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The diffraction effects arising from the presence of interstitial basal-plane loops in an
ideal hcp crystal are analyzed using a high-speed computer. The atomic displacements were
computed assuming that the crystal responds to the loop as an isotropic elastic medium with
a Poisson's ratio of 0.3 into which a "penny-shaped" inclusion is inserted. The loops are
assumed to be circular clusters of atoms in the C position of the normal ABAB ~ ~ sequence
of hcp planes. The resulting defect is a finite extrinsic fault and its associated strain field.
The effects of loop size and concentration on the lattice parameters, Bragg intensities, and
diffuse scattering are given. Graphs are presented which allow the determination of loop
size and concentration from the measurement of lattice parameters and Bragg intensities.
Isodiffusion contour maps of the diffuse scattering in the (HH ~ L) and (HO L) planes of re-
ciprocal space are presented. The diffuse scattering around reciprocal-lattice points for
which H —K =modulo 3 is quite different from that around reciprocal-lattice points for which
H —K ~ modulo 3. The former depends strongly on the symmetry of the loop strain field and
is concentrated around the reciprocal-lattice point, while the latter reflects more strongly
the disruption of the stacking sequence, having characteristically S-shaped streaks connecting
the reciprocal-lattice points. The size of the loops can be determined approximately from
the full width at half-maximum of the streak connecting the (10 ~ 0) and (10 ~ 1) reflections.
The diffraction effects produced by basal-plane loops are discussed in connection with those
seen in neutron-irradiated BeO. All of the predicted effects are seen in neutron-irradiated
BeO, including the duplex nature of the reflections with L & 0 and the crosses around recipro-
cal-lattice points for which H-K=modulo 3 and I=0.

I. INTRODUCTION

It is now generally recognized that the spherical-
ly symmetric displacement field often assumed for
point defects is incapable of explaining the scatter-
ing effects observed in irradiated solids. It is
generally believed that more complicated point de-
fects, such as split interstitials, ' are formed in
irradiated solids. If the point defects can migrate
to form clusters, then even more complicated de-
fects can result. 3 In Beo irradiated by neutrons
at high temperatures, large interstitial basal-plane
dislocation loops are observed with the electron
microscope. However, clusters can be so small
that the nature of the defect cannot always be de-
termined by transmission electron microscopy, and
diffraction effects pj;@vide information about the
'nature of the defect. The authors have investigated
the x-ray scattering from doublet singularities
produced by the carbon interstitial in iron. 7' It
was a natural extension of these studies that led us
to examine the effects of prismatic dislocation
loops on the x-ray scattering.

In this paper we direct our attention specifically to
the condensation of interstitial atoms into the C posi-
tion between the normal ABAB ~ sequence of hcp basal
planes. The defect is then a finite extrinsic fault
and its associated strain field. Although faulting
disorders have been extensively treated in the lit-
erature' ' it is always assumed, with one excep-
tion, ' that the fault extends across the whole plane

in the crystal. Such an approach cannot account for
the finite size of the fault nor for the strain field of
the prismatic dislocation loop. Several investiga-
tors have alluded to these failings in considering
similar problems. '4'" The diffraction effects pro-
duced by extrinsic faults in hcp structures were
first considered by Sabine' and later by Lele et al."
The methods employed in these two papers are quite

. different but the predicted scattering effects agree
to first order in the faulting parameter. However,
our results differ substantially from these predic-
tions, a fact which we attribute to the finite nature
of the faults in our case. To our knowledge, no one
has formulated the scattering by taking into account
both the finite nature of the fault and the strain field
produced by the prismatic dislocation loop. Krivo-
glaz and. Ryaboshapka have treated the most gener-
al loop' ' using the displacement field for the "in-
finitesimal" loop (the field at large distances from
a loop ), but neglecting the scattering effects of
the finite fault. We have found the displacements
around a prismatic dislocation loop in an elastic
isotropic medium at all distances ' and these re-
sults are used in this paper. These results are
applicable to interstitial loops in both fcc and hcp
structures and vacancy loops in fcc structures.

We review briefly the assumptions that were used
in calculating the displacement field, and then treat
the effects on the Bragg intensities, lattice param-
eters, and diffuse scattering that result from the
presence of dislocation loops. We treat the attenu-
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ation of the Bragg intensities by a method first in-
troduced by Krivoglaz. " The usual artificial
temperature factor employing the mean square
static displacement ' is inadequate because the dis-
placements produced by a dislocation loop are
large. The reduction in intensities caused by the
loop displacements dominates those changes in the
average structure factor arising from the loops.
The change in lattice parameters is deduced from
the total displacement field produced by the loops,
which is the sum of the displacement field produced
by the defects in an infinite medium and the so-
called image field. +' ~ The displacement field at
large distances from a loop is the sum of the dis-
placement fields from a point and doublet singular-
ity, the strengths of which are determined by the
number of atoms in the loop. ' We use an expres-
sion for the diffuse scattering which is interpreted-
in terms of the Fourier transform of the loop con-
sidered-as the origin and the difference between
the amplitude scattered by the atoms surrounding
the loop in their displaced and undisplaced posi-
tions. ~8 3~ We assume that the interaction between
different loops is negligible. Throughout this pa-
per, the principle of superposition is assumed to
be valid.

We emphasize those aspects of the diffraction
phenomena which give information about loop size
and concentration. Graphs are ~i.en which enable
one to determine loop size and concentration from
measurements of lattice parameters and Bragg in-
tensities. Under favorable conditions it is also
possible to obtain this information from the diffuse
scattering. Finally, these diffraction effects are
discussed in connection with experimental observa-
tions on neutron-irradiated BeO.

II. DISPLACEMENT FIELD

The atomic displacements in our crystal result-
ing from an interstitial dislocation loop were as-
sumed to be those that would result from consider-
ing the following model: We inscribe in an isotrop-
ic elastic medium with a Poisson's ratio of 0. 3 a
hcp network of points representing the atoms of our
crystal. The vectors of the unit cell are A&, A&,

and A3, and A, /A, = Q, that of the ideal hcp struc-
ture. Imagine that a circular incision of radius c
centered on a C position midway between a sequence
of ABAB ~ ~ planes is made in the medium. A disk
of thickness b and radius c representing a circular
plane of atoms is inserted into the incision and
welded to the medium. We imagine that the center
of the disk contains an atom and serves as the or-
igin of our coordinate system, and that all other
atoms in the disk also lie in the C stacking se-
quence. We recognize 6 as the Burgers vector, and
assume that the atomic displacements in our crys-
tal are those of the points inscribed in our elastic

medium.
The problem in elasticity which is to be solved

involves deformations which are symmetric about
an axis of revolution, and the cylindrical coordi-
nates r, 8, and z are most applicable. In such a
symmetrical system the displacement vector and

stress tensor are independent of 8. The problem
can be solved ' ' by using the methods outlined

by Sneddon. 37 Four constants of integration arise
which are determined by the boundary conditions.
Two of these constants are required to be zero in
order that the displacements at large distances
from the loop tend to zero. In order that the shear
stress not have a discontinuity across the loop plane
z= 0, it must vanish across the entire plane. Fur-
ther, we require that the z component of the dis-
placements within the loop be half the Burgers vec-
tor. These conditions are sufficient to determine
uniquely the displacements and stresses.

In terms of the dimensionless variables p= r/c
and t' = s/c, the r and z components of the displace-
ments in units of half the Burgers vector are '

2 ] ~(1 2+)Ill(P f) V11( PK)]

(la)

2(1 — )
[2(1 —(r) Ioi(p~ t )+ V os( p~ &)I ~

where o is Poisson's ratio. The superscript ~ im-
plies the displacement field in a truly infinite medi-
um and does not include the image displacement
field present in a finite medium. The functions
I'„areintegrals of products of mth- and nth-order
Bessel functions of the first kind. Figure 1(a) is
a contour plot of p,„(p, f) The con. tour interval is
0.02 and the square-grid lines are in units of 0. 5
in p and &. The displacements outward along r are
plotted as solid contours whereas those inward are
shown as short dashes. The displacements vanish
on the long-dashed line. The reader's attention is
directed to the fact that within the loop all the dis-
ylacements are directed inward along r, i.e., the
loop itself shrinks in size. Figure 1(b) is a similar
plot of p,"(p, l); here the contour interval is 0. 05,
and the grid lines are the same as in Fig. 1(a).
All z displacements have the same sign as z, and
are largest directly above the loop, forming a pil-
lar of displaced material.

At this point in the problem we encounter a situa-
tion which must be resolved in order to formulate
the expressions for the attenuation factor and dif-
fuse scattering. Although we think of the loops as
always forming in the C position of the stacking se-
quence, there are two possible ways the loop may
appear in the sequence, namely, as ABACBA ~ ~ or
ABCABA ~ . We note that these two defects both
have the point-group symmetry 3, and are related
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to each other by a rotation of ~m. We will refer to
the two defects as AB or BA loops, respectively,
and consider them to be equally likely. If we index
the planes with an index n, with n = 0 for the first

plane above the loop, then the planes with n even

are A planes above a BA loop and B planes above
an AB loop. The values of the dimensionless co-
ordinates p and f at any atomic position are

p(l&, l2, n) = (A, /c)([l, +~(3+(-1)")]+ [12+~ (3+ (-1)")] —[l,+6-(3+(-I)")][4+s.(3+ (-1)")]]' (2a)

f(n) = (Aq/c) —,'(2n+ 1) . (2b)

III. CHANGE IN LATTICE PARAMETERS

The integers l&, l&, and n have been selected so as
to appropriately define the position of an atom in
terms of the unit-cell vectors A&, A„and A3. The
top signs are to be used if the loop is an AB loop and
the bottom signs if a BA loop.

It is necessary to have the components of the
atomic disylacements in terms of the unit-cell vec-
tors. Consider the displacement p,„"(p,g) at the
point p(l„ la, n) and f(n). To resolve the displace-
ment in the A& A2 plane into its components along
A, and A~, we notice that p(l» lz, n) and p, „"(p,f)
lie in the same direction, so that the resolution
triangle and positibn triangle are similar triangles.
The disylacements in terms of A&, A2, and A3 are
then

1,+s-(3~(-I)") A~l, , la, n)=, p„"(p~~) A
PL 1 3 n/

(3a)
l, +p(3+(-1)") A~

P.z~(l&, la, n) = 4,l I, A
P,„"(P,0) A2,

(3b)

v~, (4, 4, s)=-'~."(p, r)&~. (3c)

We have used the relation for half the Burgers vec-
1tor —,b= ~A3.

bA, /A, = ~3/Aa ——0,

bA~/As = p(1+ V,/Vl, ),

+&
I

+.05

+.IO

C

—,06 —.04 —.02

(4a)

(4b)

(a)

(b)

If we have interstitial loops distributed at random
in an infinite elastic medium, the displacement of
any point is the sum of the displacements from each
loop (superposition approximation). If we remove
from the infinite medium a finite portion, there is
an additional dilatation due to the fact that the in-
finite portion is no longer acting on our finite por-
tion. This is referred to as the image dilatation.
The displacement of any point in our finite medium
is the sum of the displacement of the point in the
infinite medium ylus its image displacement. At

large distances from our loop the disylacements
are those produced by a point and doublet singular-
ity, the strengths of which are determined by the
number of atoms in the loop. We have discussed
this for an isotropic medium, and the fractional
changes in lattice parameters are the bulk
strains. ' The results are

+.l5
I

FIG. l. (a) Contour plot of the g displacements in units

of half the Burgers vector. The contour interval is 0. 02

and the grid lines are in units of 0. 5 in p and f. The solid
contours represent displacements outward along y, and the

short dashes displacements inward along v. The zero-
displacement contour is a long dash. (b) Contour plot of

the z displacements with a contour interval of 0. 05.
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IV. ATTENUATION FACTOR
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FIG. 2. Plot of X(SI.) vs Sl.. For large loops E($1,)
approaches unity.

where P is the fraction of atoms that is present in
the form of loops, V, is the volume of the disloca-
tion core, and VI, is the volume occupied by the
atoms in the loop. The estimated value of V,/V~
is (8m3 '~~S~')'~3, where Si, is the actual number of
atoms in a loop. Thus, if the approximate number
of atoms in a loop is known, p can be determined
from

p= K(S,) ~A/A„ (6)

where K(S~) = [1+(8v3 '~~S~')' ~] '. A graph of
K(S~) as a function of S~ is given in Fig. 2. For
large loops, K(S~) approaches unity.

The displacements produced by a dislocation loop
are large for extended distances above and below
the loop plane, see Fij,'. 1(b). In this case the ex-
pectation value of e'"'~ need not be e
which is correct for a displacement distribution
that is Gaussian and is approximately correct for
any distribution as long as Iz ~ p, l«1. Here z is
the difference in wave vectors of the scattered and
incident x-ray beams, and p, is the displacement
at site m. That is, the usual exponential approxi-
mation e " with the artificial temperature factor
2M'=((Tc ~ p,„)) is inadequate. We use the expres-
sion first introduced by Krivoglaz

A (T() =@~[1-4P(1-P)sin'(-,'~. p, )]". . (6)

A„(a)is the factor by which the scattering amplitude
of the mth site must be multiplied due to a fraction-
al concentration P of defects, in this case, loops
per atom. The displacement of the mth site due
to the jth defect is p, z. The product is to be taken
over all possible defect sites, assuming superposi-
tion is valid.

We write Tc in terms of the vector set reciprocal
to the A&'s and the continuous variables h&, h~, and

h~ as z = 2v(h, B,+ h~ Q+ hs Bo). Integer values of the
continuous variables indicate a reciprocal-lattice
point with the Miller indices h, = H, h2 = K, and hs
=L. Having assumed two possible defect types,
AB loops and BA loops, we denote their respective
attenuation factors by A" and A ". Then A
=A"„~A ". It turns out that Eq. (6) converges
rapidly with the distance r

&
between the mth site

and the jth defect site, so that the product may be
taken over m instead of j. The factor —,

' a ~ p, z is

[I,+.'-(3~ (-I)")]I, + [i~+~(3~ (-1)")]I. p,"(p, t)+ u, ( p, L) h

where the top signs are to be used for AB loops
and the bottom signs for BA loops. As long as we
are considering sin ~ Tc JtL

&
we ask whether there

are positions relative to an AB loop for which the
magnitude of —,

' z p, z is the same as that for a BA
loop? The answer to this is yes, since a B plane
is the image of an A plane through the center of a
loop which, in turn, is the center of symmetry of
the defect. By this argument, it follows that A"

BA=A, and in forming the product in Eq. (6) we may
ignore the distinction of signs indicated in Eq. (7)
for the two loop types. Since the product in Eq. (6)
can be written as a product over /& l& and n we can

1 ~

drop the exponent & and consider only the product
for n&0.

Here and later in the diffuse scattering we make
use of the 3 symmetry to restrict our products to
positive values of E& and E&. Given a point at xA&

+yA2 there are equivalent points at -yX, + (x -y)Az
and —(x —y)A, —xA2. The coordinate pair [l,+' (3

n . L n
1 5

a(-1) )]; [i&+6—(3+(-1)")]then has equivalent posi-
tions —[la+,'-(3v (-1)")]; [(lq —la) +4 (-1)"]and
—[(l~ —la) + ~ (- 1)"]; —[l, +8 (3 a (- 1)")]. The values
of sin-,'I(. p &

which result we denote as B„i=1, 2,
and 3. These same B&'s occur in the diffuse scat-
tering and are given in Table I for the AB loop.
For a Bragg reflection we substitute the Miller in-
dices for h„ka, and h~. Equation (6) can then be
written
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3 L(n) L 6s) n(&)

A (h, hg, h2)= Q g g 'Q [1 -~(1 P-)B((&, ~2 ~ @ ~2 h3)l ~ (8)
lp=O l& =O n=O

The limits on l&, lz, and n were chosen to optimize
the computer time involved. The limits were cho-
sen so that. only atoms whose displacements were
larger than a predetermined size we re included in
the product. The quantity & defines the magnitude
of a displacement in units of half the Burgers vec-
tor. As & decreases, smaller displacements are
taken into account and the number of atoms included
in the product becomes larger. The limits L(n) and

n(&) were determined in a computer subroutine and

the reader is referred to Appendix A for details.
If a fraction p of the atoms condenses into loops

each containing S2 atoms, we write P= p/S2, and

express Eq. (8) in terms of p and S2. The attenua-
tion factor is then a function of p, which is deter-
mined from the lattice parameter and SL the loop
size. The loop size then appears explicitly as SL
and implicitly through the B,'s in Eq. (8). Figure
3(a) is a plot of A vs 2P for loops containing 148.72
atoms for several Bragg reflections with & = 0.005.
The reason for the noninteger number of atoms in
a loop is clarified in Appendix B. The value ob-
tained for A is not strongly dependent upon the
value of q if «& 1~ In Table II we list the values
of A for loops of this size and for q = 0. 01 and

0. 005, corresponding to the relaxation of 419 070
and 1 192 830 atoms, respectively. The values of
A„in the table differ, at most, by 17.6% so that
the values of A~ for q = 0.005 are considered to be
sufficiently accurate. Figure 3(a) illustrates the
strong dependence of the attenuation on the Miller
index L. Within the accuracy of the calculations

I

A has almost an exact exponential dependence on

P. For this size loop and & = 0.005 the expectation
value of ( v ~ p ) or 2M' was also computed. Figure
3(b) is a plot of e " vs 2P. Comparing Figs. 3(a)
and 3(b) it is clear that the latter predicts a larger
attenuation. The difference between these results
is most pronounced when ((Tr ~ p,„)) is large.

If the locus of points in the SL, p plane for con-
stant values of A is plotted, Figs. 4-7 are ob-
tained. Figure 4 shows the locus of such points for
the (00 ~ 2) reflection for the values of A„shown on

the lines. The other figures are for the (00 4),
(10 1), and (10 ~ 3) reflections, respectively. These
figures were obtained by considering plots similar
to Fig. 3(a) for loops containing 7. 00, 17. 57, 34. 95,
58. 68, 148. 72, 342. 77, and 998. 12 atoms. The
observed exponential dependence of A upon p al-
lowed p to be determined accurately for selected
values of A for each loop size. When the coor-

dinatess

SL and p corresponding to these selected
values of A were plotted logarithmically (Figs.
4-7), it was found that they could be connected by
straight lines. The resulting plots allow convenient
interpolation for other values of SL, p, and the at-
tenuation. The observed straight -line relation also
warranted extrapolation to 1oop sizes as large as
4 x 103 atoms. The log-log plotting in these figures
demonstrates the almost exponential dependence
of A upon p, SL, and the Miller ind ices . Clearly,
large loops are much more effective than small
loops in attenuating the Bragg reflections.

These results provide a method of estimating

TABLE g. parious quantities used in the calculation of the attenuation factor and the diffuse scattering. The

quantity R = 4 l A3 l / l Ag l = 0.40824829.

[[l1+(3+(—1)")/6]hi + [l2+ (3—(—1)")/6]h2] RI "„(pf) p,"z(pf)h3 f
[[l1+(3+( 1))4)/6]2+[l2+(3 ( 1)44)/6]2 [l1+(3+( 1) )/6][l2+(3 ( 1)")/6]]1/2 4

~

[—[l2+ (3-(-1)")/6]h1+[(l1-l2)+(-1)"/3]h2] Rp,"/pe) p,",(pf)h3 )
[[l2+(3 ( 1)n)/6]2+ [(ll l2) +(—1)44/3]2+ [l2 +(3 (—1)44)/6][(ll l2) +( —1)44/3]]1/2 4 J

—[[(l1—l2) +( —1)"/3]h1+[l1+(3+(—1)")/6]h2]Rp"/pe) p"z(pt )h3 [
[[(l1—l2) +( —1) /3] +[l1 + (3+(—1)n)/6] —[(l1—l2) +(—1) /3][li +(3+(—1)")/6]] 2 4{

C1—cos2~ 1 + 2 2 1/2 (lih1 + l2h2)
RV"AR)

(1 + 2 12)

C2 =cos21T 1 + 2 2 1/2 (- l2h1 + (l1-l2)h2)
RV".(4)

(l1 +l2 —lil2)

C3 —cos2m 1 + 2 2 1/2 ((l1—l2)h1 + lih2)
Rp."gpo)

(li + l2 —lil2)

Rp".(p&) ] $ 2(2n + 1)+p"z(pf)]
~~~{[[~+( +( ) )/ ] ~+[2+( ( ) )/ ] ][ + [[l +(34( ]) )/6p 4[)2+(3—(—))~)/6p —[lg+(34( —1)")/6][l2+(3-(—))")/6]]~~~ ] L 4 ] ]

Rl "
(p&) ] l 2(2n+ 1)+Jll"z(pg) ]

{ ' ' [ '[[lm+(3 —(—))")/6] +[(4—(2)+(—))"/3]'+[)4+(3—(—))")/6][(4—(4)+(—))"/311'"] ]- 4

Rp"z(pf) ] [2(2n+ 1)+p'".(p&) ]
[[(4—la)+( —))"/3P+[4+(3+(—))")/6P —[(4—4)+(—))"/3][l~+(3+(—))")/6]F"] [ 4
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(a)

O.OI
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0.02
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-(II 0)
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(IO 2)

—(IO 3)

—(00.4)

0.03

(Io 0)
—(I I 0)

(20 0)

—(IO I)—(2o I)

4-7 cover those values of L most useful in practice.
This method of determining loop size depends upon
the loop displacement field and hence on the elastic
properties of the material.

The major effect on the Bragg intensities is due
to the attenuation factor. However, there is a
small change in the average structure factor of the
unit cell because of the occasional occupancy of a
C site which is summarized as follows:

L +modulo 2, H-K=modulo 3

Lmodulo 2, H-E4modulo 3

= 4(1 —2P)~, L = modulo 2, H -K= modulo 2

L=modulo 2, H-K+modulo 3

L=modulo 4, H —K=modulo 3

L=modulo 4, H-E4modulo 3

L=Ois modulo 4 only .
V. DIFFUSE SCATTERING

We use the foQowing expression for the diffuse
scattering:

X
0.10

~(00 2)
(Io 2)
(II 2)

2

Er(~)+Q (e'"'"~~-1)e"'~~ . (10}
m

l03

O.OI
0

(b)

0.01
2p

0.02 0.05

FIG. 3. (a)Plot of attenuation factor A~ vs 2p for
several Bragg reflections for a loop with S& = 148.72
atoms and & =0.005. (b) Plot of e ~ vs 2p which pre-
dicts too large an attenuation; Sl, and & are the same as
in {a).

10

loop size from measurements of lattice parameter
and reduction in Bragg intensities. If the experi-
menter has an estimate of p from the lattice pa-
rameter, then Figs. 4-7 provide an estimate of
loop size. If the loops are small, the core correc-
tion K(S~) in Eq. (5) and plotted in Fig. 2 may re-
quire a new estimate of p and make an iterative
procedure for p and S~ necessary. The attenuation
depends strongly on the Miller index L, and Figs.

IO
Io-3 IO ~

2p

IO-'

FIG. 4. Loci for selected values of A~ for the (00 2)
reflection in SL, , 2p plane.
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X K 4' &XKKV~V, XNkN
'i 4 NXQ, NYh, '6Yih~,

IO

0

IO'
IO' IO'

FIG. 5. Loci for selected values of &2 for the (00 ~ 4)
reflection in Sl, , 2p plane.

lo 'IO ~

2p

FIG. 6. Loci for selected values of A~ for the (10 1)
reflection in Sl. , 2p plane.

Io(a) is the diffuse intensity, f is the atomic scat-
tering factor, E~(s) is the geometrical structure
factor of the loop, and r

&
is the vector position of

the mth site in our crystal from the jth defect site,
in this case the central atom in our loop. The vec-
tors r„&should be referred to the mean (dilated)
lattice of the crystal containing defects, and the

diffuse intensity is reduced by the attenuation factor
given in Eqs. (6) and (8). ' Since AB and BA
loops are equally likely, the sum in Eq. (10) ex-
tends over all N defect sites. Equation (10) con-
tains several approximations. We have neglected
altogether interferenee effects among different
loops. Ne have included only the interference ef-
fects arising from the correlated displacements
between tmo matrix sites m and n due to the pres-
ence of a single defect and similarly between the
defect (loop) and the matrix displacements. The

latter effect is the cross-product term m Eq. (10).
Finally, the attenuation factors for loop atoms and
matrix atoms mere takin to be equal. Not included
in Eq. (10) is a slowly varying term equal to NPSz,
xl:1-~:( )lf'.

The geometrical structure factor of the loop when

multiplied by the atomic scattering factor gives the
ampbtude scattered by the atoms in the loop. In

general, a plane of close-packed atoms cannot
possess an exactly circular border. We have re-
sorted to the following scheme to ensure our loops
are circular. If the center of an atom lies within
our circumscribed circle, me consider that this
portion in the loop is occupied with a probability
represented by the fraction of the atomic volume

lying within our circle. Depending upon the 1&, l~

coordinates of the atom, this fraction f (lq, ls) can
assume values from ~ to 1. The derivation of this

TABLE II. Values of A~ for e =0.010 and O. 005 corresponding to the relaxation of 419 070 and 1192830 atoms,
respectively, about a loop of 148.72 atoms, for several reflections (HK. I ) and several values of p.

~=0.010 e =0.005

2p
0.001
0.003
O. O1O

O. 030

Oo 1)
0.98185
0.94655
0.83267
0.57734

(10 3)
0.91722
0.77165
0.42144
0.07485

(oo 2)
0.95386
0.86788
0.62354
0.24244

(oo 4)
0.89532
0.71769
0.33097
0.03626

(10 ~ 1)
0.98131
0.94498
0.82809
0.56787

(1o 3)
0.91404
0.76365
0.40706
0.06745

(oo 2)
0.95258
0.86438
0.61519
0.23283

(oo 4)
O. 89051
0.70617
0.31360
0.03084



X-RAY SCATTERING FROM. . .
fraction is treated in Appendix B. According to
our elastic model, the loop itself undergoes a radi-
al shrinkage when it is inserted into the host lat-
tice. The C,'s listed in Table I account for the in-
terference effects of the loop atoms and take into
account the radial shrinkage. We then write for
the geometrical structure factor of the loop

Fi(ht~ hn)=1+ Q Q Q f(lg, ln) C&(lg, ln, hg, /b) .
$ =1 lg 40 f2, =0

P+ in-l, ln&(c/A P (11)

The term 1 accounts for the origin atom, and

just as in Eq. (8) the symmetry of the loop was used
to restrict the sums to positive values of E& and Ep.

The limits on /& and l2 ensure that the centers of
all atoms lie within the circumference of the loop.

Both AB and BA loops possess a center of sym-
metry, hence the exponentials can be written as

—2sin(nfl p, „&)sin[g~ (r &+& p &)]. Half the de-
fect sites in Eq. (10) have —,

' Z p,„~given by the top
set of signs in Eq. (V) and the other half by the
bottom set. This is also true for v ~ r &, namely,

~ ~ r„,= 2n {[1,+ ~(3+ (- 1)")] h,

+ [lq+ n (3 + (-1)")]hn+ ~(2n+1) hn) . (12)

Here as before the top set of signs is to be used
for AB loops and the bottom set for BA loops. The
only difference in these expressions for 2w ~ p, ~ and
x". r

&
for the two loops is the interchange in the

roles of /& and l2. Since l& and lp are to be summed
over the same integer set, one can write for the
scattering from a BA loop the same expression as
that for an AB loop but with h& and h~ interchanged.
This is reflected in the expression for the diffuse
scattering

fg (hg, hn, hn)

(-.'~) E(1 E)A'„(-a„l,„a,) f' = (""~

3 L(n) I (n) tg(6 ) 2

Fg ~], p~p 4 ' B$ E], y ~ps &p ~yp~2p~3 Sg ~gp~pp~y ~gp
i-"& l&~0 lp so n~o

3 I (n) r (~) n4) 2

+ F~, hf 4 ' ' B] lgp EpyÃp p Af A&3 S) ifp l2, n, h2, hg, h3 . 13
1 tg =0 /3 =0 n=0

The S&'s are given in Table I for the AB loop, and
the limits on the sums are the same as those used
in calculating the attenuation factor, and are dis-
cussed there and in Appendix A. The factor 4 in
front of the sum consists of the factor of 2 which
resulted from expressing the exponentials as circu-
lar functions and a factor of 2 to take into account
the fact that the sums in Eq. (13) run over only
positive values of n. Since the two defects each
have 3 symmetry and are related to each other by
a N-n rotation, the diffuse scattering has 6/m sym-
metry.

If the loops did not produce atomic displacements
in the lattice ( p, &-=0), then Eq. (13) would reduce
to the square of the geometrical structure factor
of the loop. The scattering would then be the two-
dimensional reflections of the loop, or HK rods in
reciprocal space. However, the total defect is a
finite extrinsic fault and we might expect, in anal-
ogy to other problems in stacking disorders,
that rods with H -K= modulo 3 would differ from
those with H -K4 modulo 3. That is, the sums in
Eq. (13) which reflect the displacement field pro-
duced by the loop may drastically alter the two-
dimensional rods expected from only the loops.

In the absence of any strains the C,'s in Table

= 2npc [Z, (gc)/(gc)]

= npc A&(gc), (14)

where p = 2/W3 A, or pnc = Sl.~ The vector g
= 2n(7ig 8~+ rin Bn) is parallel to the plane of the disc

I and Hq. (11) are periodic in the intervals h, = H
and Q =K, so that En(hi, hn) would be strictly
periodic. However, the nonuniform strains induced
by inserting the loop into the matrix destroy the
periodicity in E (h~, hn). This causes the rods to
be displaced outward from the origin, to be reduced
in intensity, and to be broadened. The solid curve
in Fig. 8 is a plot of E (hi, 0) vs hi for a loop with
c/A&=6. 5 or Si=148. V2 atoms. These effects are
clearly seen by comparing the peaks at h& = 0 and

h& = 1. Aside from this perturbation, the scatter-
ing from the loop is determined from its shape
and size. We may estimate the intensity distribu-
tion of the rods from the external form factor of
the loops determined by the Fourier transform of
a disk having a uniform distribution of scattering
per unit area p equal to the number of atoms per
unit area of the loop. We write

E„(q„gn)= p J,
"J' e"""'~ r dr dy
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The properties of Eq. (13) are not readily seen
by inspection. To gain insight into these properties
a computer program was written to evaluate Eq.
(13) in the h„0,h2 and h„h&, h2 planes of recip-
rocal space for O~h~ ~1.6 and 0~63~3.2 by in-
crementing the h's in steps of 0. 02. Thus, the
diffuse scattering was computed for 13041 points
in reciprocal space. A crystallographic contour
routine was then used to map contours of isodiffuse
scattering or 7 (hg k2~ hs) For the case k, = h2

both terms in Eq. (13) are identical, so that only
one term need be evaluated and its value doubled.
Equation (13) represents a formidable amount of
computation even for a computer such as the Con-
trol Data CDC-6600. The circular-function sub-
routine, which takes a relatively long time on the
computer, was replaced by a scheme suggested by
Harris. The scheme substitutes two multiplications
and an addition for the circular-function routine.
This is discussed in Appendix C. Furthermore, a
faster compiler than usu'al, extended FORTRAN,

was used. However, even with these steps, the
computation of the diffuse scattering requires long
computer times, and, for & fixed, this time in-
creases rapidly with loop size. For & = 0. 005 the

FIG. 7. Loci for selected values of A~~ for the (10 ~ 3)
reflection in Si, , 2p plane.

with its origin on the HK rod. The magnitude of
g=4w3 ' A, '(q, +vpz+ 7h q2)', and Q is the angle
between g and r. Z, (gc) is the first-order Bessel
function of the first kind and A, (gc) is defined and
tabulated in Jahnke and Emde. Thus F~ (qq, q2)
can be expressed either in terms of c/A or S2 as

x I.423 ('/}1+ P2+ 71 l2) cAl~]

or
c/A& ——0. 4456/g„

Sz, = 0. 7203/q'„.

(16a)

(16b)

2/1 2 [32/2 1/2 3 1/4 (~2 ~2+ ~ ~ )1/2 Sl/2]

(15)
The dashed curve in Fig. 8 at h& = 0. 5 is a plot of
F~ (qq, 0) for a loop of 148. 72 atoms. The r/'s in
Eq. (15) are commensurate with the k's. F (hq, 0)
and F~'(q„0)are very similar in this region of
reciprocal space. The full width at half-maximum
(FWHM) of A, (x) is 3. 233. If we define the FWHM
in g space as q, the size of the loop producing an
HK rod is approximately

x IO'
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If Eq. (13) predicts rods in certain regions of
reciprocal space whose intensity distribution is
proportional to F (h„h2), Eqs. (16a) and (16b) may
be used to estimate the loop size.

FIG. 8. Plot of E (h&, 0) vs h~ for Sz,
——148.72 atoms,

solid line. The nonperiodicity is caused by the nonuni-

form shrinkage of the loop when inserted into the matrix.
A plot of Ez (q&, 0), dashed curve, is inserted at k& = 2

for comparison.
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scattering in the k&, 0, h~ plane from both the loop
and its displacement field for the BA loop [E(h„0)
+0]. Again there is no (00 ~ L) rod, and the strong
bridge of diffuse scattering is between (10 ~ 1) and
(10 ~ 2) in contrast to Fig. 10(a). Figure 11(a) is the
isodiffuse scattering in the h&, 0, h3 plane from both
AB and BA loops, or from the complete expression
in Eq. (13). We see that there is a (10 ~ L) rod, but
its intensity is much larger than that expected from
the loops only. There is also a characteristic hook
in the rod at the (10 ~ 0) reflection. Figure 11(b) is
the isodiffuse scattering in the h&, 8&, h3 plane from
both AB and BA loops. There are no rods, and the
diffuse scattering is localized around allowed Bragg

FlG. 9. Isodiffuse intensity contours in h&, 0, h3 plane
from only the displacements produced by an AB loop.
Note the (00.L) rod and the diffuse bridge between (10 ~ 0)
and (10 ~ 1). There are 10 contours and the interval is
5000.

largest loop which could be economically considered
contained 148.72 atoms.

Figures 9-11 illustrate the properties of Eq. (13),
S~ = 148.72 atoms. In each of these figures there
are ten contours and the contour interval is 5000.
Figure 9 is the isodiffuse scattering in the h&, 0, hs

plane of the reciprocal lattice from the displace-
ments alone of the AB loop, or the first term in

Eq. (13) with E (h„0)set equal to zero. Contours
above 50000 are not plotted because they become
too dense. The striking part about this figure is
the (00 ~ L) rod produced by the displacement field
alone. This rod is four contours high with a maxi-
mum of - 20 000. In Fig. 8, the (00 ~ L) rod from
the loop alone has a maximum of 22118. Along the

h3 axis the loop scattering and displacement scat-
tering are essentially equal. The scattering around
the (10 ~ 1) reflection is extended in the h3 direction
and the (10 ~ 0) and (10 ~ 1) reflections are connected
by a diffuse streak. Figure 10(a) is the isodiffuse
scattering in the h&, 0, k3 plane from both the loop
and its displacement field for the AB loop [F(h~, 0)
&0]. The striking part about this figure is the ab-
sence of the (00 ~ L) rod. This can be understood
from the fact that the amplitudes scattered by the
loop @nd its displacement field are equal and posi-
tive. However, the cross product of the amplitudes
scattered by the loop and its displacement field is
negative and equal to the sum of the intensities
scattered by each. There is also a strong rein-
forcement of the diffuse scattering bridge between
the (10 ~ 0) and (10~ 1), and likewise between the
(10 ~ 2) and (10 ~ 3). Figure 10(b) is the isodiffuse

~ . ' ''; ' 'g)

-:,',js-. ": ' i".:"::

)) '" "' ''" )I:','. / ) .. .G,), , ',) ' )

~ ' ' - ~ -' ', ;,' (, , ~ ~

I.O l.5
0.0 - "-''"''::-'

0.0 0.5

I.O
~ '

0 0 "'-"-'-'

0.0 0.5
h,

I.O
vari

1.5

FIG. 10. (a) Isodiffuse intensity contours in I2&, 0, I23

plane from AB loops. Note the absence of the (00 L) rod
and the strengthening of the diffuse bridge between (10 ~ 0)
and (10 ~ 1). (b) Same as (a) but for BA loops. Note
absence of an (00 ~ L) rod and diffuse bridge between
(10 ~ 1) and (10 ~ 2). Contours are the same as in Fig. 9.
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FIG. 13. Plot of d{h~, 0, 2) vs h& for loops with values
of Sz, —-34. 95, 58. 67, and 148.72, respectively.

To compare our results with a hcp material in
which interstitial dislocation loops are known to
exist, we have chosen neutron-irradiated BeO. An
extensive literature exists ' on neutron-irradiated
BeO and Wilks has recently reviewed the subject.
BeO has the wurtzite structure, with almost the
ideal A/A, ratio (II.)' ~2 (As/A, = 1.623) and is es-
sentially elastically isotropic with a Poisson's
ratio of 0. 249. 3 Rau has positively identified

celled by the amplitude scattered from the dis-
placements. Similarly, we have noted that along
the (10 ~ L) rod the displacement scattering may
tend to either reinforce or cancel the amplitude
scattered by the loop. Figure 13 is a plot of g(hq,

0, —,') vs h, for loops with c/A, equal to 3. 146,
4. 106, and 6. 500, or with values of S~ equal to
34. 95, 58. 67, and 148. V2, respectively, for curves
(a), (b), and (c). The half-widths g are indicated
for each curve. If similar plots are made in the
vicinity of hz ———, we find that although the intensity
may vary, these half-widths are reasonably con-
stant. If we insert the values of g indicated in
Fig. 13 into Eqs. (16a) and (16b), we find values
of c/A, equal to 2. 8, 3. 7, and 6. 4, and values of
8& equal to 28. 1, 50. 0, and 147. 0, respectively.
These values compare well with the values used in
the calculations. These results suggest that a mea-
surement of the FWHM of the (10 ~ L) rod midway
between (10 ~ 0) and (10' 1) can be used to estimate
the size of loops present in the crystal.

VI. DISCUSSION

{1011} {0002} {1010}

11.7x10 g /cms

6.9xl0~0

5.6x10

3.0x10

2.1x10

29 44 42' 40 38

.5x10

FIG. 14. Diffractometer traces of neutron-irradiated
BeO powders (E ~1MeV). Effects of irradiation are
more pronounced for large values of the Miller index L.
The effects seen are explained by interstitial basal-plane
loops which increase in number and size with exposure.

basal-plane loops in BeO irradiated with neutrons
to 5. 3&&10 0 n/cm~ (8 ~1 MeV) at 1000'C. At lower
irradiation temperatures - 100 'C and for exposures
less than -10 n/cm resolvable dot clusters are
seen along with a "textured" background. For ex-
posures over 2&(10 0 n/cm~ a very large number of
dot clusters, estimated to be approximately 50-100
0
A in diameter, are seen which are interpreted as
small interstitial loops oriented on the basal
planes. Clearly, interstitial basal-plane loops
that can be seen in the electron microscope are
produced in BeO under certain conditions, and
there is reason to believe that under other condi-
tions loops are also produced that are too small to
be clearly identified as loops in the electron micro-
scope.

Figure 14 is a reproduction of a sequence of x-
ray diffractometer traces taken by Rau and Chase
of irradiated BeO samples. ' These traces were
taken on samples of polycrystalline BeO rods
formed by extrusion and sintering, and after irradi-
ation crushed to 10-p particle size. Thus it is
reasonable to assume that these samples are free
of intergranular strain. The rods were irradiated
in the Engineering Test reactor in Idaho at - 100'C
to exposures from 0. 5 to 11. I x 10 0 n/cm (8 ~ 1
MeV). These traces illustrate graphically a num-
ber of the effects predicted for the x-ray pattern
of a hcp material containing interstitial basal-plane
loops. The (10 ~ 0) reflection remains essentially
unchanged in both position and intensity with in-
creasing exposure. Since basal-plane loops pro-
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duce no change in the A, lattice parameter, Eq. (4a),
this is exactly what is expected for a reflection with
a Miller index I-= 0. Furthermore, referring to
Fig. 3(a), the attenuation factor A„(10~ 0) is nearly
1 for any reasonable value of p. This is true for
all size loops. The (00 ~ 2) reflection shifts pro-
gressively to smaller angle, As expanding, and de-
creases in intensity with increasing exposure.
Since basal-plane loops do produce a change, in the

Aa parameter Eq. (4b), this is exactly as expected.
The attenuation factor A„(00~ 2) in Fig. 4 de-
creases with increasing values of p or SI.. Hence
the decrease in (00 ~ 2) intensity is to be expected
if either the number of loops increases, or their
size increases, or if a combination of these effects
takes place with increasing exposure. The (10~ 1)
reflection shifts to lower angle and decreases in
intensity with increasing exposure, and behaves in
a fashion intermediate between (10 ~ 0) and (00 ~ 2).
It should be noted that the (00 ~ 2) and (10 ~ 1) reflec-
tions remain sharp, but as the exposure increases
there is an increase in the diffuse scattering on
the high-angle side of the reflections. The center
of the computed diffuse maximum in Fig. 11 is dis-
placed to the high-angle side of the (00 ~ 2) such that
nL/L-0. 014. This corresponds to a separation
in scattering angle of about 0. 6 between the (00' 2)
Bragg reflection and its diffuse maximum, which
is approximately that observed in Fig. 14. Note
that the isodiffuse scattering contours in Fig. 11 '

are such as to produce a diffuse scattering on the
high-angle side of the (10 ~ 1), which is also ob-
served in Fig. 14. Sometime after the disappear-
ance of the (00 2) reflection the diffuse scattering
also decreases with increased exposure. This
would seem to confirm the argument for the pres-
ence of an attenuation factor in the expression for
the diffuse scattering. ' All of the effects seen
in Fig. 14 are in qualitative agreement with x-ray
effects we have predicted for interstitial basal-
plane loops.

The traces in Fig. 14 were taken on samples
made by applying a thin layer of BeO powder mixed

with grease to a microscope slide. 4' This is a
good procedure for lattice parameter studies on a
material such as BeO which is transparent to x
rays. 46 Unfortunately, for intensity measurements,
this technique can introduce errors. It is unlikely

that the same amount of material was bathed by the

x-ray beam in each trace, and it is also unlikely

that the degree of preferred orientation is the same
for each trace in Fig. 14. Unirradiated BeO gave

a diffraction pattern almost identical with the trace
of the 0. 5 & 10 -I/cm2 sample. ' Table III lists those

parameters necessary for determining p and Sl.
from lattice parameter and intensity measure-
ments. ' Taking the peak areas of the 0. 5&& 10 -n/cm

sample to be the same as an unirradiated sample,

FIG. 15. Isodensitracing of a precession photograph
of the k&, 0, ks plane in the reciprocal space of a neutron-
irradiated BeO crystal. The exposure is 2. 1&& 10 g/
cm2 (E &1 MeV). Compare the figure to Figs. 11(a) and
12(a). From the width of the (10 L) rod indicated, the
loops contain - 1260 BeO molecules. The weakness of
the rod between (10 1) and (10 ~ 2) is due to the destruc-
tive interference between Be and O.

the appropriate attenuation factors for the other
exposures may be approximately calculated. It is
worth noting that the peak areas of the (10 0),
(00 2), and (10 1)in Table III for the 0. 5 && 10 0-n/cm
trace are in the proportion 1.00/0. 636/1. 00,
whereas the products of the square of the structure
factor and multiplicity are in the'proportion 1.00/
0.666/1. 735. Presumably, this discrepancy is due

to preferred orientation. Rows 8, 9, and 10 in

Table III list the zero-order values 2PO and S~, de-
termined by the methods outlined in Sec. IV. The
next three rows are the first-order values [first
iteration values with R(S~) = 0. 75] of 2P, and S~.
The numbers for Sl are BeO pairs. We notice
that the values of S~ determined from the attenua-
tion of the (00 ~ 2) and (10 ~ 1) differ by at least a
factor of 4, and that although there is a trend of
loop growth with exposure, the main effect is due

simply to the increased numbers of loops. A loop
0

consisting of 620 BeO molecules is -70 A in diam-
eter, while a loop consisting of 180 BeO molecules
is -40A in diameter. Rau estimates the loops in

0
these specimens are 70-100A in diameter. '

A more severe test for the predictions of the
scattering effects from interstitial basal-plane
loops is the diffuse scattering. We have already
seen that the diffuse scattering in the powder pat-
terns of Fig. 14 is consistent with our computed
isodiffuse contours. Figure 15 is a view of the
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diffuse scattering" in the h„0,h, plane of the
reciprocal. lattice of a BeO crystal neutron irradi-
atedto 2. 1x1020n/cma(E &1MeV) at a temperature
-100 C in the HIFAR reactor at Lucas Heights. 4'

The film from which this figure was made was ex-
posed with monochromatic copper K radiation.
A Technical Operations model No. 505 isodensi-
tracer was used to record the density of the film.
The Q and h, axes are indicated in the figure.
Along the ha axis we see the (00 4) Bragg peak
from the half-wavelength passed by the monochro-
mator and then the (00 ~ 2) reflection and diffuse
scattering which is approximately elliptical in
shape. The major axis is perpendicular to the h3

axis, and the ratio of the major to minor axis is
-1.33. In Fig. 11 of the computed scattering this
ratio is -l. 28 (maximum contour). The intersec-
tion of the major and minor axes of the diffuse
scattering around the (00 2) in Fig. 15 is dis-
placed from the Bragg position by r I,/I -0.0135.
Integer values of L in the figure are multiples of
the distance from the origin to the half-wavelength
peak. The rod of diffuse scattering joining the
(10 I) and (10 ~ 0) has a very characteristic S
shape which is mirrored through the (10 0) to the
(10 1). This S shape is clearly reproduced in the
isodiffuse computer contours in Figs. 11(a}and
12(a}. Computations for smaller loops show that
the curvature of the S shape. is greater for smaller
loops. The intense diffuse scattering in the vicinity
of the (10 1}reflection in Fig. 15 has the shape
of a "left footprint. " The sole of the foot steps
over the value L = 1 more than the heel lies behind
it. This left footprint is clearly seen in computer
contours of Fig. 12(a). The intense diffuse scat-
tering in the neighborhood of the (10 ~ 2) reflection
in Fig. 15 has the shape of a "tear drop" with the
tail directed toward (10 1). The centroid of the
tear drop lies at a value of Q &2. Again, compare
this with Fig. 12(a).
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FIG. 16. Plot of fzo vs h3. The small values for
1.0~53~2.0 explain the weakness of the (10 ~ I) rod be-
tween (10 1) and (10 2) in Fig. 15.

In a wurtzite structure such as BeO each close-
packed layer can be thought of as a double layer
made up of beryllium-oxygen pairs. The pair sep-
aration is pA~ with p, =0.365. Rau' clearly il-
lustrates the interstitial double-layer loop of BeO
pairs in the C position of ABAB ~ ~ double layers.
The interference effects of the BeO pair in BeQ
can be approximately accounted for by replacing
f j Eq' (13) by fs 0 whe ef8 o fs +fo+2fs fo
icos 2m@,hz. This function is plotted in Fig. 16.
The small values of f~e,o for 1.0 —hs —2. 0 explain
the weakness of the (10 ~ I.) rod between the (10 1)
and (10 ~ 2) reflections in Fig. 15. In addition,

TABLE III. Table for determining loop sizes in neutron-irradiated BeO from the x-ray traces in Fig. 13. K(SL,) was
taken to be 0.75.

Exposure
(I/cm2)

m, /a,
IO.O O) in. 2

1'(00' 2) in 2

I(1O'1) in. 2

w'(oo ~ 2)
a'(10 1)
2P (}

s~o(00 2)
s&0(1o '1)
2pi
s~ (oo.2)
s~(10 1)

0.5x 102'

O. 001 256
9.24
5.88
9.26

0.0025
~ ~ ~

0.0019

2 ~ 1 x1020

0.005 802
8.17
2.47
7.90
0.420
0.853
0.0116

360
81
0.0087

630
145

3.0 x1020

0.007 950
7.69
2.00
7.39
O. 340
0.798
0.0159

300
86
0.0119

530
155

5.6 xlo

0.016 242
8.58
0.43
6.38
0.073
0.689
0.0325

420
57
0.0244

710
102

6.9 x1020

0.022 158
6.96

4.30

0.464
0.0443

130
0.0332

230

11.7 x10

0.035 864
6.87

2.46

0.266
0.0717

147
O. 0538
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FIG. 17. Isodensitracing of an oscillation photograph
of a neutron-irradiated BeO crystal. The exposure is
2. 0 x10 g/cm (E «1MeV). The angle of oscillation is
2. 5' on both sides of the (11 ~ 0) and the axis of rotation
is (00 1). Compare the figure to Figs. 11(b) and 12(b).

the attenuation factor in Eq. (18) is operating to
decrease the intensity of the rod as h, increases.
The full width of the rod at half-maximum at h = —,

'
indicated in Fig. 15 was determined by a densitom-
eter scan parallel to h, (the full width at 0. 699
maximum of the densitometer scan). Using this
value for p in Eqs. 16(a) and 16(b) we estimate
c/2=18. 6 or S~= 1260 BeO pairs. Thus the loops
in the crystal are -100A in diameter. We are
aware of other single-crystal studies' ' which
substantiate Millar's observations. However,
Belbdoch et al. ' ' show photographs which illumi-
nate other parts of the reciprocal space of neutron-
irradiated BeO. In their'~ Figs. 3 and 4 we observe
that as the (10 L) rod becomes broader (smaller
loops) its S shape becomes more curved. In their
Fig. 3 one observes the diffuse scattering around
the (11 0) position of a crystal irradiated to
2X10 ' n/cm (fast) which appears as a "cross."
This is more clear in their" Fig. 9 which is an

oscillation diagram through the (11' 0) reflection.
Figure 1V is an isodensitracing of the diffuse scat-
tering in the vicinity of the (11 0) reflection of a
BeO crystal irradiated to 2. 0&&10 n/cm (E~ 1MeV)
at a temperature -100 C in the French Triton reac-
tor. The film from which the tracing was made is
an oscillation photograph exposed with monochro-
matic Cu K radiation. ' The "cross" is clearly
seen in the isodiffuse contours of our Figs. 11(b)
and 12(b). The diffuse scattering at (11.0) reflects

the symmetry of the ~ component of the loop dis-
placement field of Fig. 1(a).

We mention the possibility of explaining some of
the puzzling results observed by Walker et al. '
They observed that in samples with the same ex-
posure, the weakening of the Bragg reflections in-
creased as the temperature of the irradiation was
raised, although the A3 axis expansion decreased.
Further, in isochronal anneals of a sample irradi-
ated at -100 C they observed that the recovery in
the A3 axis expansion preceded the recovery in the
weakening of the Bragg reflections and diffuse scat-
tering. We have seen in Eq. (5) that the fraction
of atoms present in loops p, apart from the weak
dependence on loop size, is determined by the ex-
pansion of the A, axis. We have seen in Figs. 4-V
that p and the loop size are independent parameters.
Even though p may be reduced by choosing loops of
appropriate size, the attenuation factor may be made
as small as desired. Concomitant with a small
value of A is a large diffuse scattering. ' This
leads one to conclude that for high exposure tem-
peratures the fraction of atoms in loops is small,
but the loops that are present are large. During
annealing, a large fraction of the atoms in loops
may disappear, but those remaining cluster into
larger loops.

In summary, we have used an elastic-continuum
model to describe the displacement field produced
by a dislocation loop. Although this approach cannot
be quantitatively correct for all the displacements,
it is thought that it is qualitatively a reasonable ap-
proach. For large loops the dimensions of the de-
fect are such that the continuum model becomes
quantitative for displacements other than those as-
sociated with the dislocation core of the loop. We
have discussed the diffraction effects expected to
result from interstitial basal-plane loops in a hcp
structure, and compared these effects to those ob-
served in neutron-irradiated BeO. BeO is a materi-
al in which such defects have been observed in the
electron microscope. The predictions of our model
are confirmed in every aspect, and we have used
them to estimate values of the concentrations and
sizes of the loops in neutron-irradiated BeO as well.
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APPENDIX A: LIMITS FOR SUMS AND PRODUCTS

The smallest displacement, in units of half the
Burgers vector, retained in the calculations is c.
Thus, E generates a locus of points outside gf which

the magnitude of the displacements is less than E,
and these displacements are not considered. We

have shown ~ that for large distances from the loop
the disI&lacements given by Eqs. (1a) and (1b) ap-
proach those for an "infinitesimal loop. " The dis-
placements for an infinitesimal loop in terms of

a b are given by Eqs. (8a) and (Bb) of Ref. 22 as

~ = j[p„"(R„8)]'+[p",(R„8)]'}'~'. (A2)

The general shape of this locus is seen in Fig. 2 of
Ref. 8. In terms of p and g, Eq. (A2) becomes

(Ala)
2& Scos2g

p,, (RO, 8)= 2 1+ cos8 .
4Ro 1 —& 1 —2o'

(Alb)

Ro and 8 are the distance and angle in a cylindrical
coordinate system centered on the loop to the point
in question, and R, =c(p'+K')'+, cos8= L(p'+ f') '~',

and sin8= p(p +g ) . For small values of tth'e
displacements given by Eqs. (la), (1b), (Ala), and

(A1b) are similar (see, for instance, Figs. 2 and 3
of Hef. 22). Hence we used the locus of I&oints gen-
erated by the displacements of Eqs. (Ala) and (A1b)
which satisfy the condition

4 1 —c (1 —2o')'(p +K ) (1 —2o)(p +f. ') (p +g )
(A3)

A further simplification was made, namely, that the
limits on I& and lz [called L(n)] when g= —,'(2n+ 1)
&& (A3/c) are determined with sufficient accuracy
for our purposes by setting p=L(n)(Aq /c). Equation
(A3) becomes

R U 2g+1

x[1+9(1—2a) U" +6(1 —2o') VU ] . (A4)

R is defined in Table I, U= 1+ [L(n)/(2n+1)R] . and
V= I - [L(n)/(2n+ I)R]'.

A subroutine in the computer program, supplied

by Kemmey, determined the integer value of L(n)
which most nearly satisfied Eq. (A4) for each ri,. As
n increases there is a value n(e) for which no value
of L(n) &0 satisfies Eq. (A4) and this value is the
limit on n in Eqs. (8) and (13).

APPENDIX B' NUMBER OF ATOMS IN A LOOP

We define the distance to an atom center
p= (A, /c)(lq+lz-l, la) . When p=1, the atom cen-
ter lies on the loop circumference, and for p(l&, lz) & I
the atom center lies within the circumference.
Thus the limits on I& and Iz in Eq. (11) are deter-
mined by the condition

lg+la-lg la —(c/Ag)

In the same units as p the radius of an atom is
r=A~/2c. If the coordinate pair /~ and l2 is such
that p —1-Aq/2c or if

(H2)
lan +I 2-I g I a

—(c/A& —a)

the atom lies completely within the loop and f(lq, la)
= 1. If the atom center lies between the conditions
given by Eqs. (B1) and (82), we assume that the
site is occupied with a probability equal to the vol-
ume fraction of the atom within the circumference
of the loop. We approximate the volume of the atom
within the loop as the spherical segment of one base
whose height is h = (1+pa -ra)/2p and whose semi-
base is S=(r —[(1 —pa -ra)/2p]a)' 2. The volume
of the segment is —, vh(3S2+ha). Thus we have

(B3)

with p = (A&/c)(If+I& -l&lz) and r=A& /2c. A sub-
routine was incorporated in the program which
tested the coordinate pairs according to the condi-
tion indicated in Eq. (B2), and if the condition was
met, f (lq, la) was set equal to 1. If this test failed
but that of Eq. (Bl) was met, Eq. (B3) was used to
compute f(lq, lz).

APPENDIX C: METHOD OF EVALUATING
CIRCULAR FUNCTIONS

The computation of the diffuse scattering in Eq.
(13) requires evaluation of the 8,'s and S,'s of Table
I. The computation time can be reduced consider-
ably if the routine of computing the sine function
for each new value of the argument can be elimi-
nated. Consider that h&=0, and h& and h3 in the
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S„„=sin(o'm &hg + Pn&hg),

C „=cos(~m&h, + gn&k, ), (C1)

argument are incremented by increments of ~h&
and &h3, respectively. Consider the evaluation of
the circular functions

where

Sf{) sinn &A y Spy = sing&h 3

Cgp = cos &&A
& C p&

= cos p& h3,

Spp=0 Cpp= & ~

(c3)

where m and g. are integers. If we use the addition
theorem for the circular function, we can write

S~ ~
—S11t y tt C]p+C~ y gS)p —S~ g j Cpy+C~ g ~S

(c2)
C~ „=C~ y „C~p—S~ y „Syp=C~ „gCpy+S~ „~Sp

Equations (C2) are valid when the subscripts are
equal to, or greater than, zero. Thus the sine of
any point in the first quadrant of the h& h3 plane can
be generated after the four circular functions in Eq.
(C3) have been computed. This scheme proved much

faster with essentially no loss of accuracy.
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