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cedure leaves unfilled closely spaced states near
the top of the valence band which reflect the elastic
artifacts of the surfaces. The energy difference
they quote (S.S eV) between the total energy with
the vacancy in the 000 and in the 444 positions in
silicon would probably be substantially less if they
followed our procedure. (In the case of the va-
cancy in diamond, we find our procedure reduces
the difference by a factor of 2. }

Our procedure gives a net charge of -36e to a
35-carbon-atom cluster. However, this has no
effect at all on the energy levels because the EHT
treatment is not a self-consistent one. The mo-
lecular-orbital wave functions and energies are
independent of the way in which we populate them
after the calculation. Actually, however, a
Mulliken population analysis does reveal some
physical significance to our procedure. One finds
that the charge is closely neutral for the central
atom and its nearest neighbors. The charge of
the atoms in the next two shells (which have one
neighbor missing} is - —e, and in the outer shell

(with two missing neighbors) is - —2e. In effect,
we have put an additional electron in each "dang-
ling bond" to saturate it and to simulate the elec-
tron contributed by the missing neighbor in the
large bulk crystal. If these neighbor atoms were
present the extra charges would be on them, and in
this sense the charge density is indeed "uniform"
on our cluster.

In conclusion, we agree that the EHT method is
one that can and should be improved. The surfaces
undoubtedly provide complications and it would be
desirable to move them farther out by using a
larger cluster, or get rid of them entirely by
appropriate boundary conditions. However, we
believe that the basic EHT approach and the fi-
nite cluster, when handled as clarified above, may
represent a considerably better approximation to
the deep-level problem that is indicated in points
(iii) and (iv} of Moore and Carlson. This con-
fusion is no doubt due to the rather terse descrip-
tion of our procedures necessitated by the form of
our preliminary communications.
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Some recent measurements of paramagnetostriction of transition metals are analyzed taking
in account the over-all symmetry of the effect, and the possibility of shape paramagnetostric-
tion. It is suggested that the anisotropic effect can explain the rather large experimental
values obtained, and that either orbital paramagnetism, or spin-orbit coupling, must be re-
sponsible for shape effects.

Some recent measurements of paramagnetostric-
tion of transition metals by Fawcett' have resulted
in surprisingly high values for some metals. For
example, the reported values of 8 Iny/S InV are 14
for Mo, 6. 5 for%, S.6 for Rh, and 22 for Ir. The
purpose of this note is to suggest that the interpre-

I

tation of the measured values in terms of volume
dependence of susceptibility is too restrictive, and
that one must take in account the tensor character
of the phenomenon.

Let us write the free energy of an "initial" vol-
ume unit of a metal, assuming cubic symmetry,

U= Uo+ 2C»(e„„+e„„+e„"~+C~a(e„p„+e,~„„+e„~)+ —,'C44(e„+e,„+e„„)3 2 L 1 2 2 3
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d, l(e~, +e,g„+e,&, )-dls[(e„+, +e,&, )+ (e,~„+e„~,)+ (e„~„s+e„g„s)]

—d44(e, JEST,+e,QQ„+e„jIQ,) —~so(H„2+H,2 yH, 2) .

The e,~ are the Voigt components of the strain ten-
sor, C», C», and C44 are the elastic moduli, and

Xo is the magnetic susceptibility of an undeformed
crystal, which, in a cubic system, must be a sca-
lar. The coupling between magnetic and elastic
effects, which is taken linear in e&&, is described
by a term which must be quadratic in B, even in a
noncentrosymmetric system, in order to preserve
the time- reversal invariance. The coefficients of
this coupling term are the components of a fourth-
order tensor, which for cubic symmetry reduces
to three independent ones, described in a quasi-
Voigt notation by d», d, s, and d44.

From (1), one gets the components of the suscep-
tibility tensor for a strained crystal:

ment on palladium alloys, Keller et al.3 measured
in addition to the above change of radius 4r/r. In
a polycrystalline sample one may assume the inter-
action between crystallites to be only slightly dis-
turbed by the magnetoelastic forces, and assuming
a spherical distribution of crystallites, one gets
from (8)

(1/H )(X/I) = 2 1+II 2+ 5

(I/H )(~+/+) 2 nl T5ns lOn5

or, in Keller's notation,

bV
$=~0 V= '

Xll Xo+ 2(dll 12)ell+ 2 12~V/Vy

X23 d44e33

(2) $ =————= 5Q3+~Qg .' a'
The strain tensor, in the presence of magnetic

field, becomes

ell ns 1 + 3 (nl ns)H2 2

(3
eso ——n5H2H2,

where

nl = (dl, + 2dls)/(Cll + 2C12),

ns ——(dll —dls)/(Cll —Cls) ~

n5 =d4JC44 ~

The a& coefficients are associated with the I'& rep-
resentations of the cubic group in Bethe notation.
The analysis of Fawcett assumes &3= e~ =0, which
automatically neglects parts of the effect due to
the coefficients belonging to tetrahedral (I"2) or
trigonal (I', ) representations.

If a magnetostriction experiment is made on a
single crystal, taking as coordinate axes the axes
of the crystal in the absence of magnetic field, and
taking g as the unit vector along the magnetic field,
X as unit vector in the direction of observation, and

y as the angle (1), )(), one obtains

1 ~&l
= 2(nl —ns)

g

+ (ns 2n5) ~Xl 04+ 2ns cos y .M 2 3 x 2

I=1

Fawcett has worked on samples of cylindrical
shape, with H parallel with the sample axis. He

measured the elongation M//. In another experi-

Similarly for a polycrystalline sample, one gets a
scalar susceptibility

X =Xo+ 22'nlhV/V,

where x is the compressibility modulus. Using Kel-
ler's data for palladium S„=95&10 "Oe and S&

83x10 'soe 2 one gets & inX/& lnV=4. 4, instead of
Fawcett's value of —3.4. The absolute change is
important and may explain surprisingly high values
for other metals.

The explanation of the shape effect, using the
standard model of a transition metal, where sus-
ceptibilities —and Knight shifts —add without inter-
action, is to be looked for in the orbital suscepti-
bility or in the spin-orbit coupling. Indeed, in

(2), without spin-orbit forces, the spin suscepti-
bility is due to a repopulation of levels, the axis
of quantization of a spin is arbitrary, and so X

must be a scalar. Consequently (3) implies that
&3= &5=0 and thus d1, —d&&—-0 and d44=0.

The same kind of symmetry may be used to un-

derstand the effect of strain on the Knight shift,
which is a second-order tensor, like susceptibility.
From our measurements on cold-worked Rh pow-
ders, ~' one could have deduced, neglecting the I'3

and Fs contributions, that S 1nK/S ln V- 40, tailing
as reference organic complexes as suggested by
Brown and Green. Since this is much too large,
one must take into account the anisotropic effects.

We are indebted to Professor M. Peter, to
Dr. M. Bernasson, and to Dr. F. Cyrot-Lackmann
for helpful discussions about this problem.
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A theory developed for a thin anisotropic semiconductor, where the exciton is txeated in the
effective-mass approximation and where the effect of crystal surfaces is included by means of
image-charge potentials, is applied to crystals of thickness less than 500k. The theory leads
to an exciton ground-state energy which closely approaches an inverse-square-law dependence
on thickness. By the use of estimates of the dielectric and reduced-exciton-mass components
quantitative agreexnent with data on W8e2 is obtained.

Recent developments in the theory of the effect of
finite crystal size on the exciton-energy spectra
have been made by Jones and Brebner' (hereafter
called I) and Bendow. Both these papers use image
potentials to account for the effect of the surfaces
on the exciton- and impurity-electron systems, re-
spectively. In the present papex' me utilize the theory

I

of I in making a comparison with the recentexperi-
mental data of Consadori. and Frindt on the exciton-
Rbsorption spectrum 1n very thin cx'ystRls of %Sea.

The Schrodinger equation for an exciton in a
uniaxial crystal with the z direction along the c
axis and normal to the plane-parallel interfaces a
distance 2I apart is, in transformed coordinates,

-ns, a' Ss as a' ps ss
—Ug —UI; 4 = E%',

Csee[a, e„(~'+y'+ r s")]"'

r'(s', y', s') and H'(X', F', Z') are the relative
and center-of-mass coordinates, respectively, of
the exciton. UI. Rnd U„' are the image-charge po-
tentials; these Rnd other quantities are defined in
I.

Vfe neglect the contribution from the center of
mass in the X' and F' directions and write

4 = P„(»', y', s', Z') E (Z') .
On separation under the adiabatic approximation
me obtain for the case y= 1

tt, -( / 2-fVfrfrs') Pn=~. (—D') &n ~

f = r'/gc, O' = Z'/ac, as = 4wPi's 0(s,s„)'~'/p. ,e'

is the effective exciton Bohx' radius. The quantities
denoting energy in Etls. (3) and (4) are now expressed
in exciton-rydberg units, having been multiplied
by T m'here

T = Sw&s(s~f ~~) Qs/8

andy 1n Partlculary

UI' = U) T (t = I, Jt) .
Since me are interested here in the ground-state
exciton, me need only consider the case n= 1 Rnd

employ the trial wave function (see l)


