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We have measured the spin-orbit splitting, Zeeman effect, and splitting under {'001) and

(Ill) stress of the lowest vibronic levels of the 4T2 term of Co2+ in KMgF3. The results are
in good agreement with the Ham theory of the dynamic Jahn-Teller effect, in which interaction
is only with a single e (tetragonal) distortion mode. The convergence of this theory is checked
and found to be good, and the influence of v' vibrations is shown to be small. We conclude that
the cluster model, on which the Ham theory is based, gives an adequate description of the
Jahn- Teller effect in perovskite fluorides.

I. INTRODUCTION

In a previous paper' (hereafter referred to as I)
we discussed the dynamic Jahn-Teller effect in the
4Ts excited term of Va' in KMgF3. We adapted the
Ham theory2 of dynamical quenching to the problem
assuming interaction with a single e distortion
mode only (we call the E, and I'& distortion modes
of the nearest-neighbor octahedron the & and v

modes, respectively). We found that this theory,
with a single adjustable parameter (representing
the strength of the Jahn-Teller interaction) ac-
counts quantitatively for the spin-orbit splitting of
the lowest vibronic states, for their splitting under
uniaxial stress, and for their Zeeman effect. In
this paper we report similar experiments on the
corresponding 472 term of Co2' in KMgF3. The
Co2' ion is analogous to V ' with three holes in its
M shell instead of three electrons; the main dif-
ference (apart from the change in sign of all one-
electron matrix elements) is that the spin-orbit
interaction in the free Co2' ion is approximately
three times as large as in V '. Like V ', it sub-
stitutes for Mgs' in the O„(octahedral) site of
KMgF3.

We find that agreement of experiment with theory
is as good as in V '. However, with such strong
spin-orbit interaction, the convergence of the
theory (which involves a perturbation expansion in
the ratio of the spin-orbit coupling to the vibrational
frequency) is not to be taken for granted. In this
paper we carry the expansion to higher order and

show that the series is indeed strongly convergent.
Itbreaks downwhen a first-order splitting approach-
es a vibrational quantum. However, in such a case
the basic model, which assumes a single discrete
vibrational mode, also fails. It is unlikely that
there will ever be any point in going beyond the
second-order theory.

In the case of Co2', unlike V2, we can measure
the effect of (111)stress on the spectrum and

hence find the coupling constant for the 7 distortion
mode. We calculate the effect of this coupling,
regarded as a perturbation on the predominant cou-

pling to q distortion. We find that the corrections
are negligible in the yresent case, but that one can
visualize conditions where this coupling might be
important.

II. EXPERIMENTAL

Crystals of KMgFS containing approximately
0.05-at. /g cobalt were grown by standard methods.
They are light pink and there is no evidence in
their optical spectrum of charge states other than
Co '. Fox instance, Co ' in octahedral fluoride
coordination has a strong absorption (usually a
broad doublet) in the region 11000-15000 cm. ~.

Our crystals have no absorption in this region. The
crystals also contain some nickel, and the Ni'
spectrum is quite prominent. They are good single
crystals (unlike the V '-doped crystals used in I)
and can be aligned with an x-ray goniometer to
better than ~'.

Measurements of the effect of stress on the
absorption spectrum were made at 2 K with a
Cary Model 14 RI double-beam spectrophotometer.
We fitted this with a cooled PbS cell and obtained
a resolution of 1 cm ' at 1.4 p, . Stress was ap-
plied in an apparatus similar to that described by
Sehawlow et aE. ; the only major modification is
the substitution of a pneumatic ram for the weights
used in Ref. 5.

The transverse and longitudinal Zeeman effects
were measured in a 50-kG superconducting magnet
with a —,'-m Jarrell-Ash monochromator and cooled
PbS cell. The spectral slit width was 0. 5 cm '.
By varying the temperature from 4 to 8 K, the
initial state (+-,' of the I"s ground level) of each
transition can be determined; the symmetry of the

final state is then determined uniquely by the

polarization (see Table I of I).
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FIG. 1. Absorption spectrum of Co ' in KMgF3 in the
region of the T~(I'6)- T2 no-phonon lines. T= l. 8 'K,
specimen thickness=6. 5 mm, and cobalt concentration is
approximately 0. 03 at. %.

III. RESULTS

The ground-state term of Co ' in octahedral co-
ordination is T„and spin-orbit splitting brings
a I'~ Kramers doublet lowest with all other levels
several hundred cm ' higher. The lowest excited
term is T~ at about 7500 cm '; all other observed
transitions are above 15000 cm '. The no-phonon
transitions from 4T,(I'~) to 4T2 are shown in Fig. 1.
There are three sharp lines corresponding to mag-
netic dipole transitions to the I'~, I', , and I', levels
of T~. The transition to the fourth level I'7 is for-
bidden in cubic symmetry but becomes allowed when
the symmetry is reduced by strain, as we shall
see. There are several weak lines whose intensity,
relative to the three strong lines, increases with
cobalt concentration. These are probably pair
lines. Absorption lines of Ni ' are seen at 6700
and 6866 cm '.

The effect on the absorption spectrum of applying
a stress of 21 kg/mm parallel to (001) is shown
in Fig. 2. The "pair" lines broaden and soon be-
come undetectable under stress. The transition to

80- rr X

X

r X

P II &OOI&
x

0 r6
r x ------r"

7

60-

40-
Q
O
KI-

o 20

Eo 0

0

l 7 is now clearly visible. Figure 3 shows the line
positions as a function of stress. The hydrostatic
shift of the centroid (0. 46 cm '/kg/mm ) has been
subtracted from these data. The initial shift of
l, is quadratic and its position can be extrapolated
back to zero stress with an accuracy of ~ 2 cm '.
The symmetries of the states are found from the
magnetic dipole selection rules in D,„: 16-'16+ I', ,
I, -'I „where carets indicate representations of
a uniaxial (as opposed to cubic) group. ' The theo-
retical curves are explained in Sec. IV.

The effect of applying stress parallel to (111)
is shown in Fig. 4. The splitting of the I'8 levels,
though small, is significantly larger than can be
accounted for by misorientation of the crystal.
The fact that the splitting under (001) stress is
about 20 times that under an equal (111)stress
shows that the Jahn-Teller distortion is tetragonal
(e) rather than trigonal (r), so that T2 operators
(such as a trigonal field) are partially quenched.

Some typical Zeeman spectra (obtained with 50
kG parallel to (001)) are shown in Fig. 5. Unlike
V ', Co ' shows only a weak Paschen-Back effect,
and we can write the shift of each state from its
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FIG. 2. Effect of applying a stress of 21 kg/mm
parallel to (001) on the T~(I'6)- T2 no-phonon lines of
Co ' in KMgF3. Full line: 0 polarization (HIIP); dashed
line: 7I polarization (H Ip). H is the magnetic vector of
the light. Note the extra x-polarized line at 7013 cm
T= 1.8 K, cobalt concentration is approximately 0.1at. %.

FIG. 3. Splitting and shifts of the T~ levels of Co ' in
KMgF3 under stress parallel to (001) . States are labeled
according to their representation in D4I, . Theoretical
curves are calculated in Sec. V. Over-all hydrostatic
shift of 0.46 cm"~kg ~mm2 has been subtracted out.
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FIG. 4. Effect of applying a stress of 31 kg/mm2
parallel to (111)on the spectrum of Fig, 1. Full line:
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zero-field position as

bE(H)=+ , (g+ gap, ss-H )pH+g, p,sH .
For most states g, and g~ are too small to measure.
The results of a least-squares fit of Eq. (l) to the
data are given in Table I (where the sign conven-
tion is also defined).

FIG. 5. Longitudinal and transverse Zeeman effect at
4. 2 K in the T&(I'6)—T2 no-phonon lines of Co ' in
KMgF3. IIDc =50 kgll (001) . Sample thickness: 7 mm;
concentration is approximately 0. 03 at. %. Lines marked
P become stronger at higher concentration and may be
pair lines. Solid line is right-hand circular polarization
(e+), dashed line is left-hand circular polarization (e—),
and dotted line is H tl HDc (0. polarization).

IV. COMPARISON OF EXPERIMENT WITH SIMPLE THEORY

The basic theory of the Ham effect, as applied
to this problem, was given in I. There it was
assumed that the static crystal field problem has
been solved. By the "static" problem we mean
the detemination of the energy levels of the (3d)"
configuration in a fixed cubic crystalline field, in-
cluding the effects of spin-orbit interaction but
neglecting the Jahn- Teller interaction. The T2
term is split into four spin-orbit levels I', , 1", ,

F', , and Fs. The splittings can be described by an
effective Hamiltonian, only valid within the T2
term,

3C,f~= —XL S+g(L S) +p(I.„S„+L,S, +L,S,),
(2)

operating on the 12 states with an effective L = 1,
S=—,'. The parameters X, ~, and p are functions
not only of the one-electron spin-orbit parameter
f, but also of the cubic crystal field 6 and the Racah

TABLE I. Observed and calculated g factors for the 4T2 term of Co ' in KMgF3.

States"
Field

direction Observed Calculated
g~(cm)

Observed Calculated
g2(cm2)

Observed Calculated

I'8g ~)

&8(L $)

+gal 3)

001
ill
001
111

001
111

001
111

001
111

001
111

—2. 29 a 0. 06
-2.19+0.06

-4.0 +0.3
+ l.81+ 0. 08

+ 0.1 +0.1
3.62+ 0. 08

+ 3, 6 +0.2
-3.03+ 0. 08

—2. 61a 0.15
3.5 +0.4

-2.03
-2.03

—3.76
+ 1, 95

+ 0.16
3.22

+ 3.80
3g 33

-2.86
3.39

3y 31
+ 3.31

—0.22+ 0.03
-0.3 +0.1

+ 0. 2 + 0.05
+ 0.2 +0.1

—0.26
-0.27

+ 0.20
+ 0, 22

-0.04
—0. 04

+ 0.06
+ 0. 01

0
+ 0. 04

+ 0.04
+ 0.04

+ 0. 08+ 0. 03

—0.05+0.05

-0.02
+ 0. 08

+ 0. 02
-0.08

Parameters g, g~, and g2 are defined by Eq. (1).
Where no value is given for g~ or g2, there is no signifi-
cant deviation from the linear behavior defined by g.

"Labels + ~&, & refer only to transformation properties,
not to Mz in a JMz representation for T2. In C4z, + &

A A 3 A

transforms as I'5, —
& as I'6, —2 as I'7, +2 as I'8,. inC3~,

+ a transforms as I'&, -$ as f'5, and + $ as I'8. These
correspondences define the signs of the g factors except
for 1 6 of C3;, for which sign is meaningless.
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parameters B and C.
The Jahn-Teller interaction X» and the lattice

Hamiltonian X„«are now to be added to this
Hamiltonian. The problem of determining X~ in a
real impure crystal is quite intractable, and it is
customary to replace the crystal by an imaginary
molecule consisting of the impurity ion and its
nearest neighbors. This is the "cluster model. "
In our case, the cluster is octahedral and has one
F., normal mode, labeled &, and one Tz, mode,
labeled 7. %'hile this is clearly not going to give
a good approximation to X,«„ it can give a good
description of X» since in an ionic crystal the
d electron interacts primarily with the nearest
neighbors. So long as we study effects not partic-
ularly sensitive to the details of the vibrational
spectrum, we might expect the cluster model to be

adecluate. In this model we have (ignoring all but

the JT active modes & and v)

%ace (I/2P) t. a+PS+ I &~(Qg+Qg)

+P4+Pg+Ps+ p, Cd~(Q4+ Qs+ Qe)] ~ (3)

where the collective coordinates Q, are defined in
Table II of Sturge, and the P, are the conjugate
momenta. The effective mass p. presumably ap-
proximates to the mass of a fluoride ion. The
effective mode frequencies ~, and ~, are some sort
of average, different for each case, over the normal
modes of the impure crystal.

The Jahn-Teller Hamiltonian is

b, =7800 cm ', B=880 cm ',

C=3870 cm ', g= —470 cm '.
This value of f is obtained by Gladney' from
analysis of the ground-state term of Co in MgF~,
and by Kamimura and Tanabe' from a similar
analysis of CoF~. However, a rather higher value,
near 500 cm ', is suggested by the emission spec-
trum of Co ' in KMgF~ itself. ' Because of lattice
relaxation in the excited state, 6 is reduced to ap-
proximately 6800 cm ' (the value obtained in emis-
sion). Substituting this a, and the above values of
B, C, and f, into Eisenstein'ss matrices for the
d" configuration, we obtain the splittings of T~

given by the open circles at the left-hand side of
Fig. 6. These can be fitted by (2) with X = 55. 3,
x=7.7, and p=26. 5 cm '.

The effect of Jahn-Teller interaction with an &

mode on the spin-orbit splittings of the lowest vi-
bronic levels is shown in Fig. 6. The full lines
give the results of a first-order calculation, in

which the splitting is a function only of x, the
dimensionless coupling parameter defined by

x= 3V', /2m&~', = 3&„/@~,,
where E» is the Jahn-Teller stabilization energy.
The dashed lines show the effect of inclusion of

0 0)
2~3Q2+ aQs

Y

500 cmI

200

(4)

r~
tLI

I

LLI

IO

operating on a real tetragonal basis for the T2
electronic states.

In I we made the further assumption that the sec-
ond term in (4) could be neglected. This leads to
the simple situation, discussed at length in I and
Refs. 2 and S, where the lowest vibronic eigen-
states transform as T~, and behave qualitatively
just like their electronic parent. Quantitatively,
however, off-diagonal operators such as the spin-
orbit coupling are reduced in magnitude.

In this section we will compare this theory with
the experimental results for Co~'. The over-all
optical spectrum of Co ' in KMgF3 can be fitted
with the following parameters':

r6
0ci
0 4 6

X =3 EJT/hw

IO

FIG. 6. Ham effect in the T2 term of Co ' in KMgF3.
Open circles are the spin-orbit splittings calculated by
conventional crystal field theory. Full circles are the
observed splittings. Full lines are the splittings (as a
function of the Jahn-Teller interaction parameter x) cal-
culated by the first-order Ham theory; dashed lines show
the second-order theory with S~, =300 cm"~. Parameters
in ~zz are the same for both and are given in the text.
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second-order terms; these are inversely propor-
tional to the effective vibrational frequency co„
which now enters explicitly. The full circles are
the observed splittings in zero stress (including
the extrapolated position of I',). While we obtain
excellent agreement with the first-order theory,
putting g= 5, inclusion of second-order terms
destroys the fit. However, this discrepancy is not
very significant if ~, is not too small. If &co, is
300 cm, a 6/0 increase in f (within the uncertainty
of this parameter) will restore the fit. While the
data on V ' in I were fitted with 8'co, =150 cm ', it
was pointed out there that a higher value would be
quite consistent with the data. (Since the vibronic
structure is similar for V ' and Co ', we would ex-
pect k&u, to be much the same for both. )

We can calculate the Zeeman effect from the
first-order theory without any further parameters
except k, the orbital reduction factor, which we
take as 0.9.' The calculated and observed g fac-
tors are compared in Table I. Agreement is more
or less within experimental error except for the

g factor of the 16 level which deviates from its
spin-only value of 2 by more than expected. A
discrepancy of similar magnitude but opposite
sense was noted in I. Although this may be evi-
dence that the orbital momentum is not quenched
to the extent predicted by the Ham theory, it seems
more likely that admixture of doublet states into the
quartet is responsible.

The splitting under (001) stress can be calculated
with the addition of one more parameter u, which is
defined as the splitting of the 4T2 term by unit stress
in the absence of spin-orbit or Jahn-Teller interac-
tion. The best fit (see Fig. 3) is obtained with u
=+ 1.6 cm ~ kg ~ mm (the positive sign means that
the orbital singlet is lowest in sufficiently large
compressive stress). The sign of u is that expected
from the point-charge model, and its magnitude
is consistent with the ultrasonic data on the ground
state. " A precise comparison is not possible, as
it was in I, since the splittings of 4' and 4T, de-
pend on different combinations of the one-electron
matrix elements.

V. REFINEMENT OF THEORY

While agreement with the simple theory is as
good for Co ' as it is for V ', some doubts as to its
applicability remain. Besides the basic approxi-
mation of the cluster model, we have made two
assumptions: that 7. distortion can be neglected,
and that the theory for & distortion is convergent.
We will consider the question of convergence first.

While Ham was able to find a closed form for the
solution to the second-order problem, 2 no such
simplification is in sight for higher-order terms.
Instead, we choose a "brute-force" approach, set-
ting up the largest Hamiltonian matrix our com-

(6a)

&imam;nt l&tatt I
j~'m,'n~ & =!ftd.(m+n)«~6..6 6» ~

(6b)

The vibrational overlap integrals can be obtained
from the generating function for Hermite poly-
nomials. We find

m~
(m,.

~
m( ) = e (((*(- ('„.„.'(

m" f i sm'- fnm+m'- $n-2l+m+m' - l+ (e+m') /2

(m —l)!(m' —l)!l!
(6)

Here m" is the smaller of m or m', and P&; =0
for i=j, P&, =P,~, P«=P&&= —8, P«=2 . The-1/2 -I /2

same formula gives (n; In,'), with P«= —Ptt = —(&)'

P« =0. (The P's are normalized separations of the
Q' in the Qz and Q~ directions. )

The matrix is infinite and must be truncated at
a certain maximum value of (m+n) which we call

We include effects of higher vibrational states
to second order by adding to the matrix elements
between states with m=n=0, a modification of
Ham's term:

(tripp l~"
lj!If pp) = (@td,)-'[f,'(x)6t, + (1, —6,.,)f,'(x)]

&
t'~

I &.« I
&~"

& (~~
I &.t t li ~ & .

A, M"

Here f,' and f,' differ from the factors f, and f, de-
fined by Ham in that states with (m + n) & N are not

included. Thus

f, = e "G'(x/2), f, = e "G'(x), (6)

where

G'(x) =Z x"/(nn! ) .
N+1

puter can handle. We choose real' basis states
I Tzi, M, m„n; ). Here i refers to the electronic
state, $, q, or i;, each of which is associated with
a paraboloidal energy surface centered on a dif-
ferent point Q' in configuration coordinate space' '
(see Fig. 20 of Ref. 9). The quantum numbers
m, and n, specify the (m, n) vibrational state of the
two-dimensional harmonic oscillator centered on
Q'. M is the spin magnetic quantum number + —,

'
or ——,'. The Hamiltonian has two terms, X,ff,
given in Eq. 2, and X„«. The matrix elements
of these are

(mm;n; lx.„lj~'m,'n,'&

=(tmlx, « ljm') (m, lm,') (n, ln,'),
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The calculation follows the same lines as that of
Ham et al. ' with the modification noted. ' There
is a complication because of the mixing of the two

18 levels by X,«. The actual F8 wave functions are
related to those of Griffith by the transformation

(, , (t:Dsa —sine)
(

—', t',
)

The matrix elements of X~ between Griffith's
basis states are given in Table II. In KMgF3: Co ',
a = 21 . A great deal of algebra then gives us for
the shifts of the energy levels, in units of
p "V,/2pe, .'

5 (I'8) = cos P(1+c,) '+ sm P(1+ e2) '+ (1+es) ',
5(r ',) =-,' cos'P[(1 —e, ) '+ (1+q, —e,) ']+sin'P

FIG. 7. Corrections to the splittings of Fig. 6 from
higher-than-second-order contributions in the Ham theory,
for hro, =200 cm

We are able to take this calculation up to M= 7

(corresponding to a 168 &&168 matrix), but we find
that no appreciable change occurs beyond N= 5.
Some results for this value of N are shown in

Fig. 7, which shows the changes of the splittings
of T~ from their second-order values as a func-
tion of x. The parameters in X,«are those found

in Sec. IV; we arbitrarily take S~,= 200 cm '.
The changes vary approximately as co,2. The
shift of I'7 —F6 splitting approaches Sco,. Apart from
this divergence, the shifts are small relative to
the first-order splittings.

These results show that so long as the spin-or-
bit splittings do not approach k~, convergence is
good, and there is no point in going beyond the sec-
ond-order theory. When the splittings do approach
h~&, we would hardly expect the cluster model to
be useful, since the precise vibrational level struc-
ture becomes critical in determining the energy
levels.

We now turn to the second term in (4), the cou-
pling to v distortions which we call XJT. In V '
and Co ' we know that coupling to & distortion
dominates, and it is logical to treat X',T as a per-
turbation on the vibronic eigenstates obtained from
the q term. Within the lowest of these states, cor-
responding to m =n=0 for the & vibrations, the
matrix of 3C,'T has the same form, but V, is re-
placed by its partially quenched value V,e '~~.

X,'T couples these states to a group of excited states
containing one r but no & vibration. The states
between which K~ operates are shown schematical-
ly in Fig. 8.

Here P=n —tan ' 2, and e„ez, and&~ are theener-
gies of 1",', Is, and l„respectively, in units of
Ace, and relative to I"6. They are the energies ob-
tained in Sec. IV by including & but excluding v in-
teraction.

Substituting for the &,'s and assuming for sim-
plicity that they are small, we find for the energy
shifts in cm ' relative to F~:

, 1+&~

1+@&

r, r,

r, r7rsrs

n =1

r, r7rs rs

I'7

Is0

I's
b

Q

FIG. 8. Loudest vibronic energy levels of T2 (n, = 0)
and the states obtained by exciting one & vibration (n~= 1).
Energies are in units of S~,. Jahn-Teller interaction
3'.JT couples states of the same symmetry in OI„and
differing by one unit in n~.

+ —,(9 —cos4P) (1+ t2 —tg)
(10)

5(18)=-', sin'p[(1 —a~) '+ (1+es —e~) ']+ cos'p

+ g (9 —cos4P ) (1+ 6g —fp)

5(I"p) = cos p(1 c+g
—tg) + sin p(1+ cp —cg) + (1 —E3)
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TABLE II. (JI'(nT=0) (X.~TJ J' r(nT= 1)) in units of e V, (I'/2pm, )

Parent: 3
g I'8

5-1/2

(a) I'6 matrix

2 I'8

2/ (51/ 2)

Parent: 3pr8
5-1/2

(b) rq matrix
52r8

2/ {51/2)

Parent:

10-1/2

—2/(1o'/')

2

4/(125'")

12/(1251/2)

3
2 I'8

(c) I'8 matrix

2

—8/(125'/')

125-'/'

2

—8/ (125i /2)

125-'/'

mrs

2

—9/(125 )

—2/(125'/')

—1O-"'

2/(1o'/')

nE(F, ) = —261y, b,E(F;)= —206y,

EE(F 8) = —29y,

where

y= e "V,/2gharo .
We could estimate y from the observed splitting
under (111)stress if we knew )1'u&,. The lowest
reasonable value is 100 cm ', and this will give
an upper limit to y. If we assume that local and
macroscopic strain are identical, the splitting of
1'~ per unit stress is approximately RV,e "

/c44,
where A is the interatomic spacing. Substituting
a splitting of 0.03 cm 'kg 'mm, x=5, 8=2 A,
c44=4. 85&&10 kgmm, p, =one fluorine mass, and
Sco, =100 cm ', we find y=10 . This is an upper
limit; energy shifts from this cause are less than
2 cm ' and can be neglected. Similarly, g shifts
from the y interaction are of the order y and hence
quite negligible.

Another way z vibrations can contribute is by
coupling the two Jahn-Teller branches. This is
most easily understood by considering the static
Jahn-Teller limit where the system remains in-
definitely in one tetragonally distorted configura-

tion. This is the situation at the right of Fig. 6
where the levels have merged into two, correspond-
ing to 8 =+-,' and + 2, quantized along the axis of
Jahn- Teller distortion. The splitting is 2(p+ v),
the unquenched part of X,«, plus a small contribu-
tion from second-order effects of X,«. There is
no corresponding second-order effect of X~T, which
cannot contribute to a spin splitting without the
mediation of the spin-orbit coupling. There is,
however, a third-order contribution which is
—(p+a)SV, /3E~T p~, . With our previous param-
eters this is at most 6 cm ', compared with
2(p+~) =68 cm '.

We conclude that the fit to the data on
KMgF3.' Co ' is a genuine test of the Ham theory
in that refinements to the theory do not appreciably
affect the agreement with experiment.
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The spin-1attice relaxation of V 4 in Ti02 is measured at liquid-helium temperatures using
electron-spin-echo techniques. The T& relaxation decay function is represented by an expres-
sion which is the sum of two exponential functions. The decay constants for the two exponen-
tials are 0.11 and 0.70 sec and they do not depend on temperature or sample size. The sample
is annealed in air and the relaxation decay constants become 0.16 and 1.10 sec. This is inter-
preted as one constant being related to the equilibration of a "hot" spin system and a set of
resonant phonon modes, and the other decay constant being related to the relaxation of the
phonon mode by defect scattering.

I. INTRODUCTION

Spin-lattice relaxation is of continuing interest
because the process of energy flow from defect ion
sites to the modes of a crystal lattice has important
consequences on laser efficiency in solid-stake laser
crystals. The pulse techniques used for many years
in nuclear-spin-relaxation experiments are finding
increased application in electron-spin- relaxation
studies. When the coupling between the spin system
and the phonon system is strong enough and the pho-
non relaxation slow enough, the "phonon bottleneck"
can be observed, 3 In this paper we present the re-
sults of a spin-lattice-relaxation study of V4' para-
magnetic impurities in Tia, (rutile) using an elec-
tron-spin-echo pulse-sequence excitation of the
spin system and the subsequent relaxation of the spin
and phonon systems back to thermal equillbrluID.

In Sec. II of this paper, we present a standard
spin-echo vector-model discussion of the spin exci-
tation and relaxation. We then discuss the results
we would expect from this simple theory. In Sec.
IG, we present our experimental procedure and re-
sults and show how our results differ from the sim-
ple vector model. In Sec IV, we discuss a more

general theory of spin-lattice relaxation to take into
account such processes as the stimulated emission
of phonons and nonequilibrium phonon distributions
which arise from the strong spin-phonon coupling.
We use this more general picture to explain our
experimental results. In Sec. V, we point out some
conclusions and speculations that come out of the
more general picture.

II. SIMPLE VECTOR MODEL OF RELAXATION

The dynamics of a spin system can be represented
by a magnetization vector whose motion is similar
to the motion of a classical gyroscope. The dynam-
ics of our four-pulse-spin-echo-relaxation experi-
ment can be described by this vector model. In our
relaxation measurements, we apply a pulse pair
followed by another pulse pair. The separation be-
tween the pulse pairs is much longer than the trans-
verse relaxation time T~. The two pulse pairs are
identical and the separation between the individual
pulses of a pair is shorter than T2 and will produce
an echo.

Initially, the magnetization vector is aligned along
the positive z axis. An intense microwave pulse is
applied to the spin system and, in a frame of ref-


