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Phonon spectra are calculated for fcc 36Ar at 4, 40, and 77'K using the pair potential for
argon atoms derived by Bobetic and Barker. The calculation employs a quasiharmonic basis
with three-body forces and a perturbation-theory treatment of the anharmonicity. Poor agree-
ment is obtained with the experimental temperature shifts of transverse phonons propagating
along the [$00] direction. Self-consistent phonons are also calculated at 0'K for both the
Bobetic-Barker and Dymond-Alder potentials. On the basis of existing phonon data, the lat-
ter appears to be ruled out as a realistic pair potential.

I. INTRODUCTION

There has been considerable interest in the lat-
tice dynamics of rare-gas solids and much specula-
tion on the possible role of nonpairwise additivity
of the interatomic forces. ' From analysis of
low-density gas-phase properties, Barker and
Pompe' proposed the following pair potential
Q' )(ij) for two Ar atoms separated by a distance
Rgg t

$&&)(ft) f e&()-&) Q g (ft 1)n
n=0

where R=8,&/R„, with R and„ebeing the separa-
tion and depth at the minimum of the potential.
Potentials of the form given by Eq. (1) were found
to fit well all available two-body gas data. How-
ever, the third virial coefficient derived from these
same potentials was incompatible with experi-
ments indicating the presence of an explicit three-
body force. Barker and Pompe found' that the
third virial coefficient could be fitted by including
the Axilrod- Teller triple-dipole force4

Q")(ij k) = v(1+ 3 cos8, cos8, cos8,)/(R) R2R&)', (2)

where 8&, 8„8„and R&, R2, R, are the interior
angles and sides of the triangle formed by the
three atoms and v is calculated from known oscil-
lator strengths and sum rules of the atomic ab-
sorption spectrum. If the total potential energy
4 of N Ar atoms were written

with p'2)(ij) and p~"(ijk) taken from Eqs. (1) and

(2), liquid properties were also well fitted. ' A
small refinement of the'Barker-Pompe potential
(see Fig. 1) by Bobetic and Barker' enabled many
of the low-temperature thermodynamic properties
of solid Ar to be fit also. In addition the calculated
phonon dispersion curves at 4 'K were in excellent
agreement with experiment. All these facts taken
together suggest that Eqs. (1)-(3)provide a good
representation of the forces in solid Ar.

Various other potentials have been proposed for
Ar. Dymond and Alder, ' for example, obtained a
numerical potential function Q )(ij) from gas-phase
data whic, & fitted the two-body data as well as either
the Bobetic-Barker or Barker-Pompe potentials.
Qualitatively the Dymond-Alder potential was simi-
lar to that of Bobetic and Barker but in detail it
had a much wider potential bowl, implying a very
anharmonic potential. Unfortunately, this pair
potential is not in agreement with recent spectro-
scopic studies of the Ar2 molecule and we shall
see that it is also in poor agreement with the pho-
non spectrum of the solid.

The object of the present paper is the detailed
calculation of phonon spectrum of solid argon as
a function of temperature using the potentials de-
scribed above. The study is motivated by the re-
cent measurement of the temperature dependence
of the transverse phonon branch for the [f 00]
direction in fcc '6Ar by Batchelder, Saunderson,
and Haywood. These new data, which are the first
in rare-gas solids to extend close to melting,
should provide a rather stringent test of both the
interatomic forces and the lattice dynamical model.

The outline of the paper is as follows. In Sec.
II we present the pertinent theory and give detailed
results for the Bobetic-Barker potential, including
three-body forces and a perturbation theory of the
anharmonic effects using a quasiharmonic basis.
This procedure should be adequate up to about
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where nq =n(qq j,) is the population factor of the
mode (dy = QJ(qg jg)~

n& +n2+ 1 nq+n2+ 1F
((dg + QJ 3+ Q)p ((dg + (0g

—II)p

2(u(qj) I'(qj, 0)
[&o(qj) —0 +2&@(qj)&(qj, 0)] +Au(qj)' r(qj, n)'

(4)

Using quasiharmonic frequencies &o(qj) as a basis,
the lowest-order perturbation-theory contributions
to h(qj, 0) and I'(qj, 0) are given by'

20 I I I I I I

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6,5
SEPARATION R(A)

FIG. 1. Interatomic potentials for two Ar atoms. The
curve (6-12) is the familiar Lennard-Jones potential taken
from Ref. 18. The other curve is the Bobetic-Barker
potential as described in the text.

one-half the melting temperature, provided that
the lattice constant is taken from experiment.
In Sec. III we present results for both the Bobetic-
Barker potential and the Dymond-Alder potential
using the lowest-order self -consistent phonon
scheme. ' Anticipating our results, we will see
that these calculations rule out the Dymond-Alder
potential as it gives both a poor ground-state en-
ergy and yhonon spectrum. In some respects the
calculation of Secs. II and III can be regarded as
the systematics necessary before investigating a
more sophisticated self -consistent phonon theory.
Finally, in Sec. IV we discuss the possibility of
extracting information about the pair potential and

possible three-body forces from experiments on
the solid.

II. LATTICE DYNAMICS OF Ar WITH BOBETIC-BARKER
POTENTIAL AND THREE-BODY FORCES

The dynamical matrix derivable from the poten-
tial energy given in Eg. (3) within the quasihar-
monic approximation is discussed in detail in
Ref. 1. In this paper we shall be primarily con-
cerned with the one-yhonon inelastic-scattering
cross section. This, following Baym, " is pro-
portional to the imaginary part of the thermody-
namic Green's function for the phonon, namely,

G(&) = (nq+na+1)[5(&uq+z2 —&) —5(tuq+a&2+0)]

+ (np —ng)[5 ((dg —(d2 —&) —5 ((Llg —(dg+ 0)] .
(8)

The anharmonic coefficients

(
q ~ ~

'l~i,

. are essentially Fourier transforms of the cubic
and quartic terms in the expansion of the potential
energy [Eq. (3)] in powers of the displacements. '

In our calculations the quasiharmonic basis fre-
quencies were obtained from force constants that
included explicitly the three-body Axilrod- Teller
force. The method of calculation is described in
detail by Bobetic and Barker. We stress that in
order for the three-body terms to be included
meaningfully in the dynamical matrix at least nine
sets of neighbors must be included. For the two-
body force, 42 shells of neighbors were included.
The contribution of the three-body force to the
basis frequencies is rather small, as was noted
previously by Gotze and Schmidt. " In particular,
the shear modes appear to be unaffected by the
three-body forces [Eq. (2)] and the longitudinal
modes increase by less than about 4% (see Table
I for typical examples). In calculating the anhar-
monic force constants that appear in Eqs. (5) and

(6), we have included four shells of neighbors and

only the derivatives of the pair potential [Etl. (1)].
The following representation of principal values
and 5 functions occurring in Egs. (7) and (8) was
adopted, with the choice of e being dictated by the
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FIG. 2. Imaginary part of the Green's function [Eq.
(4)] for the I phonon (0.7, 0, 0) in Ar at 77 K and a
=5.445 A. The various curves show the sensitivity of
Ima to the representation of the principal value and g
function.

grid size used in the Brillouin-zone (BZ) sums:

(9)

The difficulties associated with this procedure
have been discussed in the literature' ' '" and
ways of circumventing the difficulties have beep
proposed. '6 Figure 2 shows one of the extreme
examples of the sensitivity of Eq. (4) to the choice
of &. The smaller the value of e for a given grid
size (in this case 259 pointS in 48 of the BZ), the
greater the fine structure that appears in Eq. (4).
There is thus some ambiguity in the appropriate
value of E. However, for most phonons examined
in this paper this has less than a 1% effect on the
position of the peak. Figure 3 shows a breakdown
of the various contributions to Eq. (4) for the
transverse phonon (0.V, 0, 0) at 40 K with lattice
constant a=5. 35 A. d(Q) and I'(0) can be iden-
tified readily in Fig. 2 since I'(0) = 0 and 4(0) e 0;
also x indicates the quasiharmonic frequency
and + indicates a&+ &(&o). The third curve in Fig.
3 shows the imaginary part of the Green's function
for this phonon, i.e. , Eq. (4).

Using the procedures outlined above, we have
made a detailed study of the temperature dependence
of phonons in fcc Ar under the conditions of the
experiment of Batchelder, Haywood, and Saunder-
son. Selected phonon energies are given in
Table I. Here the peak in the imaginary part of
the Green's function [Eq. (4)] is identified as the
renormalized frequency O. Figs. 4-9 show plots
of Eq. (4) for various phonons propagat'ing along
the [$ 00] direction as a function of temperature.
Certain systematics appear in these calculations.
The high-energy I phonons are predicted to be
broad at all temperatures. In contrast the T pho-
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nons at 77 'K appear to be little broader than the
corresponding L phonons at 4 'K. When one re-
calls that the plots in Figs. 4-9 have been ar-
bitrarily normalized to unit peak height, one an-
ticipates, on the basis of these calculations, great
difficulty in detecting high-energy longitudinal
phonons at high temperatures. Since the three-
body force [Eq. (3)] makes very little contribution
to T phonon energies for the [$ 00] direction, this
phonon branch should be parti. cularly sensitive to
the pair potential.

A detailed comparison is made with the data of
Batchelder, Haylood, and Saunderson in Table
II and in Figs. 10 and 11. Superficially at both
4 and 40 'K there appears to be a rather good fit
to the experimental data (cf. Table II). However,
the calculated shift [A(40 'K) —Q(4 'K)] /[Q(4 'K)]
shown in Fig. 10 is much too small and incidentally
fitted rather well by a solely quasiharmonic shift)
The situation at VV 'K, illustrated in Fig. 11, is

much the same. The disagreement at V7 'K is riot
too disturbing because at those high temperatures
the simple quasiharmonic perturbation approach
.used in this paper is known to have deficiencies,
but at 40 'K and using the observed lattice con-
stant this should not be the case. In fact, one
mi.ght then be tempted to blame the potential for
thi. s disagreement. However, a calculation'~ using
a very different potential, namely, a nearest-
neighbor (12-6) Lennard-Jones potential, gave re-
sults for the temperature shifts very similar to
those presented here, This latter calculation em-
ployed self-consistent phonon theory and so is not
strictly comparable to the preserit work, although
it is a little surprising that such rather different
calculations agreed with each other and were so
different from experiment. Before rejecting the
Bobetic-Barker potential, a more careful exam-
ination of the high-temperature calculations, using,
for example, a self-consistent phonon theory, '
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FIG. 4. Imaginary part of the Green's function [Eq.
(4)] for I. phonons propagating in the [$00] direction ($
=0.1, 0.4, 0.7, 1.0) of 3 Ar at 4'K and a=5. 315 A.

FIG. 5. Imaginary part of the Green's function [Eq.
(4)] for L phonons propagating in the [$00] direction ($
=0.1, 0.4, 0.7, 1.0) of Ar at 40'K and a=5.350 L.
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line is the quasiharmonic shift, the dashed line is calcu-
lated as described in the text.

The Dymond-Alder potential is seen to be in-
compatible with the experimental phonon data and
the ground-state energy. While the Dymond-Alder
potential does not violate the bound on the ground-
state energy provided by the variational approach,
the leading corrections to the ground-state energy
are known to be small. In fact, for the Bobetic-
Barker potential we have evaluated the three-pho-
non correction to the ground-state energy (the
so called improved self-consistent phonon
theorya ) and find this to be —1.2 cal mole '. As
yet we have not evaluated the corrections to low-
est-order self-consistent phonons due to three-
phonon and higher -order processes. However,
these are known" to lower the phonon energies
and so will rule out the Dymond-Alder potential
completely but not the Bobetic-Barker potential.

IV. INTERPRETATION OF PHONON DISPERSION CURVES

In Sec. III we saw that the experimental phonon
data and the ground-state energy completely ruled
out the Dymond-Alder potential but not the Bobetic-
Barker potential. In this section we wish to ex-
amine to what extent measured phonon curves can
give us information about the forces in the solid.
To do this we calculated phonons at 0 K for the
Bobetic-Barker potential for the symmetry direc-
tions [$00], [g $0], and [f g $]. These phonon en-
ergies (140 in all) included the three-body force

O. IO—

0.2
I I I I

04 06 08 I 0

FIG. 11. Relative frequency shifts for T phonons in the
[$00] direction of 36Ar. The experimental points [Q(4 'K)
-Q(T)]/Q(4'K) are taken from Ref. 9. The solid line is
the quasiharmonic shift, the dashed line is calculated as
described in the text.

equation (3) that was summed over nine neighbors
and also allowance was made for vibrational an-
harmonicity. These latter two effects, when they
contributed, were at about the 5%%uc level. These
phonons were then regarded as experimental data
and a force-constant analysis was undertaken in
an attempt to extract the input information on the
forces.

An unweighted least-squares fit of the 140 pho-
nons to (i) a general tensor (GT) force model for
first through fourth neighbors (which is as far as
one can go with the symmetry direction data) and

(ii) an axially-symmetric (AS) force-model fit for
first through eighth neighbors. The GT model
agreed extremely closely with the AS model, i. e. ,
the model parameters obeyed the conditions of
axial symmetry to better than 0. 2%%uo, even though
these conditions werq not imposed in the GT fit.
The fifth-neighbor AS model seemed to fit the data
perfectly but in the light of presently available
experimental accuracy the third-neighbor AS model
provided an excellent fit. This latter model almost
obeyed the equilibrium condition for central forces,
although this constraint was not imposed and cer-
tainly not included in the primary data. It there-
fore appears to. us unlikely at present that phonon
data will yield definitive information on the non-

TABLE II. Selected phonon frequencies (in THz) observed and calculated using Eqs. (1)—(9) for transverse modes in 6Ar

for the [(00] direction. The theoretical inverse lifetime 1" is shown in parenthesis.

0.4
0.7
1.0

o.84(o. oo2)
l.27(0.006)
1.43(0.008)

0.89 +0.03
1.32+0.03
l.40 +0.03

T=4'K, a=5. 315 A
p(calc) p(obs)

T =40'K,
p(calc)

0.81(0.03)
1.23(O. O3)
1.37(O. O3)

a=5.350 A

p(obs)

0.82 +0.03
1.21 +0.03
1.35 +0.04

0.76(0.08)
1.13(O.O8)

1.23(0.08)

0.68 +0.03
1.09 +0.07
1.17 +0.04

T = 77 'K, a =5.445 A

p(calc) p(obs)
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TABLE III. Ground-state energy of solid Ar in cal mole ~.

2,0 Without
three-body

force

With
three-body

force

1.5 5 ARGON

0

1.0

0.5

NxI-

o 1.0z
Cl
UJ

z0zo 0.5r
Q

0 0
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

FIG. 12. Phonons for f)00] direction in Ar. The open
circles are taken from Ref. 9 scaled by 36 . The solid
circles are from Refs. 19 and 20. The upper solid
(dashed) curve is a self-consistant phonon calculation for
the Bobetic-Barker potential with (without) three-body
forces. The lower solid curve is a self-consistent pho-
non calculation for the Dyrnond-Adler potential (see text).

additivity of interatomic forces in solid Ar. In this
regard the best hope would seem to lie with studies
of the phonons of long wavelength by Brillouin-
scattering techniques. 24'~ These experiments de-
termine the elastic constants which seem to be
most sensitive to three-body forces. Qn the other
hand, as we have seen in Secs. II and IV, the pho-
non energies and their temperature dependence
seem to provide a very stringent test of the dynami-
cal model and the pair potential.

V. CONCLUSION

We have used pair potentials for Ar atoms de-
rived from gas-phase properties to calculate pho-
non energies for the solid. The low-temperature
phonon data appear to rule out an interatomic po-
tential proposed by Dymond and Alder but not
that of Bobetic and Barker. ' The latter potential

Barker-Bobetic
Dymond-Alder
Expt (Ref. 21)

—1981
—1807
—1846 +7

—1844

%'e would like to thank Dr. Gerald Dolling of
AECL, Chalk River, Qntario, for carrying out the
fitting procedure described in Sec. IV and Dr. D. N.
Batchelder and Dr. D. H. Saunderson for sending
us details of their work prior to publication.

has been used to calculate the temperature depen-
dence of phonons propagating along [g 0 0]. The
temperature dependence of the T branch was in
poor agreement with the experimental data of
Batchelder, Haywood, and Saunderson. The rea-
sons for the disagreement are not understood but
may be due to inadequacies in either the pair po-
tential or the dynamical model. From a force-
constant analysis of theoretical phonon curves,
we conclude that it will be difficult to extract in-
formation about three-body forces in solid Ar
from measured phonon curves with presently
available accuracy. In this regard, there appears
to be an urgent need for Brillouin-scattering exper-
imental solid Ar to complement the neutron scat-
tering data.

Finally, we mention that Doran and Zucker and
Huller have studied the higher-order nonadditive
multipole forces. Individually, in magnitude,
these were found to be as large as 20% of the
triple-dipole force in Eq. (2). However, through
a fortuitous cancellation, ~e these higher-order terms
give completely negligible contributions to the
solid-state properties of Ar. Thus any inadequacy
in our choice of potential-energy function for the
solid [i.e. , Eq. (3)] will probably reflect the im-
portance of nonadditive exchange forces which have
been omitted completely in our work. '
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Measurements were made of the absorption of the infrared-active local mode of H and D
substitutional impurities in CsBr and CsI from 5 to about 100 K. In CsBr, the T dependence
of the half-width above about 30 K indicates the local mode is broadened by the Raman or
scattering mechanism, while the constant low-temperature half-widths are characteristic of
the decay of the local mode into three (D ) or four (H ) lattice phonons. The sidebands are
weak, and are described well by the model of Bilz, Fritz, and Strauch, in which the polariza-
bility of the impurity is important. The resultant lattice density of states for CsBr is in good
agreement with that calculated by Karo and Hardy using a model with the deformation dipoles
on anions only. The main absorption peak in CsI was not Lorentzian, but no origin for the un-

resolved structure was found. The phonon density of states deduced from the sidebands in
CsI agrees reasonably well with Karo and Hardy's calculated curve.

INTRODUCTION

A U center is a hydrogen or deuterium negative
ion at a normal cation site in an alkali or alkaline-
earth halide. The very light mass of this ion re-
sults in a threefold degenerate vibrational mode

which cannot propagate through the lattice, a mode
which is confined to the immediate vicinity of the
defect. The excitation of this localized mode gives
rise to a narrow temperature-dependent infrared
absorption peak. ' In addition, the defect destroys
the translational invariance of the crystal, re-
moving the wave-vector selection rule for optical
processes. The result is the occurrence of side-
bands on the main local-mode absorption peak,
corresponding to the excitation of the local mode

plus the creation or absorption of a lattice phonon.
Measurements of the peak position of the local-

mode absorption and its dependence on the mass of
the defect (isotope effect) give information on the
force-constant changes which occur when the defect
is introduced. Measurements of the half-width

of the local-mode peak as a function of temperature,
and its isotope effect, yield information on the
anharmonic coupling of the local mode to the lattice,

and on the decay mechanism of the excited local
mode. The observed sidebands can be compared
with the density of states for the phonons in the
perfect crystal or, if necessary, in the crystal
with defects. The temperature dependence of the
peak position can be observed, but its interpreta-
tion is not clear.

Studies of the V center local mode have been
carried out for most alkali halides of the NaCl
structure, ' ' and a very complete study6 was made
for alkaline-earth fluorides. Very little work
has been reported for U centers in the CsCl lattice,
the only work ' being at temperatures above 20 K.
The isotope effect was not studied completely, nor
was the low-temperature limit of the widthof the
main peak. Sidebands were found on the CsCl and
CsBr local-mode peak, ' but not CsI, and the
resolution was limited. The sidebands are im-
portant because the phonon spectrum for the cesium
halides has never been measured by inelastic neu-
tron scattering. Our sideband measurements on
CsBr strongly favor one of four calculated spectra
based on different force-constant models. We
also are able to analyze the shape of the main peak
in CsBr. Our data on CsI are difficult to inter-


