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various bands are given by

~V
m' a [1+(p/m)S j p

2 2ma'

Substituting for F. and 5 one finds

V m 8 n BPk~a2
&&cree=

2
+

2 2 + a +OVo ~

2ma n

This last equation is not very helpful since it gives
the energies or frequencies associated with the
band edges (i. e. , the tops and bottoms of the bands),
but for energies much larger than Vo the bands are

very wide.
The wave functions described have equal prob-

abilities for the jth atom to be in any valley. To
describe localized particles it would be necessary
to construct wave packets made up of Mathieu func-
tions. We will leave such treatments for a later
paper.

The treatment given depends in a very important
way on our ability to make a convergent expansion
of the displacement in terms of time derivatives.
It is not enough to say that g;„ is the same as x&

except for a phase factor. Such a procedure does
not allow the harmonic forces to be described in
terms of an effective mass. Such a procedure
generates separable but complicated equations of
motion.
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The problem of lattice dynamics of transition metals is investigated. For the case of para-
magnetic nickel, the isotropic two-band model is used to evaluate the static dielectric function
in the Hartree approximation. The bare-ion potential is represented by a two-parameter model
potential. The phonon frequencies are calculated for the configurations (3d)9(4s) and (3d)9' (4s) ',
and compared with the experimental measurements along the three principal symmetry directions
[100], [110], and [111]. A fairly good agreement is obtained for both configurations.

I. INTRODUCTION

A good deal of work has been done on the lattice
dynamics of normal metals and we have a fairly
satisfactory understanding of phonons in these
metals. '. The problem of lattice dynamics of
transition metals is interesting but characteris-
tically difficult. In these metals the distinction
between the core and the conduction electron is
not clear. The outermost d shell is not complete-
ly filled and the electronic-band-structure calcula-
tions' show that the wave functions of the conduc-
tion electrons have a strong d character. Thus the

d states are not sufficiently tightly bound and it is
not valid to treat them in the same way as in the
case of free atoms. Harrison' approached this
problem by generalizing the pseudopotential formu-

lation to include the d states in the transition met-
als. The pseudopotential obtained by him includes
the effects of s-d hybridization but is nevertheless
weak. The pseudopotential approach for transition
metals has not yet been utilized for developing a
theory of lattice vibrations in these metals.
Sinha and Golibersuch' have independently studied
the electron-phonon interaction in transition met-
als using the augmented-plane-wave method. Be-
cause of the complexities of these approaches,
actual calculations for any metal have not been at-
tempted as yet.

Recently, the authors proposed a noninteracting
band model to calculate the static dielectric func-
tion of the transition metals (hereafter we refer
to this paper as I). The free-electron approxima-
tion is used for the electrons in the s band, while
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a simplified tight-binding scheme is used for the
d electrons. The electronic energies are assumed
to be given by the effective-mass approximation.
The scheme is applied to paramagnetic nickel and
it is found that the major contribution to the di-
electric function is due to intraband transitions.
The contribution from the electrons in the unfilled
d band dominates. In this paper we propose a
method for studying the lattice dynamics of the
transition metals assuming the presence of both
the d-like and s-like conduction electrons. W'e use
this formulation to calculate the phonon frequencies
of paramagnetic nickel.

In Sec. II, we start from the Hartree-Fock ap-
proximation for the electronic ground-state energy
and derive an expression for the second-order
change in energy which involves the screened elec-
tron-phonon matrix element. The explicit expres-
sions for the electron-phonon matrix element and
the static dielectric matrix are also derived. This
enables us to obtain an expression for the elec-
tronic contribution to the dynamical matrix. The
descriptions of the two-band model for the static
dielectric function and the parametrized model po-
tential are also given. The procedure of the cal-
culations and the results are presented in Sec. III.
In Sec. IV, we discuss the results.

II. THEORY

A. Electronic Contribution to Dynamical Matrix

In the harmonic i'pyroximation, the angular fre-
quencies ro,~ of lattice vibrations of a monatomic
metal are obtained from the solution of the de-
ter minantal equation

detID»(g) M&ue&5n»I =0 ~

Here q is the phonon wave vector, p is the polar-
ization branch, M is the mass of the ion, D»(q)
are the elements of the dynamical matrix, and
n, P are the Cartesian components (x, y, z). For
metallic crystals, the contribution to the dynamical
matrix is separated into three parts'. (i) the Cou-
lomb interaction between the ions, (ii) the exchange
overlap interaction between the ions, and (iii) the
ion-electron-ion interaction which also includes
electron-electron interaction. Contribution (i)
is evaluated in a straightforward manner with the
help of Ewald's 8-function transformation, if the
charge of the ions and the crystal structure are
known. We neglect contribution (ii) assuming that
the overlay between the cores is small. There-
fore, the main problem is to evaluate the electronic
contribution to the dynamical matrix.

A derivation of the electronic contribution to the
dynamical matrix in the Hartree approximation is
given in Ref. 1. In simple metals the conduction

electrons are allocated to a single nearly free-
electron-like band, while in transition metals,
noble metals, and rare earths, the conduction
electrons exhibit both s-like and d-like charac-
ter. ' The magnetic behavior of these metals is
also quite important and can be studied by using
a spin-dependent Hamiltonian. For the sake of
simplicity we limit ourselves here to paramagnetic
and nonmagnetic systems and disregard the ex-
plicit spin dependence of the Hamiltonian.

If we introduce the band indices in the eigenvalues
and eigenfunctions for conduction electrons and
evaluate the change in the ground-state energy of
the electron-ion system up to second order in ion
displacements, we get'

(2& l ~ n& (k ) - n& (k')
Q 2 ~

@(0&(g) E(0& (gI)

+ 2 n&m(k) 0,'~ (r)
I
VII"(r)I)I"„(r)) .

Here the superscripts denote the order of perturba-
tion in the ionic displacements. &I&, ~(r ) is the eigen-
function corresponding to the orbital quantum num-
ber l, magnetic quantum number m, and wave
vector k, and E,„&k) is the corresponding eigen-
value. n&„(k) is the Fermi occupation probability
function. H, (r) is the electronic Hamiltonian, and
V,(r ) is the electron-ion potential. The prime on

g denotes that the term l= l', m=m', and k =k'
is to be omitted. The electron wave vectors k
and k' satisfy the momentum-conservation condi-
tion

k'=k -q+5,

where R is the reciprocal-lattice vector.
On the right-hand side of Eq. (2), the first term

represents a repeated one-phonon process, while
the second term corresponds to an intrinsic two-
phonon process. There are two types of matrix
elements in the first term:

g(0& (r )Iff (&&(r ) I
q(0& (r)

is the electron-phonon matrix element while

is the bare-electron-ion matrix element. We fol-
low the general procedure outlined by Sham and
Ziman to set up a relationship between these two
matrix elements and find
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4'2'''«'(r)IH!qp (r)l t(m«(r)) ~ ~'
(o& (k) @'(o)

(k )l 1m101f 2m2" 2
l 1m1 1 l 2m 2 2

&&&(Io)~,(r) IH,",p'. (r)
I 0I,",«,(r ) & ((««,«,«- V««, «p)

=&6"' ~(r) I
v«(!p'. (r)

I
((l."«(r)), (3)

where

l~m1$1 r
~ pr l~ 2 gm(tt r d f d9

Here V,",p„(r ) and H,',p (r ) are the n components of
the Fourier expansion coefficients of V,"'(r) and
H,"'(r ), respectively, for the phonon of the wave
vector q and the polarization p. v&. l,,~+ and
V~. l,,l, l, are the conduction electron Coulomb and
exchange potentials, respectively. The nonlocal
nature of exchange potential makes the problem
intractable. In I we completely neglected the ex-
change term in our treatment of the static dielec-
tric function. In this calculation of phonon frequen-
cies also, we shall neglect these effects and re-
strict ourselves to the Hartree approximation.

It is possible to transform Eq. (3) to the follow-
ing form:

V,",p (q+G) =Q(). e(q+C, q+5')H,",p) (q+5'),

)( g (0) () I

l (0+5)'|'I
qI

0) ( ) )

where

(q+ 5)= 4 e /0
I q+ 4

I

where 0, is the atomic volume.
The electron-phonon matrix element can now be

expressed in terms of the bare-electron-ion ma-
trix element

Ql ~(r)IH!lp'. (r)I(I~(r)&

=Q Q ~-'(q+5, q+5') V«",~)(q+5')
c c'

where V„",p (q+5) and H,",p (q+4) are the Fourier
transforins of V«,'p' (r ) and H,",p, (r ), respectively.
6 is the reciprocal-lattice vector and the dielectric
matrix c(q+5, q+6') is given by

«(@+5,q+5')

nl, m, (k() -n(2 2(k2)
0QQ' ( (q+~) ~ ~ E(0& (k ) E(0& (k )l1m1~1l 2 2lt2 l1m1 1 l 2m2 2

The second term on the right-hand side of Eq.
(2) will contribute only when q=0 or q=R. q is a
vector in the first Brillouin zone and cannot equal
H; and q = 0 is consistently dropped in our treat-
ment in order to satisfy the charge neutrality con-
dition. Thus, this term in Eq. (2) does not con-
tribute to Eo ' and we can write

(2) I & nlm(k) nl m'(k )+0 2
~ ~ E(0&(k) E(0~& (k )

~~ ((2 pe 'p']
lmil'mes' lm l'm' qPee' P'8

&(Q Z E '(q+G q+G') V«'p (q+G') O'I"«(r)le ' ' '
I gl' «. (r))

c c'

x Q V«'~'p& 2 (q'+ G") ((IPm «(r ) I
e' "" ' "

I (t'Im«(r ))
c

(l0)

where a,~ is the amplitude of vibrations for the qth
mode and pth branch.

Assuming the dielectric matrix to be diagonal as

we did in I, and using the momentum-conservation
conditions for the nonvanishing matrix elements,
Eq, (IO) simplifies to
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D 8 (q+5) = (Ã/M) e-'(q+Q)

x [a,~a,~V„~ (q+5) V,",~.~(g+@] . (11) x &«+@«+&)-(~+&)slU.(~+&)I' (14)

Here g(g+4) is defined by the relation

e(q+5)=1-v(g+5)X(q+5) . (12)

Substituting explicit expressions for V,",~ (g+ 5)
into (11) we obtain

N is the number of unit cells in the crystal and

U~(el+ 5) is the Fourier transform of single-ion
potential seen by a conduction electron. There-
fore, the electronic contribution to the phonon fre-
quencies is

E0 = Z Z Z 8p 8ggap ay+3 g(q+5)

where e,~ is the e component of the unit polariza-
tion vector e&p and

With the use of Egs. (12) and (14) this simplifies
to

(g) p [e (q+p)j ~ ( G
—I) I

~,(~+@I
'

B. Isotropic Two-Band Model

The conduction electrons in a transition metal
are distributed in the s and d bands. These elec-
trons respond to the ionic motion through intra-
band and interband transitions and screen the bare-
electron-ion interaction. In I the explicit expres-
sion for the dielectric function is written in the
form

where p=q+5 e„, e«, e„„and &~ symbolize the
contributions arising from transitions, from s
band to s band, d bands to d bands, d bands to s
band, and s band to d bands, respectively. In
transition metals the s and d bands are admixed
owing to s-d interaction. The s and d characters
of the wave function in a band vary with k. It de-
mands heavy computational efforts to use energy
bands in a precise manner in the calculation of the
dielectric function (17). We, therefore, con-
structed the noninteracting band model for the
specific case of paramagnetic nickel and utilized
the band-structure calculations of Hanus. The
detailed description and the approximations used
in obtaining the noninteracting band model are
given in I. c«, ed„and E,d are k dependent and
heavy numerical computations are involved in their
evaluation. The use of such a dielectric function
for calculating the phonon frequencies even along
a few symmetry directions will be a prohibitively

I

difficult task. We, therefore, adopt here a sim-
plified isotropic two-band model to calculate the
static dielectric function and the phonon frequen-
cies of nickel.

We find from the Table VI of I that the magnitude
of interband contribution (e~, + a~) is very small in
comparison to the magnitude of the intraband con-
tribution (e«+ q,) for the entire region of p.
Therefore, we may justifiably neglect &d, and E d

and retain only intraband transitions. The ex-
pression for &„is

( ) 2m' kg'g8 1 4~gg p l +$'g+f2 2

12~2 4p p p

(18)

where k&, is the Fermi momentum for the parabolic
s band and m, is the effective mass of the electron
for the same band.

The contributions to e«(p) are divided into two
parts. In the first part, we have considered the
transitions from the unfilled d subband to unfilled
d subband and for it m =m'=1. e«(p) for this part
is written as

2
2e«(p ) 2 2 md1~Pd1I &~, u(p ) I

7rN p

2 2

X 1 4~~di ~ l„~d~+~ 1S
+Ed1P II'di '
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where md, is the effective mass for m = 1, d sub-
band; kFd & is the Fermi momentum for this band
assumed to be given by the parabolic approxima-
tion for the electron energy and

21,21(p) Io 7 (6&) Y2 (spy 4 p) I2

/ Y(0) P(8, Q )I . (20)

6p, Qp are the polar angles of the vector p and the
quantities Io, I~, and I4 are explicitly defined in I.
F, are the spherical harmonics. Our calculations
have shown the dielectric function to be nearly iso-
tropic. In view of this nearly isotropic behavior,
we can simplify our procedure greatly by assuming
the vector p to lie along the z axis' so that 8p= Pp

= 0. 8ubstituting for Io, I2, and I, we get from (20),

,-) 72 g (o., + n, )[-Vp'+(n, + n, )']
21, 2LW ' 111'111 y2 (& +& )2]S

(21)

Here a, and o.
&

are parameters of the (M)-radial
wave function and are defined in I.

The second part of e«(p) is due to transitions
from the filled d subbands to unfilled d subband.
This part vanishes if we take the wave vector p
along z axis. For p along a general direction also,
this contribution is very small. The final expres-
sion for the dielectric function which we shall use
in the calculations of phonon frequencies is then
obtained by adding (18) and (19):

(p)l (I+ ' p In "+p— )
4&' — ' 2u +

Fdl Fd1 P
(22)

The dielectric function (22) is independent of k

and includes the contributions of the intraband tran-
sitions in the unfilled s and d bands. It is equivalent
to an approximation where the electrons in the com-
pletely filled d subbands behave like a tightly bound
core and do not respond to the perturbing phonon
field. In this model, the ion core will have a
(3d)' configuration for the nickel. The remaining
two electrons are assumed to be distributed in the
s band and d subband which are not completely
filled. We regard that only these two electrons
are contributing to the dielectric function (22).

C. Bare-Ion Potential

The model that we have discussed above assumes
that we have an ion core with effective charge Ze,
where Z= 2. The bare-ion potential' ' is then cal-
culated in the modified Hartree-Fock-Slater self-
consistent scheme. In this scheme the Slater ex-
change potential is replaced by Kohn-Sham" ex-
change potential and correlation corrections are
made by using the prescriptions of Robinson et
al. ' We neglect the exchange between the core
and the conduction electrons. When we use this
bare-ion potential to calculate the phonon frequen-
cies in (16) and sum over the reciprocal-lattice
vectors G, D ~(q+G) does not converge properly.
We introduced a damping factor to circumvent

Up(p) = —4mSem/p'+ p[l+ Qp;)2]' . (23)

The first term represents the Coulomb potential
due to the ionic charge Ze, while the second term
represents the repulsive part of the potential. P
is the strength of repulsion and parameter ~, is
introduced to bring the desired decay of U, (p ) at
large p. In practice, the parameters P and x, are
adjusted to achieve the rapid convergence of the
sum in (16) and force an agreement between the
calculated and measured phonon frequencies.

We use Eqs. (8) and (23) in (16) and obtain the
following expression for the electronic contribu-
tion to the phonon frequencies:

the convergence difficulty in (16) but found that
even then the phonon frequencies did not come out
to be real in all the three principal symmetry
directions. This difficulty primarily originates
from the fact that the s and d wave functions which
we have used are neither mutually orthogonal
nor orthogonal to the core wave functions. An ex-
plicit orthogonalization of all these functions is a
difficult task and would involve k-dependent co-
efficients of the wave functions in their combina-
tion. We have therefore introduced these correc-
tions by modifying the bare-ion potential to a
pseudopotential. We have chosen a model pseudo-
potential whose Fourier transform is given by'
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(d„=4''e'/M 00 ~ (26)
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TABLE I. The function E(p), where p is the recipro-
cal vector in units of 27r/a~ where a& is the lattice pa-
rameter in Bohr units.

Ip I

0. 1
0.4
0. 6
0. 8
1.0
1.2
1.5
1.8
2. 0
2. 5
3. 0
3.5
4. 0

5. 0
5. 5
6. 0

I' (p) [(3d)9(4s) ~]

0.986 56
0. 799 96
0.592 46
0.372 02
0. 186 46
0. 066 05
0. 002 27
0, 002 97
0. 006 19
Q. 007 33
0. 005 20
0.003 21
0.001 81
0. 000 95
0. 00046
0. 00021
0. 00009

E(P) ((M)"(4s)"1
0. 986 97
0. 80546
0.601 89
0.382 51
0. 193 92
0. 06876
0. 002 23
0. 002 75
0.00471
0.003 65
0. 002 20
0. 00145
0. 00091
0. 00052
0.00027
0. 000 12
0. 000 05

IV. DISCUSSION

The model thai we have used presents too sim-
plified a picture of transition metals. Though the
noninteracting band model is based on the detailed
band-structure calculations, we did not consider
explicitly the s-d hybridization which splits s and
d bands in a transition metal. We neglected the
exchange and correlation effects which should be
quite important in transition metals. These ef-
fects can be grafted in an approximation commonly
used for simple metals. In a study of the ferro-
magnetic transition metals we shall have to con-
sider a spin-dependent problem.

The separation between the core and the conduc-
tion electrons that we assumed in the model is not
realistic. A core limited to a (Sd)8 configuration
will be highly polarizable and we did not consider
the polarization of the core. In order to extend
this method of separating the core and the conduc-
tion electrons, one will have to know in detail the

band structure of the metal. It should be possible
to construct similar models for other transition
metals if we have sufficient knowledge about their
energy bands. We have incorporated in this model
the effect of mutual orthogonalization of s- and d-
electron wave functions and their orthogonalization
to the core wave functions in a phenomenological
way. A rigorous formulation will result in a very
complicated form for the dielectric function. The
nonlocality and energy dependence are essential
features of the pseudopotentials for d bands. We
used a local pseudopotential only as an extreme
simplification and this point needs further investi-
gation.

The calculated phonon frequencies of Ni for the
configuration (3d) (4s)' and (Sd) '4 (4s)0' differ at
the most by 3%. The phonon frequencies for the
longitudinal modes are lower for the configuration
(3d) '~ (4s)" than the corresponding frequencies
for the configuration (3d)9 (4s)'. Except for the
T2 branch in the [110]direction in the low-q
region, this trend is reversed in the transverse
branches. The agreement between the calculated
and the experimental phonon frequencies is not
very satisfactory for the T branch in the [111]di-
rection in the high-q region and for the T2 and T&

branches in the [110]direction in the low-q
region. The maximum deviation between the cal-
culated and the observed frequencies is 35% in the
T, branch in the [110]direction. We should also
remember that the phonon frequencies measured
at room temperature are for the ferromagnetic
phase while our calculations are for the paramag-
netic phase of Ni. The important point to be em-
phasized is that it is necessary to recognize the
s and d natures of electrons in the problem of lat-
tice dynamics of transition metals. We have shown
that the ordinary free-electron formulas do not
work.

ACKNOWLEDGMENT

The authors acknowledge the financial support
from the Department of Atomic Energy, Govern-
ment of India.

~S. K. Joshi and A. K. Rajagopal, Solid State Phys.
22, 159 (1968).

L. J. Sham, Phys. Bev. 188, 1431 (1969).
3B. M. Pick, M. H. Cohen, and R. M. Martin, Phys.

Rev. B 1, 910 (1970).
4J. U. Koppel, Ph. D. thesis (University of California,

San Diego, 1968) (unpublished).
5J. G. Hanus, MIT Solid State and Molecular

Theory Group Quarterly Progress Report No. 44, 1S62,
p. 29 (unpublished); L. F. Mattheiss, Phys. Rev. 134,
A970 {1964); J. Yamashita, M. Fukuchi, and S. Wakog,
J. Phys. Soc. Japan 18, 999 (1963); 19, 1342 (1964);
S. Wakoh, ibid. 20, 1894 (1965): L. Hodges, H. Ehren-
reich, and N. D. Lang, phys. Rev. 152, 505 (1966);

J. W. D, Connolly, ibid. 159, 415 (1967).
6W. A. Harrison, Phys. Rev. 181, 1036 (1969).
'S. K. Sinha, Phys. Bev. 169, 477 (1968).
D. C. Golibersuch, Phys. Rev. 157, 532 (1S67).

9S. Prakash and S. K. Joshi, Phys. Rev. B 2, 915
(1970).

P. P. Ewald, Ann. Physik 64, 253 (1921); E. W. Kel-
lerman, Phil. Trans. Roy. Soc. London A238, 513 (1940).

L. J. Sham and J. M. Ziman, Solid State Phys. 15,
221 (1963).

~2L. Liu and D. Brust, Phys. Bev. 173, 777 (1968);
E. Hayashi and M. Shimizu, J. Phys. Soc. Japan ~26

1396 (1969); 27, 43 {1969).
S. Prakash and S. K. Joshi, Phys. Bev. 187, 808



1778 S. P RAKASH AND S. K. JOSHI

(1969).
~4S. Prakash and S. K. Joshi, Phys. Letters 30A,

138 (1969).
Kohn and L. J. Sham, Phys. Rev. 140, A1133

(1965).
J. E. Robinson, F. Bassani, R. S. Knox, and J. R.

Schrieffer, Phys. Rev. Letters 9, 215 (1962).
~7W. A. Harrison, Psegdopotentials in the Theory of

Metals (Benjamin, New York, 1966).
~8S. H. Vosko, R. Taylor, and G. H. Keech, Can. J.

Phys. 43, 1187 (1965).
R. J. Birgeneau, J. Cordes, G. Dolling, and A. D. W.

Woods, Phys. Rev. 136, A1359 (1964).
S. Prakash and S. K. Joshi, Phys. Rev. 185, 915

(1969).

PHYSICAL REVIEW B VOLUME 4, NUMBER 6 15 SE PTEMBER 1971

Soft-X-Ray Lz s Spectrum and Electronic Band Structure of Chromium

David W. Fischer
Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio 45433

(Received 8 March 1971)

The soft-x-ray L2 3 emission and absorption spectra from pure chromium are shown and
the effects of satellite emission and self-absorption are assessed. Features of the L3 spec-
trum are discussed in terms of the energy-band structure. Results are evaluated by compar-
ing the L3 spectrum with the x-ray E and M spectra, with ultraviolet photoemission measure-
ments, and with band-structure calculations. There is good agreement between theory and
experiment as to the width of the occupied states, the position of the Fermi energy, and the
position of most maxima and minima in both the occupied and vacant portions of the density
of states. Some disparities are also observed but they involve primarily the fine features
of the structure.

I. INTRODUCTION

The use of soft-x-ray spectra (SXS) for studying
the band structure of 3d transition metals has been
discussed in meany publications over the last 35
years or so. Until quite recently, in fact, SXS
was the only readily available experimental method
of probing the structure as far as 5-10 eV below
the Fermi energy (Ez). The last several years,
however, have witnessed the growth and develop-
ment of some new deep-band techniques such as
ultraviolet photoemission spectroscopy' (UPS),
ion-neutralization spectroscopy~ (INS), and x-ray
photoemission spectroscopy' (XPS). Each of these
techniques has certain advantages in specialized
cases, and each is capable of providing information
related to the density of states of the material being
studied. None of them, however, gives a direct
picture of the density of states. Although these
techniques all involve different types of electronic
transitions and transtion probabilities, it can be
quite instructive to compare the SXS, UPS, INS,
and XPS results with each other and with theoreti-
cal calculations as has been done for Ni and Cu. '
One can realistically expect to obtain reasonably
good agreements as to the position of the Fermi
energy, the width of the occupied states, and the
position of the main maxima in each of the curves.
Such agreements can lend confidence to both the
experimental techniques and the theoretical compu-
tations of the band structure.

TG date, the bulk of experimental and theoretical
work performed on the 3d metals has been concen-
trated on the heavier members of the series: Fe,
Co, Ni, and Cu. Little has been done on the
lighter elements Ti, V, and Cr. This author has
previously published the SXS I & 3 spectra of Ti
and V and Eastman has shown their UPS curves. 8

So far, however, no INS or XPS data has appeared
for these elements. The purpose of this paper is to
show recently obtained SXS data for Cr and relate
them to the SXS results for Ti and V, to the UPS
results, and to the available theoretical calcula-
tions. Points of agreement and disagreement in
the comparisons will be discussed.

Of all of the deep-band experimental techniques
mentioned above, SXS can supply more total infor-
mation about the band structures of the transition
metals than any one of the other techniques. Not

only can one obtain data about the occupied band
state. s 4y using emission spectra, but valuable in-
formation about the unoccupied states can be found

in the absorption spectra. The other techniques
(UPS, INS, and XPS) do not readily yield data on the

normally unoccupied states. Furthermore, the
x-ray results are capable of differentiating between
the various wave symmetries admixed into the

valence/conduction band. The K spectrum, for
instance, reflects only the distribution of P sym-

metry in the band, while the L» and M2 3 spectra
reflect the distribution of s and d symmetry.

It is the s and d states which are of primary in-


