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The Langevin equation for the superconducting order parameter above the transition tem-
perature T~ proposed by Schmid is modified to calculate the nonlinear excess conductivity
0'(T, E) slightly below T~. The electric field dependence of 0'( T, E) is described approxi-
mately by the same function of &/&, (T) as Schmid's function above T~, with a newly defined
characteristic field E~(T) below T,. The experimental results of the nonlinear electrical
conductivity of aluminum films below T~ are in fairly good agreement with the theory.

I. INTRODUCTION

The excess conductivity due to the thermody-
namic fluctuations of the superconducting order
parameter has been extensively investigated in the
temperature region above and below the transition
temperature T, . Smith et a/. found that the ex-
cess current in thin films above T, shows a non-
linear dependence on the electric field when the
velocity v, of the fluctuation Cooper pairs exceeds
a/mg(T), where g(T) is the temperature-dependent
Ginzburg-Landau (GL) coherence length. Since
then, the nonlinearity has been studied above T,:
theoretically by Hurault, Schmid, Tsuzuki, and
Gor'kov, ' and experimentally by Thomas and
Parks, Klenin and Jensen, and Kajimura and
Mikoshiba on thin aluminum films. The experi-
mental results are in qualitative agreement with
the theories.

According to the theories, ' the characteristic
field E,(T), at which the nonlinearity becomes ap-
preciable, is proportional to (T —T,) in the case
of thin films above T„while the zero-field excess
conductivity is proportional to (T —T,) '. How-
ever, the zero-field excess conductivity is observed
to be continuous at T„and to increase exponentially
as the temperature is lowered slightly below T,.
This behavior was successfully explained by

'V

Marcelja's theory. &
'0 In this temperature region

the nonlinearity is expected to be greatly enhanced,

but the theories of Hefs. 2-4 cannot be applied to
the immediate vicinity of T, and below T,. In this
paper we present the result of a theoretical and
experimental study on the nonlinear excess conduc-
tivity of thin films in this temperature region.

In Sec. II, we propose a Langevin equation ap-
propriate for the temperature region slightly be-
low T„and calculate the nonlinear excess con-
ductivity. It is shown that the excess conductivity
in the zero-electric-field limit reduces to the re-
sult given by Masker et al. , and the electric field
dependence of the excess conductivity is almost
the same as that above T,. The experimental pro-
cedure is given in Sec. III. In Sec. IV, we present
the experimental results on the excess conductivity
as a function of temperature and electric field,
and compare them with the present calculation.
The agreement between theory and experiment is
fairly good. In Sec. V, discussions are given of
the validity of the theory in terms of both a phe-
nomenological treatment and a microscopic the-
ory.

II. THEORY

Schmid' proposed a Langevin equation for the
superconducting order parameter &'(r, t) above
T, and calculated the nonlinear excess conductivity.
Tsuzuki' and Gor'kov gave a support to this
Langevin equation method by deriving the same
result for the excess conductivity using the micro-
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scopic theory. We modify the Langevin equation
in order to calculate the excess conductivity below
T, retaining the third-order term in +. It takes
the form

where

o'(T, 0) = e't e Ty/2v+d
I nol

E,(T}= (3m}'
I 2nol

' /eey . (6)

y 5 ——2ieV 4' r, t
at

where

(-')66 ~ 66X/ )',
)

(- ) ~- (

n'= n - p'&I w(r, t)l'& . (2)

Here P'= 2P, and a, P, and y are the coefficients
in the GL equations. The transition temperature
T, is defined as the temperature at which the GL
coefficient a vanishes. A is the vector potential,
V is the electrochemical potential, and ( ~ ~ )
means the ensemble average. If we neglect the
random force f(r, t), Eq. (1) reduces to the time-
dependent GL(TDGL) equation" linearized accord-
ing to Marcelja's idea. ' The random force f(r, t)
is assumed to be completely uncorrelated in space
and time, i.e. ,

(f*(r, t)f(r', t')) = 2kyke Ts(r —r')5(t —t') . (3)

The prefactor has been chosen in such a way that
&14'(r, t) I ') in the absence of external fields above
T, reduces to the thermodynamic average of
I W(r, t)1 . The validity of the above Langevin equa-
tion is discussed in Sec. V and the Appendix.

We consider a system slightly below T, in a uni-
form electric field E. A gauge, P'=0 and A=
—eEt, is chosen. Solving Eq. (1) with respect to
the Fourier component of the order parameter,
+~= f dry((r, t) e '~' /V, V being the volume of the
system, and taking the ensemble average of
I @o(t)I, we obtain

Pmu, T »cu
2 du —1 —exp

mk d u I apl
0

eu E
(

I n(')I E,(T)

where e, = h q, / 2m = n(0).
In the limit of E=O, we have

Pmk~T1 1 - ~» (io)

When T & T, and n» i =- t((mls T/vtf'd, we have

n= —»e = —»e0 c

where a = (T —T,)/T„and
co= [75(3)e /v k]RN = 2. 10& 10 R'„' .

Here np is the value of n' at E=O. Above T„ the
third-order term in Eq. (1) can be ignored and ob-
viously n' = n, so that Eq. (6) is reduced to the one
obtained by Schmid. In the temperature region
slightly below T„however, a' depends not only on
T but also on E. Then we must determine it by
Eq. (2) self-consistently. The quantity (14(r, t) I )
in Eq. (2) is obtained from Eq. (4) by summing
over q. Since the naive summation diverges, we
introduce the wave-number cutoff taking account
of the fact that the GL theory is applicable only to
the wave numbers q &q, = f (0). Therefore, we
introduce a step function 8[aq, —

I kq —2eEt'I ] into
Eq. (4) and sum (14'~(t) I ) with respect to q in the
region" I al —2eEt I & Iq, . Then the self-consis-
tency equation for n', Eq. (2), becomes

t

&14'(t}l'&= vg
CO

t t
x exp hq —2eEt"

R'„'= 1/do„and o„are the normal-state film re-
sistance per square (0/sq) and the normal-state
conductivity, respectively. Equation (7) with Eq.
(11) gives

2

(T 0)=' ' ' ""
27]@d»,

The excess current (j(r, t)) is given by

I 2

I no I E,(T) (6)

& j(r t) &
=~ &fthm

—2eEt) & I +a(t) I
'& .

4 m

When we consider the system of a thin film with
thickness d «g(T), we obtain the nonlinear excess
conductivity, o'(T, E) = (j ) /E, as

o'(T, E) = o'(T, O)
4 0

6'(6, E) = '(T, 6) 1 —(6—,) ( ~ (16)

The factor [6 —2f/(f —no)] reduces to 6 far above
T, and 4 below T, . At E»E,(T), we can neglect
the n'-dependent part in Eq. (6), and we have

e'(T, E) = So„E (is)

This is essentially the same as is given by Masker
et al, . except for minor differences mentioned in
Hefs. 16 and 17.

At E «E,(T), we can easily determine n' and we
obtain
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FIG. l. (a) Electric field dependence of the parameter &' at T=1.9140 K calculated by Eq. (9) with parameters of
sample A-7. (b) The solid curve shows 0'(T, E)/o''(T, 0) at T = 1.9140 K calculated by Eq. (6) with 0' shown in (a).
The dashed curve shows 0'(T, E)/cr'(T, 0) calculated by Eq. (17).

with

4 e k~T 3m'
(16)

The E ' ' dependence is the same as that above
T,. At arbitrary electric fields, a' must be de-
termined by numerical calculations.

A result of a numerical calculation of the self-
consistency equation for n', Eq. (9), as a function
of the electric field is shown in Fig. 1(a) for sam-
ple A-7 in Table I at T = 1.9140 K. The values of
a=1.23&&10 ' erg, P=2. 19&&10 ' ergcm, and
y= 0.0398 are used. ' Using the values of o. ', the
electric field dependence of the ratio o'(T, E)/
&r'(T, 0) can be calculated by Eq. (6). In Fig. 1(b)
the result for o'(T, E)/o'(T, O) is shown by the solid
curve against the ratio E/E, . We can neglect the
electric field dependence of o'(T, E) through o. ',
since it is smaller than that through the factor
(E/E, ) u in Eq. (6). In this approximation,
o'(T, E)/o'(T, O) can be given by a universal func-
tion of E/E, as

o'(T, E) E
du exp -u —

( )
u, (17)

0
C

which was first derived for the case above T,
with E,(T)= (3m) r 12ai r /effy Equation .(17) is
shown in Fig. 1(b) by the dashed curve. The dif-
ference between the two curves is relatively small,
and we make an analysis of the experimental data
on o'(T, E) using Eq. (17) in Sec. IV.

fects. " The size of the tapered fringe part of the
prepared films was estimated to be 1 p, m. The
dirty films were deposited at a rate of 5 A/sec and

at oxygen pressures of 10 Torr, and their di-
mensions were 1.0 mm wide and 10.0 mm long.
The clean films were prepared at a deposition rate
of 50 A/sec in vacua of (1-15)&& 10 6 Torr, and were
rectangular zig-zag patterns having a large length-
to-width ratio, 0. 2 mm&& 20 cm. The possibility
of nonuniformity in the samples was reduced by
confining the patterns to an area of the film less
than 0.8 cm . Maximum thickness variation in one
sample was estimated to be 200 . After deposition
of samples, films were coated with paraffin to
avoid the oxidation with the laboratory air. Film
thickness was measured with a multiple-beam in-
terference microscope within an accuracy of + 20 A.

The resistance of Al samples was measured in
the temperature range 4. 3-1.4 K by measuring the
dc or ac voltage across the films prepared for the
conventional four -terminal method. A five -decade
digital voltmeter with an accuracy of 0.1 p, V was
used to measure the voltage across the films and
across a standard resistance to monitor the cur-
rent in series with a sample. The measured dc
currents, which ranged from 0.01-300 p.A, were
provided by fifteen 1.5-V dry cells with high resis-
tance in series with a film and were constant to

TABLE I. Observed values of sample parameters.

III. EXPERIMENTAL PROCEDURE
Sample ~g'(~lsq) d(A) k (0) (A) 103&'

0

Films were prepared by evaporation and deposi-
tion from an aluminum-wetted coil-type (7-mm
diam, 5-cm-long) tungsten filament onto room-
temperature slide glass substrates, 20 cm apart
from the filament. Thin stainless-steel masks,
made by photoetch technique and 0.05-0. 15-mm
thick, were u. .ed to define precisely sample geom-
etries, by which we could avoid film-edge ef-

A-3
A-4
A-7
A-8
A-9
A-10
A-11
A-12
A-13

11.531
37.727

128.45
129.12
166.90
238. 24
374. 61
869.03

1999.2

120
160
100
100
280
100
100
200
140

1000
650
500
480
240
450
280
130

80

0.143
0.553
1.13
1.15
1.00
2.41
7.75
7.85

12.7
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2
a'(T, H) = a'(T, 0) 2

h

1 & hx q
—+ ——q 1+ —+ —,(18)
2 2h 2h

where h = 2v( (0)H/Qp, Qp is the flux quantum,
a'(T, 0) = e /(16h'de), and g is the digamma function.
The formula reduces to

1 1 e 1 —(2c/h) ln2
R(H) R„88da„hR„ (19)

when I c/h I «1. Then by plotting 1/R(H) vs 1/H
at e = 0, the data were extrapolated to 1/H = 0,
yielding a value of A„. In this case, the Maki

within one part in 10 over 1 h. The electric field
dependence of the excess conductivity was mea-
sured by the dc digital voltmeter for two samples.
For other samples, a phase-sensitive detector was
used to measure the resistance by supplying a small
constant ac current with a range of 0.01—0. 1 p.A
for small voltages across the samples. The magni-
tude of the electric field was two orders of magni-
tude smaller than the characteristic field E,(T) in
Eq. (8), and the measured excess conductivity
was regarded as the zero-field value.

The temperature of samples which were im-
mersed in liquid helium was determined by mea-
suring the vapor pressure within an accuracy of
+ 0. 1 Torr in the range 770-80 Torr, and of + 5
mTorr in the range 80-2 Torr. The relative ac-
curacy of the temperature is about 0.05 mdeg,
and the absolute one is 1 mdeg. Maximum tem-
perature difference between samples and the li-
quid-helium bath caused by sample heating due to
the Joule loss and the Kapitza resistance was es-
timated to be 1.2 mdeg in the electric field of about
200 mV/cm. When the electric field is lowered,
the temperature difference due to the Joule loss
rapidly decreases.

The samples were mounted with the sample sur-
face parallel to the Dewar axis. All the measure-
ments without external magnetic fields were car-
ried out in annealed Mu-metal shields within which
the earth's magnetic fieM was reduced to 8& 10
Oe. But the field component perpendicular to the
sample surface can be reduced to less than 10 '
Oe by rotating the samples around the Dewar axis.

It is very important to determine precisely the
normal-state resistance R„of films in order to ob-
tain the accurate electric field dependence of
a'(T, E). The normal-state resistance R„was de-
termined from the measurement of the magnetic
field dependence of the sample resistance with the
help of the formula given by Abrahams et al. and
Maki for the excess conductivity in the perpen-
dicular magnetic field H, i.e. ,

term is negligible because the depairing effect in
the high perpendicular magnetic field is very large.

The value of the GL coherence length at 0 K,
$(0), was deduced from the measurement of the
critical field as a function of temperature in the
perpendicular magnetic field, H„(T), which is
[Qp/2vg (0)] I e I in the vicinity of T, . In the dirty
limit, we can use the Gor'kov theory to express
the GL coherence length in terms of the electronic
mean free path l and the BCS coherence length~

$p as $ (0) =0.72)pl.
By this means, parameters of Al films prepared

in the above-mentioned manner were determined
and are tabulated in Table I.

IV. EXPERIMENTAL RESULTS

In this section we present the experimental re-
sults on the electric field dependence of the excess
conductivity a'(T, E) at various constant tempera-
tures and the temperature dependence of the excess
conductivity in the zero-electric-field limit below
T,. The results are compared with the calculation
in Sec. II.

The quantity loggp[a'(T, E)/o„] for an aluminum
film A-7 with d=100 Aand R'„'=128.45 0/sq at
various constant temperatures T is plotted against
log&0E in Fig. 2. It clearly shows the E law,
Eq. (15), at large fields with the observed value
S,~ = 18 (mV/cm) l'. On the other hand, we obtain
S „=7.9 (mV/cm) ' using y ca.lculated from the
microscopic expression, the parameters mentioned
in Sec. III and the value T= T,=1.9191 K. The
agreement is fairly good. In the framework of the
present theory the small discrepancy can only be
attributed to the smallness of the theoretical value
of y = 0.0398 compared with y = 0.48 reduced from
S,~, . The E ' dependence is the same as that ob-
served by Thomas and Parks, ' and Klenin and Jen-
sen at temperatures above T, .

The solid curves in Fig. 2 are the theoretical
ones calculated by Eq. (17). In this figure all the
curves for various temperatures have the same
form, only shifted from each other along the tem-
perature-independent line of Eq. (15). The fit is
good over five orders of magnitude of the electric
field. The deviation of experimental points from
the theory for T= 1.9150 K and T= 1.9219 K is not
due to the sample heating. The deviation occurs
at rather low electric fields, where the sample-
bath temperature difference is estimated to be
about 0.05 mdeg, as has been discussed in Sec.
III. This type of behavior is seen in other pure
samples~ at temperatures near T,. The same
electric field dependence as in Fig. 2 has been
observed" ' ~ above Tc.

The zero-field excess conductivity a'(T, 0) is
determined by the above-mentioned fit, and the
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FIG. 2. Variation of the quantity
o'(T, E)/O'N of a superconducting alumi-
num film A-7 (d=100 A. , RP =128.45
0/sq) with the electric field at various
constant temperatures (T,=1.9191 K).
Solid curves show the theoretical val-
ues of Eq. (17). All the curves for
various temperatures have the same
form, and are fitted to the data by
shifting each other.
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quantity a„/o'(T, 0) of the same specimen is plotted
against the temperature T in Fig. 3. The same
kind of plot for sample A-4 is shown in Fig. 4.
In this case a„/a'(T) was measured with a small
constant ac-current(0. 01 pA) method, mentioned
in Sec. III. Below T„a'(T,O) is given by Eq.
(13). The exponential behavior of a'(T, O) is clear-
ly observed in both plots. The temperature de-
pendence of a'(T, 0) is similar to that observed by
Masker et al. The observed values of &0 are
plotted against 8&' in Fig. 5 together with the data
obtained by Masker et al. The present values of
Eo are about a half of the theoretical values and
are about two times the ones obtained by Masker
et al. The temperature region and the range of
the resistive transition of our experiment are as
wide as in Ref. 9(c). We have rechecked the pro-
cedure to measure the temperature and the resis-
tance but reaffirmed the accuracy described in
Sec. III. As has been discussed by Masker et al. ,
the magnetic field has a large effect on cleaner
samples and can lead to the apparently larger values
of eo. In order to check whether shielding from
the earth's field is sufficient, the samples were
rotated around the Dewar axis. This procedure
could reduce the earth's field perpendicular to the
sample surface to less than 10 ' Qe. However, we
have detected no effect. At present we have no ex-
planation of the discrepancy in the observed values
of Eo. Masker et al. argued in a note added in
proof in Ref. 9(c) that the discrepancy between the
values of eo in their theory and experiment is re-
duced to a factor of 1.1, if they take into account
the deviation of pl,« from the free-electron value
due to the size effect, where p and l,«are the re-
sistivity and the electronic mean free path, re-
spectively. However, we think that the deviation

of pl,«may be included in the measured values of
R„, and therefore the discrepancy between the
values of &0 cannot be reduced.

V. DISCUSSIONS AND SUMMARY

10
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p 0
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0 A lumInum

1 0 — 0 RN~ I 28.45 Q /sq,
0

10
1.90 1.95 2.00

TEMPERATURE I aK )

FIG. 3. Temperature dependence of the quantity
0&/0'(T, O) of sample A-7 determined from the fit in
Fig. 2. For the sake of clarity, only a small fraction
of the data points are shown.

The unlinearized TDGL equation augmented by
the random force f(r, f) with the property given by
Eq. (3) is more general and more appropriate than
the linearized Langevin equation used in this paper.
The reason is that in the absence of time-depen-
dent external fields the equivalent Fokker-Planck
equation has a stationary solution
exp(-+[@(r)]/ks T ), where E[4'(r)] is the GL free
energy. McCumber and Halperin solved this
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Fokker-Planck equation for thin wires in the tem-
perature region where the nonlinearity in 4(r, f)
is essential. &

' On the other hand, our Langevin
equation (1) with Eq. (2) can be considered a.s the
one obtained by linearizing the unlinearized Lange-
vin equation. The validity of the linearization is
examined in the case of thin films in the absence
of external fields in the Appendix. It is shown that
the linearization is valid when

10

10

~ ~ gc = et(l. + Into), (20) 10

10

010—

10

h.

10

0 0
0 0

00
00

0
0

0
0

0
0

0
0

0
0
0

0
1O'-- '

0
0
0
0

104 0
0

A 1uminurn

Fi'„~ 37.727 C} /sq,

3
I

105 I i I

1.93 1.94 1.95 1,96
TEMPERATURE ('K )

FIG. 4. Temperature dependence of the quantity
oz/o'(T, O) of sample A-2 (d =160 A, R~~=37. 727 ~/sq).
The quantity oz/o'(2') was measured with a small con-
stant ac-current method mentioned in Sec. III.

where et is defined by Eq. (12). In the case of
sample A-V, (zo)„„=2. Vx10 ~ and rl, = —1.3
&&10, and the above region covers the region where
o'(T, O) is observed to increase exponentially.

Precisely the same result as Eqs. (6) and (9)
can be obtained by a microscopic theory. " This
theory is based on the expression for the excess
current and the Dyson equation for the fluctuation
propagator, in imaginary time and in an external
field, as is given by Tsuzuki. ' The Dyson equation
is slightly modified so that it pertains not only to
the interaction with external fields, but also to the
interaction between fluctuation propagators self-
consistently in the lowest order. ' From the direct
analytical continuation from the imaginary to real
time, precisely the same equations as Eqs. (6) and
(9) are derived. When we consider the validity of
this self-consistent treatment for the fluctuation
propagator, the same criterion as Eq. (20) is ob-
tained. The details are shown in a separate pa-
per 11

0
10

10 10 io 10

Rg (Q /sq. )

FIG. 5. A log-log plot of &0 vs RN~. The solid line
shows the theoretical value in Eq. (12).
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In both the present calculation and the micro-
scopic theory we neglect the contribution from the
sp-called Maki term pr the anpmalpus term
in the basic equations. Since the Maki term is con-
sidered to give the change in the normal current
due to the fluctuation Cooper pairs, its contribu-
tion seems to be negligible at temperatures below
T, where the current carried by Cooper pairs is
dominant. Actually, the zero-field contribution
from the Maki term can be shown to be negligible
in the self -consistent microscopic theory. Re-
cently, however, Maki" argued that the Maki term
becomes twice as large as the value of Kq. (15)
at E»E, and temperature above T,. If this is true,
it may explain the discrepancy between S,~ and
S~„in our ease below T,. Thus, the Maki-term
problem must be studied further.

In summary, we have modified the Langevin equa-
tion and calculated the nonlinear excess electrical
conductivity o'(T, E) slightly below T,. The zero-
field conductivity o'(T, 0) is essentially reduced to
the result given by Masker et al. The electric
field dependence of the normalized value cr'(T, E)/
&r'(T, 0) is described approximately by the same
function of E/E, (T) as that of Schmid above T„
where E,(T) is the newly defined characteristic
field. The experimental result on aluminum films
is in fairly good agreement with the calculation on
three points: (i) the E ~ dependence of o'(T, E)
at high fields, (ii) the electric field dependence of
o'(T, E)/o'(T, 0) at intermediate fields, and (iii)
the exponential temperature dependence of o'(T, 0).
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APPENDIX

The unlinearized TDGL equation augmented by
the random force f(r, t) with the property given by
Eq. (3) can be rewritten in the form of Eq. (1) in

which, however, f(r, t) should be replaced by a new

random force K(r, t) defined by

K(r, t)=f(r, t)+P(~e~ —2()4)'))4(z, t) . (Al)

%e shall see below that at temperatures slightly
below T, the second 4'-dependent part of K(r, t)

makes negligible correction to the contribution
from the first term in the absence of external
fields and that the nonlinear Langevin equation is
plausibly reduced to the linearized form in Eq. (1)
in a certain temperature region.

If we assume that f(r, t) is a Gaussian random
variable, we can obtain the correction to any cor-
relation function of 4 and 4* due to the 4-depen-
dent part of K(r, t) by iteration. We obtain the
average (I 4'(r, t) I ) for a thin film in the absence
of external fields as

1 k~T 1 2P (ksT) 5g, g 1

V g 6q —(Io V g g (fq —no)(6 —uo) (eq —o!0)(eq —&0)(&q + 6q + Eq + 6q —4oo)

~c &n=—ln ', — + + ~ ~ ~

2P ' ao 2PI no l

(A2)

where &, = 5 q'/2m, r is defined below Eq. (10), and

1 d r&d 2d'~&d'z45 r, +r2 —r3 —r4
p ]

2v'J (r, + I)(rz+ 1)(r,+1)(r4+1)(r, +rz+r, +r4+4)

Equation (2) with Eq. (A2) gives the self-consis-
tency condition for no,

ture region where the condition

« —t'+ K In [(&,+ L)/t ] (A4)
Ec Qn ' vf

n —no+&in I + I ~ +''oo, ( &o
(A2)

The third- and higher-order terms in the right-
hand side of this equation become important when
l +p I becomes nearly equal to (. In the tempera-

is satisfied, we can neglect the third- and higher-
order terms, i.e. , the contribution from the 4-
dependent part of K(r, t) The con.dition (A4) re-
duces to Eq. (20) when we use the microscopic ex-
pressions for n and P.
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The Hubbard Hamiltonian for the system of one-electron atoms is solved in the presence of
sublattice magnetization. In the limit of the fully antiferromagnetic state, the results repro-
duce those of Slater's split-band model by splitting a nonmagnetic band into spin-polarized
bands. As magnetization decreases, antipolarized split bands appear and increase their
strengths while the band gap remains constant. In the limit of no sublattice magnetization,
the strengths of the two types of bands become equal, yielding the Hubbard nonmagnetic in-
sulating state.

I. INTRODUCTION

Many of transition-metal oxides are good insu-
lators, even though their d band is only partly filled.
At low temperatures, they often exhibit some anti-
ferromagnetic spin ordering but remain insulating
well above the Neel temperatures where the spin
ordering has completely disappeared. ' An insulat-
ing antiferromagnetic state may be weil described by

Slater's split-band model, but the band gap involved
is proportional to the sublattice magnetization and
hence vanishes as the antiferromagnetic spin order-
ing disappears. Therefore, this model is incapable
of describing the insulating state of transition-
metal oxides properly.

Hubbard" suggested that such an insulating state
is a consequence of strong correlation effects in d
bands. He further argued that, since the intra-


