) =g g (R) cosmic . (18)

g (R) can be obtained from a Fourier cosine trans-
form of the experimental data. On the other hand,
by substituting (18) and (17) into the left- and right-
hand sides of (3}, respectively, we get

g. (R) =2 Z b",.Z, .(R),
where

(19)

x p&, (P)(1 —R'P ') '"
= f,

"
dP P' '

p, „(P)f '
(1 —xa)'-" iaP, (x) dx .

(22)

But as Res &1,'

x p.(P)(1-R P-') '"dP -(20)

The solution of the integral equation can be easily
obtained. Consider the integral

f,„(s)=f"R''fP„(R)dR, (2i)

with Res &1, so that the integral converges at
R=O, when f,„(R) is finite at the origin. In practice
f,„(R) will fall off very fast as R - ~; even if fP„(R)
decays as slowly as R ', we can restrict Res & 2.
Now,

f,„(s)=f dRR' a f PdP ™~[(1—R P )' ]

f1 w'~ I' —' s+ m+1
(1 —x )' " P, (x) dx= „, ', „, ))

aEa( a'(i+m+1), ——a'(l —m), —,'(s+ m+1); 1+m, —,'(s+m); 1)
0 ) K2K

(23}

aPa (@bc; de; a) is a standard higher hypergeometric function. As a(l -m) is an integer, the function is al-
ways cut off into a rational function in s, which in fact has real zeros and poles. Equation (23) is then solved
by the Mellin inversion formula:

1P, P)= 2„.
ds 2' I'(1+ m) I'(—,

' (s+ m)) f,„(s)
P' v'~ I'(—,'(s+m+1))aEa( a'(I+m+1), ——a'(l —m), —,'(s+m+1); 1+m, —,'(s+m); 1)

(24)

where o&1.
Notice, however, that f~„(R) are, as before, un-

derdetermined in (19). But we now have some addi-

tional information about the m values in using (18)
on the experimental data. We shall examine the
situation in detail. Take first the extreme case,
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when

go(R) =2(1 —R )'i, R —1

=0 R~1. (26)

All higher g (R)'s are zero, as obtained experi-
mentally. In (19) for any m on the left side, l —m

on the right. Hence one can argue that all p&„=0
except p», and we have a single equation

go (R) = 2 boofo( (R)

So we have

fog(R) = [4v(I —gP)]

and

f'„(s)= —,
'

w I'(-,' (s —I))/I'(-,' g 1)

Then

(4,)& ~3

Po (P)= 2„. —, P,

(26)

(27)

(28)

(29)

g"(R)=2 Q d,„„f"„(R)(meO),
l vent

where

(30)

(I+ n)!4.0.=&io
(I „)'t [~i.(P&)+I'r.(P&)],

1 ~ (2l+ 1)(l+n)!
lvmn ~p &tm 4

x [S„'„(&o)+I)'„(v)+~„'(v)+ ~„' (&u)] . (31)

The ff'„(R)'s are the same as before. By making
enough measurements for various rotations one can
always get unique solutions, once the l values have

which, by elementary contour integration, gives
rise to the standard Fermi distribution. ' Except
in this trivial spherically symmetric case, the
situation is not so simple. Consider, for instance,
the case when only g, (R) and g~(R) are finite and the
rest are zero. We may argue that all l's higher
than 6 are absent. We have to determine foo„ f4„
f~„ f4„and fB„but f4, and fe, can be calculated
through (22) if f~«and f06, are known. Even then
three quantities, p», p4„and p6„are to be deter-
mined from two equations for go(R) and g, (R). The
solution cannot be unique.

This ambiguity can be resolved by making mea-
surements with the crystal rotated. We now use
Eqs. (4)-(7) and (3), and get the equations (n even)

been delimited. For example, in the case discussed
above, using (29) for three orientations, one can
find po„p4~, and pe, uniquely. The consistency of
E values appearing in the sum can also be checked.

The use of Mellin transform raises a practical
problem, since f,„(s) has to be determined analyti-
cally. One solution is to fit the experimental data
in terms of linear combinations of simple functions

-qB2like (1 —R~)', e '", e '", etc. , which are suggested
by the physics of the problem [compare (25) above],
and have known Mel. lin transforms. Then fP„(s)
can be found in terms of known functions and the
analysis can be completed. Notice that this feature
is also present in our solution (14) for the one-
momentum-component problem and thus makes it
somewhat less practical than the solution (10)
given by Mijnarends. For the spark-chamber anal-
ysis, we have not been able to find a solution in
terms of real variables only.

III. DISCUSSION

We have shown how the data on two components
of the total momentum can be analyzed to yield p(p)
and that this method, in principle, has some
advantages. In practice, the gains may be less
gratifying. Consider Eq. (18); g (R)'s are obtained
by Fourier cosine transform of experimental data.
The state of affairs will often be less clear-cut than
what is assumed in the two examples above. In
many cases —particularly if the momentum distri-
bution has strong anisotropies —besides the large
Fourier components, we shall have a number of
small Fourier components, and these will be very
sensitive to experimental errors. Obviously, even
here one will have to use one's judgment on experi-
mental errors to truncate the m series so that the
number of l values becomes delimited. The only
advantage is this: While in the one-component
case the truncation is arbitrary or dependent on

clever guess and can be improved by trial and er-
ror, in the two-component problem, experimental
information is used as guide for the truncation. In

a systematic study of p(p) for many cases, this
may prove to be helpful. Hopefully this new spark-
chamber technique will provide interesting infor-
mation about anisotropies in the momentum distri-
bution of metals and other substances.
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Spin-lattice relaxation times (T&) and Knight shifts were measured for Cd~~3 nuclei in 12
CdS crystals doped with various amounts of chlorine. Hall coefficients were measured in
order to estimate conduction-electron concentrations. Data were obtained for all samples
at 300'K and for some highly doped samples at 77, 4.2, and 2. 13 'K. Metallic properties
were observed in all samples having electron concentrations n &2x10~ cm . At 300'K, we
find 1/T~cr-n for nonmetallic samples and 1/T~rxn when samples are metallic. The latter
proportionality continues to hold at lower temperatures. The dependence of T~ on n be-
comes increasingly less pronounced at lower temperatures in the nonmetallic samples in-
dicating that the nuclear relaxation becomes at least partially dependent on mechanisms
other than conduction electrons, such as spin-diffusion coupling to paramagnetic impurity
sites. In the metallic samples, the Knight shift Kccn and the Korringa product is a con-
stant: T~TK =3.3x10 6 sec K. Both the Knight shift and Korringaproduct decrease sharp-
ly «r n &2&&10~ cm"3. Our analysis shows that the Mott transition (formation of an im-
purity conduction band or transition to "free" conduction) occurs in a region 5xl0 &n &1.6
x10 cm and that the impurity conduction band and the CdS conduction band become
merged (i. e. , the Fermi level crosses into the CdS conduction band) in a region 1.6 x 10
&n &2.4x10 cm 3.

I. INTRODUCTION

This paper reports on the experimental nuclear-
magnetic-resonance (NMR) behavior of Cd'" nuclei
in chlorine-doped CdS. We have measured the
spin-lattice relaxation times (T,) and Knight shifts
(K) in CdS:Cl having a wide range in the doping con-
centration. These data were complemented by
measurements on the electrical properties and
used to investigate the semiconductor-to-metal
transition.

Pure CdS is a 2. 5-eV band-gap photoconductor
which becomes an n-type semiconductor when

donor impurities are present. Chlorine is a donor
impurity for CdS and thus evidently goes into the
crystalline lattice substitutionally for sulfur. '
The electrical conductivity increases with impurity
concentration and at a rather high level the doping
will effect a semiconductor-to-metal transition.
This phenomenon may be studied by NMR via the
hyperfine interaction with conduction electrons
which affects both T, and E.

Impurity conduction phenomena in the group IV
semiconductors and the III-V compounds have been
studied by several investigators using NMR.
Cadmium oxide is the only II-VI compound reported


