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We have derived an expression for the diamagnetic susceptibility of metals with complicated
crystal structures from the general expression for the diamagnetic susceptibility obtained by
Misra and Both in a pseudopotential formalism. We have used this expression to calculate the
diamagnetic susceptibility of zinc, and our result agxees vrell with the experimental result
calculated from the available data. We have also used the known parameters of bismuth to
study the variation of susceptibility with the Fermi level. Our results indicate that if there
were a gap over most of the original Fermi surface, we expect to have positive diamagnetism.

I. INTRODUCTION

The problem of Bloch electrons in a magnetic
field has been solved by many authors who'have

obtained essentially equivalent expressions for the
diamagnetic susceptibility, though these are written
in different forms. In its fundamental principles,
there is nothing too profound in the calculation of
the diamagnetic susceptibility. The action of a
magnetic field upon a band can be resolved into two

effects. One effect gradually transforms the pa-
rameters of that band. The other effect consists
of the breaking up of the band into a series of dis-
crete states. The bands thereby become renormal-
ized or field dependent. The diamagnetic suscep-
tibility is calculated from a computation of these
renormalized bands. However, the resulting for-
malism is so enormously coxnplicated that applica-
tion to realistic band structures is a very formida-
ble and complicated task. Because of these com-
putational obstacles, till recently, no attempt was
made to obtain even an estimate of the order of dif-
ferent terms in the expression for the diamagnetic
susceptibility.

Recently, there have been some attempts to cal-
culate the diamagnetic susceptibility of metals from
the above formalisms by using suitable models so
that they would be amenable to calculation. Ruvalds~

has calculated the diamagnetic susceptibility in a

magnetic breakdown model using the result of %an-
nier and Upadhyaya. 4 Fukuyama and Kubo have
treated the simple model of two bands produced by
a weak cosine potential to analyze the interband
effect appearing for a pair of bands with a small
energy gap. More recently, Fukuyama and Kubos

and Buot and McClure have employed k ~ p methods
to calculate the diamagnetic susceptibility of bis-
muth. These authors conclude that a combination
of spin.-orbit interaction and small energy gap ac-
count for the large diamagnetism of bismuth. Buots

has calculated the contribution to the diamagnetism
of bismuth-antimony alloys from the region of the
Brillouin zone which contains the carriers and has
obtained satisfactory agreement with experimental
results. These last results treat the band edges
very well but involve a large-k cutoff which intro-
duces some uncertainty.

Recently, we (Misra and Both) have obtained a
tractabl. e expression for the diamagnetic suscep-
tibility of simple metals through the use of a pseu-
dopotential formalism and degenerate perturbation
theory. Along the way we have been able to rede-
rive the general result for the susceptibility of
Bloch electrons in a relatively simple fashion. %e
have calculated the diamagnetic susceptibility of
some simple metals and there has been good agree-
ment with experimental results, where available.
However, there is a difficulty in using our expression
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FIG. l. Energy vs k vector in the direction of a neck in
the Fermi surface.

for metals with complicated crystal structures. In

order to simplify our general formula for the dia-
magnetic susceptibility, we have expanded the
Fermi function [Eqs. (6. 8) and (6. 9) in I]

f(Z) =f(Z,)+ (Z - Ep)f(Zp)+ .

and

9
fg(&p) =fg (Ep)+ (0 —fp) —+

0 ~g 0

where E is the exact energy, f is the chemical po-
tential, and Eo and g~ are the corresponding values
for free electrons. These approximations are valid
for simple metals but they are not valid when there
is a neck in the Fermi surface. In some sense a
neck is similar to the Fermi level being in an en-
ergy gap. If we look along the k vector in the di-
rection of the neck, the energy looks as in Fig. 1.
However, if we turn away from this k direction,
the gap moves up above the Fermi surface. The
avoidance of the above expansion thus appears to be
a first step in treating more complicated band
structures.

In this paper (Sec. II) we explicitly consider the
case of a neck in the Fermi surface and derive an
expression for the diamagnetic susceptibility from
the general expression obtained in I in a way such
that we avoid the approximation in Eq. (1). The
contribution of the rest of the filled conduction band
is also included in our calculation.

We shall first derive an expression for the chem-
ical potential in the pseudopotential formalism.
We start with the familiar expression

(I/4v') fd'ef(Z) = X, (3)

where E is the exact energy and N is the total num-
ber of electrons per unit volume. We shall use de-
generate perturbation theory to evaluate E so that
we consider coupled bands. At any point on a
Bragg reQection plane there are two states of the
same energy which are coupled, on the line of in-
tersection there are three states that are coupled,
and where two such lines intersect, four states
are coupled. For metals with complicated crystal
structures, all these cases arise. However, in
this paper, in order that the problem can be solved
analytically, we shall consider the case of a general
point on the plane so that the unperturbed eigenvalue
is doubly degenerate. Also we omit spin so that the
spin contribution is completely separated from the
orbital part to which we focus our attention. The
expression for E, the exact energy for one Bragg
reflection, can be easily shown to be

1 kP (k+6)P 1 k (k+G)
2m 4 2m 2m

(4)

where k is a wave vector, G is a reciprocal-lattice
vector, m is the mass of the electron, and

Wgn=
( &V+G/ W/V) f', (5)

where W is the pseudopotential (5 = 1 throughout the
paper). We shall use cylindrical coordinates to

Next, in Sec. III, we show how to combine the
contribution of several or many independent Bragg
reQections. The main problem here is putting in
the shift of the Fermi energy correctly.

The resulting expressions are valid for metals
in which the pseudopotential theory is good and in
which the departure from free-electron behavior
is small even though the band structure is complex
because of the presence of many bands. We apply
the results to Zn as an example.

The present results do not apply to materials
such as Bi for which the energy gap goes over most
of the Brillouin zone. As mentioned above, in the.
case of necks there are gaps in certain k directions,
but when these combine to produce a more extended

gap, the Bragg reflections can hardly be called in-
dependent. It is clear that in such cases a direct
evaluation of Eq. (5. 36) in I is necessary, and we
hope to carry this out in the future. We can, how-
ever, argue from the case of a neck that the energy
gap contributes to an enhanced diamagnetism.

II. THEORY FOR A SINGLE BRAGG REFLECTION
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z, = q(s+/)-y(&+@) (14)

From (9), (11), and (14), we have

G v' '~2

16m 2
—(a —1 —y )+y 1+ dy=N

(i6)
where y, and y are upper and lower roots of E,=&.
These roots are obtained by solving the equation

—,'(a —1 —y )+y(1+v /y ) =0 .
The solutions can be shown to be

(16)

FIG. 2. Bragg planes which cut the Fermi surface.

evaluate (3). We choose G parallel to the 2 axis.
Thus we may write

E=E„~+E»,

where

Z~ = (k +k2)/2m

(a V2)1/2 al/2 1/2

y, = (1 a a' ) 1 +2, ,/2)2

We now integrate (15) to obtain (for both a & 1 and

a&1)

Gs

32 2 (a-i)(r, -y ) '(r', r-')-+y, (-y', +v')"'
3277

—~y ~(y+v) +v ln '
21/22 21/2 2 y +(r +V )

y+ +v)

(18)

(k.+ G)'+ k,' [(k, + G)'- k,']'

So (3) may be written as

It is easy to show that

N = f(G2/32v2) a,'"
where

a2= (8m/G )Z„

(19)

(2o)

p dkpdk» ~ E„„+E» =N,1 (9) and Z~ is the Fermi energy. From (18) and (19),
we have

where the limits of k, is from 0 to [2m(f —Z, )]'/2.
Integrating over k2, (9) becomes 3

a2 = — (a —1) (r. r ) 2(r—.' r—') +r, (—r'. + v')'

(f —Z, )dk =N.
E»&' f

(io) y+(y2+V2)1/22/2
Ir-I (r-+v ) +v ln /„g „21/2

We include the case of the Bragg reflection plane
cutting the Fermi surface as in Fig. 2. We must
search for roots when k, = —&G. We introduce di-
mensionless units

y. and y are obtained from (17) and are functions
of a. We can write the right-hand side as A(a) and
then write (21) in the form

y = (2/G) (-,'G+ k,),
a = a2 —[A(a) —a] . (22)

a = 8mg/G

and

v = 4m Wf 6/G

Substituting (11)-(13)in (8), we obtain

(12)
We can now calculate a by a reiteration process.
Thus the chemical potential can be evaluated to any
order of accuracy.

We shall now derive an expression for the dia-
magnetic susceptibility. We make our starting
point E1ls. (6. 6) and (6. 25) of I from which we have
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$8
d'u Z

'" ~'G.G """d'~ ~I'f'@
12v m H w H J „J [(G +2k P)'+ 16m'WI ]' '

6 [(G~+2k C)3+16m Wle]' JJ „[(G'+2k 6) + 16m 8'Ne]

aa'a' ]

[(G'+ 2k 0)'+ 1em'wlq]'"

where H is the magnetic field

h = eH/2c,

~e8 ~ egg~

& z„ is the complete antisymmetric tensor of the
third rank, and we use the Einstein summation con-
vention. Note that we have corrected the printing
errors in sign in the first and the last terms in
(23). We write (23) as

Ggtll'U
X3 2 RG J r $(1 + ~&/P)slR

'W

4m(t —Z.)
// ——

( 2jq]//2) ~ ($1)

From Eqs. ('f), (11)-(13), (23), and (26), we have

X Xi X2 X3 (26)
Xs 2 8G8 dE ydrr4(1+&2/r2)R

where X~ is the first term (essentially the Landau
term), and Xm and Xa are the second and third terms
in the expression for susceptibility. As before,
we shall use cylindrical coordinates and also use
the fact that at zero temperature

f'(E)=-6(E-~) .
From Eqs. (11), (23), (26), and (2V), we have

Smsx 1-
1

- 32

The integration over E„,yields

p,'G',I'v' '
(t; —E.)

x =
2 aG drr4(1+ t/ a)3

where p.~ is the Bohr magneton. This is easily in-
tegrated and we obtain

4m(t —E.)
G2 1+ 3 1/2 ~

From (31) and (33), we have

Q~BZG
X, =-- »„.(r.-r ). (29)

t ' du'duX2 2 & j (/ ~ [GR (1+&&/P)li2]8

From E[ls. (11)-(13), (23), (26), and (2V), we have,
after some simplification,

p G gtpsv 1
Xa+ Xs= 2„3G

y

1 4m(t —E,) ' 1
4 G'r(1+ v'/r')"'

This can be integrated after some further simpli-
fication. The result is

k,' (1 "/0)'" . (30)6 2G2'Y

The integration over k, yields

g Gmv
Xa+ X3=

2 2G

where

(36)

(1 —3a) 1 1
[2 2(P ) 2]2( 2/22222/)///2 [(2 ( 2(+222)l/2](P/22)l/2)

(a —1+v')' 1 1
[r, + (r'. + ~')"']'(r'. +~') [ ~ r ~ + (r'+ ~')'"]'(r'+ ~')
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V

3[y.+ (y'. + v')'"]'(y', + v')"' 3[ I y I + (y~+ va)"~]' (y'+ v')'~' 16 I y I + (y'+ v')'~' (36)

From (29) and (35), we obtain

2 mG 6G2v2
x= —

f2 s (x.-w. ) — '
&) ~ (37)

Our expression can be written in the alternative
form

y, —y 3G,v
X Xp 2 1/2 1/2G2

gp gp
(38)

y, -y v g2 3/2
-S i/2'

~/2 =1 — ~/2 3/2 tanh g
2gp 2gp g gp 1 —g

(39)

where Xp is the diamagnetic susceptibility of free
electrons. This is the expression for the diamag-
netic susceptibility of a metal.

In Fig. 3 we plot g vs aa, using a from Eq. (22).
We note that similar results have been obtained by
Ruvalds' and Fukuyama and Kubo. Far away from
the zone boundary this expression can be expanded
to second order in v in which limit we have

I

II [Eqs. (38) and (17)]we had quantities in terms
of the exact Fermi level which needed to be re-
lated to the unperturbed Fermi level through Eq.
(22) which is solved by iteration. In the case of
many Bragg reflections, however, it is not im-
mediately clear how to take into account the change
in Fermi level, which includes contributions from
many reciprocal-lattice vectors.

Let us first obtain a result for the energy in the
vicinity of a given Bragg reflection. The Schro-
dinger equation is

(42)

Here we use the notation for the pseudopotential

&6 6' =&k+G'I &Ik+G" &, (43)

l.2

and 8'@g = 8'„-g.. Let us consider a region of k space
in which just one reciprocal-lattice vector G (in
addition to G= 0) is important. Then from Eq. (1)
for 6'40, 6, we have

1 5g —3g2 3
I= 3/2 8'1 2+sg tanh g (40)

'- l.o=
From (38)-(40), we have, up to second order in v,

v g2
- 3/2

-~ S/2
X

—
Xp i/2 3/2

2gp g gp 1-g

I0.8 0.6

l,4

I

0.8

I
I

II
l.o
aO

I

l,2

2 2 32G~ 5g —3g, 3/2+ ~ ~, +-, a tanll a81 —g)
(41)

which agrees exactly with the corresponding expres-
sion for the second order in v in I [Eq. (6. 14)] and
with the corrected expression of Samiolovich and
Rabinovich. 'P

III. MANY INDEPENDENT BRAGG REFLECTIONS

Ie2—

)ca

)en
Id) =

ED
X

Having obtained the result for one Bragg reflec-
tion, we now consider a more realistic case in
which a number of Bragg reflections occur, some of
which cut the Fermi surface. We shall assume that
the different Bragg planes are independent, mean-
ing that we neglect the crossing on the Fermi sur-
face of two or three Bragg planes. This is based
on the assumption that the pseudopotential is suf-
ficiently small that we can treat only one Bragg
plane at a time to better than second order.

In the expression for the susceptibility in Sec.

OJ—

I

og
I

OJ

I

I I
lg
a0

I

l,2
I

l.4

FIG. 3. Magnetic susceptibility vs ao for a single
Bragg reflection and for the magnetic field B parallel and

perpendicular to the reciprocal-lattice vector G, with

y =0.1. Solid curves are for the present calculation and

dashed curves are the corrected result of Samoilovich
and Babinovich (Ref. 10).
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(k+ G')~
46 = W6 Z46+ W6 g 02m (44)

(45)

Substituting into the equation for 6'= 0, 6, we have

To calculate the change in Fermi level let us
divide E„-o into a constant term Ay= E', &2g g andthe
remainder Bk"o. Assuming initially that all Bragg
planes but 5 are remote from the Fermi surface,
we have

N= Q f~ (EP+ E„"6+Ao + Bf6}
k

(k+G') ~ 2m I W|444. 1

jr+j:r-jr+a'j')44 '4'
(46)

=Py (E-+E-&+g-)+P — -~~ f E"+E™+A-&
k k 6 gE kB

k k

(52)

Here we have neglected the off-diagonal second-
order term in comparison with 5'kg, and have sub-
stituted unperturbed energies for E in the second-
order terms.

If we consider now the point k=- &G, in the mid-
dle of the Bragg plane, and denote by S the second-
order term in Eq. (45), we have

~ 2m I(—,'Gl Wl ——,'G+G')13
(k&)' —(- 2&+&')' (4V)

, 2ml s'kP. I

2

~'- (k+ 5')' (46)

where E„-=k~/ m2-and

jk 5j —k 4mW;4 ')' '
4~ (k+ 5)' —lP

(49)

We have chosen a particular root of the secular
equation as follows. We use an extended zone
scheme so that the unperturbed energy is simply
E„-. Then E;o is defined to be small as long as
(k+ 5) —k» 4m WI o.

Now Eq. (49) can be generalized to give the
analogous energy expression near any Bragg plane

If we make the substitution O'- 6 —G' and use time-
inversion symmetry this is seen to be the same as
the second-order expression in Eq. (46). It should
therefore be a good approximation to equate the two
expressions in the vicinity of the Bragg plane. This
leads to the result valid near a particular Bragg
plane:

Since Bko is small near the Bragg reflection let
us replace the Fermi function in the second term
with that for the unperturbed energy Eg. Then

&=+ l f& A6(E j+Ejo ) fg g6(E;)I+Z fg~6(Ep)
k

~ sf~(EP) B+
gE k5 (53)

X-P f„(E-„)=0=2 [f,,(E;+E„-6)-y,, (E„-)j
k

k k

where Ao now has been lumped back with Bko.
Equation (54) can now be solved for t' —$0.

Let us generalize this result to allow more than
one Bragg plane to cut the Fermi surface:

&0=Z Z Ifgo(Ej,+ Ej-,6) fjo(Ej)]

where we have written the first term of Eq. (52)
in a different form and have added and subtracted
a term. Now the first term of Eq. (53) gives the
number of extra electrons due to the G 'th Bragg
reflection, and we notice that the effective shift in
Fermi level, (-Ag —fo, for this term includes
mainly the shift due to this reciprocal-lattice vec-
tor, the Ag approximately cancelling that owing to
other reciprocal-lattice vectors. Thus it is prob-
ably a good approximation to neglect the shift and

to set f —Ao= &0 in the first term. In the second
term let us expand to first order in g —Ao Pp.
Then Eq. (52}becomes

E=E~++6 Ej",6, (5O)
(55)

since E"„g reduces to the second-order expression
of &q. (48) for (k+5) —k»4mWg6. But return-
ing to the case of one important Bragg plane, we
write this as

E= Ek+ EkP+ EkP,
where

Eke —~g EkB

This is valid for 8' sufficiently smalj such that the
various approximations are valid and the 5's are
independent.

Turning now to the susceptibility let us use the
same arguments to calculate the first term in Eq.
(23) for the case of one dominant', in direct analogy
to Eq. (11):

I
&fg(Ej-,+ Ej,o+ E„-o}

8E
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-p 'fa(&;), p 'f~. (~'~'-) 'fc.(~)) G(k, k, l)= (6+k)i+ —(k —k)j+ —lk . (60)
a C

+Z ' [E 6-(C-&,)].
8

(56)

The matrix elements of the pseudopotential can be
separated as

The first term on the right-hand side is the unper-
turbed value, and the others correspond to the con-
tribution from 5, from all other reciprocal-lattice
vectors, and finally from the shift in Fermi energy.
We may rewrite this in the more general form
analogous to, and using, Eq. (55),

af, (E„- y- E„-~)
8E

& afr (z;( & -+ sf& (z;+z;~) ef„(z;()

-+ [fe,(& +El-)-f(; (E-)] Z " Z 8

(57)

As far as the rest of the susceptibility in Eq. (23)
is concerned, it is consistent to replace g by go in
it and to sum over reciprocal-lattice vectors. The
final results for the extension of Eq. (38) to the
case of many independent Bragg reflections is

y —y 3G2v2 1
1/2 1/2 22a, ao 3 No c

(58)

(k~+ G(h, k, l)
~

W~ k~) = cos[16-v(2k+ 4k+ 3l)](d5,

(61)
where cog is the form factor. We have used h
form factors of Animalu and Heine~~ in our calcula-
tion. We have calculated )( from Eq. (58) which we
may write

X = )(p(1 +2 G Da) . (62)

1 2
Xg 3 XII+ 3 XA ~ (63)

We have evaluated the D~'s using a high-speed
computer and these were summed over neighbor
shells until convergence was obtained. We have
used the physical parameters a = 2. 6590 A,
c/a = 1.8565, and kz = 1.573 && 108 cm ' in our calcu-
lations.

In Table I the results for the diamagnetic suscep-
tibility of zinc are tabulated. We note that there is
asymmetry in the value of the diamagnetic suscep-
tibility of zinc depending on the orientation of the
field relative to the crystal axes. (Da)„and X„are
the corresponding values when the magnetic field is
parallel to the hexagonal axis and (DG), and )t, are
the values when the magnetic field is perpendicular
to the hexagonal axis. The average susceptibility
X„ is calculated from the relation

where )„n, I, and N are given by Eqs. (17), (13),
(36), and (18), respectively, with a replaced by ao

[Eq. (20)], and No is given by Eq. (19).

IV. DIAMAGNETIC SUSCEPTIBILITY OF ZINC

We now apply the above results to zinc, which
has the hexagonal-close-packed structure consisting
of two interpenetrating simple hexagonal lattices.
The lattice may be described as a Bravais lattice
with a basis, the unit cell having the edges:

a, = -, ai ——, ~3 aj, a~ = —,ai'+ —, ~3 aj, a3 = ck

(59)

4f

Xz =Xg+Xp+Xg p (64)

where X ~ is the total magnetic susceptibility,
is the ionic susceptibility, and X~ is the exchange-
enhanced spin susceptibility. X~ has been experi-
mentally determined and X &

has been calculated.
We have calculated X~ from Silverstein's expres-
sion

In Table II we compare our result with the ex-
perimental result which has been obtained in an in-
direct way. There has been no "direct" experi-
mental measurement of either the diamagnetic sus-
ceptibility or the spin susceptibility of zinc. So

we have calculated the value of X„' from the relation

The unit cell contains two atoms, one at the origin
and the other at ~ ai++6@3 aj+ —,

' ck. A general re-
ciprocal-lattice vector is

Xp

1+ (m/m* -1)y.,/)t, ' (65)

TABI K I. Diamagnetic susceptibility of zinc (X in 10 cgs volume units).

Xo

—0.3742

Z a(&a) I

—0.4152

Z ala)i
—0.3307

Xfl

-0.2188 —0.2505 —0.2399
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TABLE II. Comparison of X& with indirectly obtained
experimental result ~ (10 6 cgs volume units).

XT
(Ref. 8)

—l. 14

Xf
(Ref. 8)

—1.64 0.776 —0.276 —0.240

where }t'& is the free-electron susceptibility appro-
priate to the density of conduction electrons in the
metal, X~ is the exchange-enhanced spin suscep-
tibility in the free-electron approximation, and
m* is the effective mass. We have used the values
X~=1.43' and m*/m=0. 601'4 and we obtain

Xp =0. 776.
We find from Table II that y'„, the indirectly

obtained experimental result, agrees quite well
with our theoretical result. However, we note
that a direct experimental measurement of the
spin susceptibility would yield a more reliable val-
ue of X„'.

V. VARIATION OF SUSCEPTIBILITY WITH FERMI LEVEL

In an attempt to explain the diamagnetism of
bismuth, we applied our theoretical result to this
case. Bismuth has A-7 (arsenic) crystal struc-
ture. The unit cell (which is a primitive cell) is
rhombohedral and contains two atoms. The three
primitive translation vectors can be expressed by

where [f indicates rectangular coordinates. The
parameter e is related to the shear angle & by

e = [1—(1+cos & -2 cos2o.')~~ ]/cos &,

& being the angle between any two A, 's. The three
reciprocal- lattice vectors are

gg ~go(- (1 + e), 1, 1), gp
——gp(1, —(1 + 6), 1),

gs =go(1, 1, —(1+e)), (68)

and a general reciprocal-lattice vector is given by

G=hgq+kgz+lg3 . (69)

The xnatrix elements of the pseudopotential can be
separated as

(kr+G(k, k, l) ~W~kr)= [c2owsu(k k++l)]~a, (70)

A, =AD[a, 1, 1), An=AD[1, e, 1], A~=AD[1, 1, e]',

(66)

where u is the internal displacement parameter"
and & is the form factor. We have used the crys-
tal-structure parameters of bismuth obtained by
Golin' from a pseudopotential calculation of band
structure of bismuth. We have used the form fac-
tors of Animalu and Heine" which are obtained in
a model potential calculation.

The result we obtained for the susceptibility of
bismuth was X/yo = 0. 6, which is far from predicting
the large diamagnetism. However, if we decreased
the Fermi level by 2~/o, X/yo increased to 2. 73.
This corresponds in the independent Bragg reflec-
tion model to having necks in the Fermi surface,
and as we see from Fig. 3, the occurrence of a
neck is connected with an enhanced diamagnetism.
In some sense this is similar to the Fermi level
being in a gap. So, if we were to have a gap over
most of the original Fermi surface, we expect to
have a positive diamagnetism.

Of course, as noted in Sec. I, the occurrence
of a gap over most of the Fermi surface means
that the independent-Bragg- reflection model is
invalid. A direct calculation of Eq. (5. 36) in I is
clearly in order here. Such a calculation would
complement the excellent study of the band-edge
behavior by Buot and Buot and McClure. '

VI. CONCLUSION

The principal result of this paper is the obtaining
of a tractable expression for the diamagnetic sus-
ceptibility of metals with complicated crystal
structures from the general expression for the
diamagnetic susceptibility derived by Misra and
Roth in a pseudopotential formalism. This ex-
pression is valid for metals in which the pseudo-
potential model applies, and in which the Bragg
reflections are independent. We have used this
expression to calculate the diamagnetic suscep-
tibility of zinc and our result agrees well with the
indirectly obtained experimental result.

While our calculation does not apply to the case
of bismuth, we have indicated, by considering a
variation of the Fermi level, how the occurrence
of necks gives rise to enhanced diamagnetism.
We then argue that if we were to have a gap over
most of the original Fermi surface, we expect to
have a positive diamagnetism. Our results agree
qualitatively with similar results which have been
obtained recently by Ruvalds and by Fukuyama
and Kubo.

Note added in Proof. Recently, Misra and Klein-
man (unpublished) have shown that there is an addi-
tional contribution to the magnetic susceptibility due
to the effect of spin-orbit coupling on the orbital
motion of Bloch electrons. Our result indicates
that this contribution is small for zinc.



1802 MISRA, MOHANT Y, AND BOTH

~Present address: Department of Physics, University
of Texas, Austin, Texas 78712.

'J. E. Hebborn and E. H. Sondheimer, J. Phys. Chem.
Solids 13 105 (1960).

2L. M. Both, J. Phys. Chem. Solids 23, 433 (1962).
3E. I. Blount, Phys. Bev. 126, 1636 (1962).
4G. H. Wannier and U. N. Upadhyaya, Phys. Bev. 136,

A803 (1964).
5J. Buvalds, J. Phys. Chem. Solids 30, 305 (1969).
6H. Fukuyama and B. Kubo, J. Phys. Soc. Japan 27,

604 (1969); 28, 570 {1969).
F. A. Buot and J. W. McClure (unpublished).
F. A. Buot, J. Phys. Chem. Solids (to be published).

SP. K. Misra and L. M. Both, Phys. Bev. 177, 1089
(1969) (referred to as I).

A. G. Samoilovich and E. Ya Babinovich, Fiz. Tvexd.
Tela. 5, 778 (1963) [Sov. Phys. Solid State 5, 567 (1963)j.

' A. O. E. Animalu and V. Heine, Phil. Mag. 12, 1249
{1965).

' J. A. Marcus, Phys. Bey. 76, 621 (1949).
' S. D. Silverstein, Phys. Bev. 130, 912 (1963).
'4P. B. Allen, M. L. Cohen, B. V. Kasowski, and

L. M. Falicov, Phys. Bev. Letters 21, 1794 (1968).
'5L. M. Falicov and S. Golin, Phys. Bev. 137, A871

(1965).
S. Golin, Phys. Bev. 166, 643 (1968).

PHYSICAL REVIEW B VOLUME 4, NUMBE R 6 15 SE PTEMBER 1971

Pseudopotential Form Factor and Interionic Potential in Simple Metals:
Many-Electron Effects*

Wei-Mei Shyu, John H. Wehling, ~ and Martin R. Cordes
Department of Physics and Astronomy, University of Hazeaii, Honolulu, Haceaii 96822

and

G. D. Gaspari
DePaxtment of Physics, University of California, Santa Crt, California 95060

(Received 24 February 1971)

We construct a pseudopotential form factor and a metallic interionic potential using Shaw' s
nonlocal model potential and the many-electron screening due to Singwi et al. for eight simple
metals. We have particularly examined the role of many-electron effects and found them to
contribute significantly to the pseudopotential form factor in the region of kz& q & 2. 2k& and to
be essential in determining a realistic interionic potential. In addition, we have studied the
effects of exchange and correlation on the residual resistivity due to vacancies, the resistivity
of liquid metals, the interatomic force constants, and the sound velocity. The inclusion of
many-electron effects invariably improves the agreement between theory and experiment.

I. INTRODUCTION

Pseudopotential theory has proven to be a ver-
satile and useful technique in understanding various
properties of metals. ' It is now possible to in-
vestigate suck. diverse properties as lattice dy-
namics, cohesive energy, optical absorption, and
transport properties once an accurate pseudopo-
tential is known for the metal. The basic starting
point for investigating these properties is the
pseudopotential form factor which consists of the
ionic part (bare-ion pseudopotential) and the con-
tribution from the conduction electrons resulting
in the screening of the bare-ion pseudopotential.
The bare-ion potential can be constructed in a
semiempirical way, Ashcroft's' form factor is a
typical example, or from first-principles consid-
erations using results extrapolated from atomic
spectroscopic data; the Heine-Abarenkov model
potential and the optimized model potential by
Shaw' are good examples here. The contribution

to the form factor due to the conduction electrons
is generally treated in the self-consistent-field
(SCF) approximation and incorporated through the

use of a dielectric function either in the Hartree
form or in a modified form, which includes the
exchange and correlation effects (many-electron
effects) among the conduction electrons. Since
recent work on the interionic potential, ' inter-
atomic force constants, and phonon spectra
have demonstrated within the local pseudopotential
scheme the importance of many-electron effects,
we wish to further investigate these effects in a
nonlocal pseudopotential scheme. In Sec. II, we

describe the procedure for constructing the pseu-
dopotential form factor and the interionic potential
which contain both the desired nonlocal bare-ion
potential and the self-consistently determined
many- electron screening. Results are presented
here for eight simple metals. In addition, we have

particularly examined and assessed the role of the

exchange and correlation effects in influencing


