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The results of model calculations of the intensities of low-energy electrons, 20 ~ E & 200 eV,
scattered from Al{100), Al{110), Al{111), and Cu{lll} and performed using a three-partial-
wave inelastic-collision-model analysis, are presented. Comparison of a comparable matrix-
inversion analysis with the second-order perturbation calculation of Tong and Rhodin indicates
the accuracy of perturbation theory for strong potentials which cause predominantly forward
scattering. Each member of a set of models which includes that of Tong and Rhodin describes
well the scattered intensities from Al(100) near normal incidence. However, the models fail
to describe adequately a more extensive set of data taken at larger angles of incidence and on

the (110) and (111)faces. Comparisons between model calculations and absolute-intensity
measurements for Cu(100) indicate that the model describes satisfactorily the nonspecular ab-
solute intensities but not those of the specular beam for small values of the angle of incidence.

In a recent letter' Tong and Rhodin reported the
results of a complete second-order perturbation-
theory calculation of low-energy-electron diffrac-
tion (LEED) intensities from Al(100). Without
using any arbitrarily adjustable parameters they
achieved a satisfactory description of that portion
of Joha's experimental data to which they com-
pared their results. Our examination of electron
scattering from solids suggest that at least three
aspects of Tong and Hhodin's study merit further
consideration. First, in the case of aluminum
Jona's data suggest the occurrence of significantly
different "inner-potential" shifts on the three most

densely packed faces [i.esr, (111), (100), and

(110)]. Therefore model predictions should be
compared with data on a variety of faces rather than

those taken solely on the (100) face. Second, the
agreement between theory and experiment is
usually much better for small angles of incidence
(e ~ 10') than for large ones. Consequently a com-
parison between the model predictions and experi-
mental data for large angles of incidence also
should prove illuminating. Finally, the absolute
magnitudes of the experimental intensities are not

known for aluminum, so the same model should be
tested on other materials for which these quantities
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can vary by + 50% (e.g. , the one near 20 eV) and
small peaks and dips can be interchanged (e. g. ,
the structure between 90 and 110 eV). In terms of
locating the major maxima in the intensity profile,
the 8-wave model works as well as either of the
more sophisticated ones, although it is mell known
not to provide enough intensity in the "secondary"
maxima,

The difficulties incurred using the same "inner
potential" Vo on all three faces are evident in the
figure. Although Vo= 16.7 eV is satisfactory for
the (100) face, the (110) face appears best described
by VO=O, whereas a satisfactory description of the
data for the (111)face is obtained by using Vo—=7 eV.

These differences in apparent values of the inner
potential lie outside the uncertainties in the dynam-
ical parameters of the model, '4'" and therefore
they seem to require either a modified surface
geometry or experimental error for their inter-
pretation. '

Additional insight into the questions of the unique-
ness of the potential and the description of intensity
profiles at larger angles of incidence 8 is achieved
by presenting in Fig. 2 a comparison of the phase
shifts from Tong and Rhodin's model with those
resulting from Snow's AP%' potential. A compar-
ison of the experimental intensity profiles with
those predicted using these bvo sets of phase shifts
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in our model is shown in Fig. 3 for an azimuthal
angle rotated by 45' from that used to construct
Fig. 1. The agreement between the model predic-
tions and the data again is excellent at 8= 6'. How-
ever, it has degenerated badly by 8=20', as is
evident in the lower panels of the figure: a not
unexpected result in view of the degeneracies
of various internal beams for 8:-0; i.e. , the in-
tensity profiles for 8 ~10' are more sensitive to
the ion-core scattering potentials than those for
8 =-0.

Arriving at our last topic, the prediction of ab-
solute intensities by the model, we are forced to
turn to another material, copper, because Anders-
son's data" on this substance are the only data
available over a wide range of energies near normal
incidence (i. e. , in the range of parameters for
which we expect the model predictions to be most
reliable). The phase shifts obtained using Snow's
APW potential' '9 for Cu are shown in Fig. 4. In
our model they lead to the intensity profiles which
are compared to Andersson's data in Fig. 5. The
value A.„=10A was chosen at the upper limit of the
physicaBy reasonable range because Cu has only
one s electron per ion core. In addition, the results
are insensitive to X„in the range of X„=10+3A.
The agreement between the model predictions and
experimental data appears quite satisfactory for the
nonspecular beams both with regard to the visual
appearance of the intensity profile and to its abso-
lute magnitude. A reduction in the intensity of the
higher-energy peaks would be obtained in a finite-
temperature calculation which, however, is not
directly comparable to the data in the absence of
corrections for the angular acceptance of the spot
photometer and multiphonon scattering. ' The agree-
ment between the model predictions and experimen-
tal data for the specular beam is poor with regardto
both of the above figures of merit. The inclusion of
higher partial waves l & 8 seems to improve the
visual appearance of the profile (at the expense of

an arbitrary inner-potential shift) but a discrepancy
in the absolute magnitudes remains. " Upon inspec-
tion of Fig. 4 wewouldexpect that for E 50 eV our
model calculation would become increasingly in-
adequate as the energy is raised due to the rapid
rise in the 1= 3 phase shift between 40 and 100 eV.
In fact, study of similar phase-shift calculations for
Ag and W also led us to the conclusion that a satis-
factory analysis of the electron-ion core scattering
for 20~E-200 eV required the use of at least five
phase shifts, &„l—4, and consequently lies beyond
our capacity to purchase the requisite computer
time. The large values of the phase shifts which
require the more extended range of 6& also invali-
date the application of second-order perturbation
theory. ' Consequently, using our present methods
the necessary economy could be achieved only by
failing to solve the Schrodinger equation with what
we regard as the requisite accuracy (i. e. , +10% at
all energies in the intensity profile).

In summary, the results reported herein indicate
that although several simple microscopic models
adequately describe electron scattering from Al(100)
for 25-E-200 eV near normal incidence, these
same models fail to give a comparably satisfactory
description of experimental data taken at larger
angles of incidence (e 710') or on the (110) and (111)
faces of Al. Similar models give absolute inten-
sities of the correct order of magnitude in Cu for
electrons near normal incidence. However, the
discrepancy between the model's capacity to de-
scribe the specular and nonspecular beams is not
understood. Sufficient data to test the model pre-
dictions for Cu at larger angles of incidence and
other crystal faces are not available. However, in
all the cases discussed in this paper the comparison
between the model calculations and the experimental
data leads to discrepancies which may be attributed
to uncertainties in the electron- solid force law,
especially those concerning the positions of the ion
cores in the surface layers of the solid. ' '
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Calculation of the Physical Properties of Solids by the Extended Huckel Theory
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The philosophical and mathematical justifications for the use of the extended Huckel theory
(EHT) in calculating the physical properties of solids are stated, difficulties with the use of
EHT in its present form are pointed out, and methods for improving EHT calculations in sol-
ids are discussed.

The publication of the paper by Messmer and
%atkins' on the calculation of the physical proper-
ties of diamond and of a nitrogen defect in diamond

by the extended Huckel theory (EHT) illustrates
once again the usefulness of this simple but elegant
quantum-mechanical method of calculating the phys-
ical properties of molecules and crystals. EHT
is an approximation ' of the rigorous Roothaan-
Hartree-Fock' (RHF) linear combination of atomic
orbitals molecular- orbital self- consistent-field
(LCAO-MO-SCF) quantum-mechanical method. As
such, there are some limitations in its use, par-
ticularly in crystals, most of which, happily, can
be overcome. It is our purpose in this paper to
state the philosophical and mathematical justifica-
tions for the use of EHT, to point out limitations in
its use, particularly in crystals, and to suggest
improvements to remove these limitations.

Philosophically, the use of EHT is justified be-
cause it may be applied at the present time to sys-
tems containing at least 200 atomic orbitals, i.e. ,
50 second- and third-period atoms, or more if hy-
drogen is one of the constituents, whereas rigorous
SCF calculations are still limited to relatively few
atoms. Thus many interesting systems are open
to study by EHT but not by SCF methods.

The mathematical justification for the use of EHT
in calculating the physical properties of molecules
(and crystals, small regions of which may be re-

garded as large molecuies) has been adequately des-
cribed elsewhere. ' Suffice it to say here that the
use of EHT in calculating MO wave functions and

MO energies is justified because the EHT equations
to be solved have exactly the same form as the rig-
orous RHF' equations, i.e. , the equations in both
cases are

In both methods & and P refer to AO's, i refers to
MO's, S z are the overlap integrals between the n
atomic orbitals y and yz, e& are the MO energies,
and c&z are the MO coefficients. There are n

equations with n terms in each equation. The quan-
tities solved for are e; and c;N. In both methods
S z are the same; however, in the RHF method
H z are complicated functions of the MO coefficients
and of two-, three-, and four-center integrals, and
this fact necessitates solving the equations by iter-
ation. On the other hand, in EHT the H terms
are approximated by valence-orbital ionization en-
ergies and the H z terms are approximated by the
Wolfsberg-Helmholz expression IJ &= 0. MS &

x(H, +H~~), or some similar expression. K is a
constant usually taken to be between 1.0 and 2. 0.
If I and Hzz have been judiciously chosen, then
the EHT equations are quite similar to the last
iteration of the RHF equations, and the resulting


