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Detailed formulations are developed for the theoretical calculation of molecular-orbital
(MO) wave functions and electronic excitation energies for transition-metal clusters. The

procedures are based upon the spin- and symmetry-restricted Hartree-Fock-Roothaan self-
consistent-field (SCF) equations for open-shell systems. All diagonal electrostatic matrix
elements have been derived to permit determining MO's for all states of all electronic con-
figurations arising from the d" states of the free metal ion. In addition, configuration-inter-
action matrix elements among all states occurring in the d and d (d8 and d ) systems are also
presented. The frozen-core approximations and some aspects of achieving converged SCF
MO's are briefly discussed.

I. INTRODUCTION

Interest in optical, magnetic, thermodynamic,
kinetic, and structural properties of transition-
metal clusters (or complexes) arising from the
occurrence of unfilled shells associated with the
metal ion has led to a wide variety of attempts at
theoretical explanation. Due to the complexity of

these systems, however, most theoretical efforts
have been semiempirical in character and, while

explaining some properties, are unreliable for any

consistent explanation of the entire range of be-
havior. Originating in the basic crystal-field the-
ory, on the other hand, has been a sequence of
successively refined ab initio calculations, mainly
treating the Cr(H20)~' and ¹iF64 systems. In the
earlier works, ad hog theoretical models were de-
vised and only recently has there been explicitly
employed the general full-scale computational pro-
cedures developed in connection with the theory of

simpler molecular systems. " Even in the latter
case, the theoretical formalism has essentially
been limited to those cases in which the wave func-
tion for the cluster can adequately be represented
by a single antisymmetrized product (Slater deter-
minant) of molecular orbitals (MO's).

In order to present the basic formalism for a
more general treatment of these systems according
to the self-consistent-field (SCF) MO procedure,
we present here an outline of the total energy and

SCF equations specific to these systems. In par-
ticular, the detailed formulations are presented
for calculating MO wave functions and energies for
any state of any electronic configuration arising
from transition-metal ions in cubic clusters.

Preliminary results indicate that good agreement
with, and understanding of, experimental spectral
and magnetic data can be obtained from these theo-
retical procedures for a variety of systems of this
type. ' While the basic methodology is well known

in application to simpler systems, ' the specific
forms given here are valuable in further presenta-
tion of our results and in guiding the refinement of

semiempirical procedures for octahedral clusters.

Molecular orbitals (MO's-P's) will be con-
structed as linear combinations of symmetry-
adapted orbitals (X's), which are combinations of
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FIG. 1. Definition of coordinate system.

II. WAVE FUNCTIONS AND TOTAL ENERGY

The system ML6 is referredto theusual Cartesian
coordinate-system as indicated in Fig. 1. The
metal (M) center is located at the origin and each
ligand (L) center is located at equal distances along
the axes. I, may be an ion like F or CN, or even

a molecule like Hao if the reduction in symmetry is
taken care of.

Molecular-Orbital Basis
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TABLE I. Symmetry-adapted orbitals.

Metal-centered Ligand-centered&"

Q@ n8 6 N (OQ~) [op +0'2 +0'3 + 0'4 + 05 +06]

titt x "p. 2 I~'Z(otlg [ol- a4]
~2~(mtg„) [x2 +x3+x5+x6]

np ip 2 "'&«~.) [&2-&S]
2&(gtd [yI+ys+y4+ys]

z npg 2 I~I)V(otIJ [og —og]
2N (~tg„) [gal +z2+z4+ zg]

8g 8 ndg2 12-'~2&(o.gg) [-0; —02+20, —04- O;+20,]
ndg2 y2 2 Pf (Ogg) [Og —0'2 +0'4 0"5]

t2g nd~ 2N(WP ) [z2+y3-zs —y6]
nag -'N(~t2g) [zg+x3- z4-xe]
nay -'&(&t2g) [yi+x2-y4-x5]

t)g x yz(y -z') -'&«~g) &2-y3- zs+ye]
zx(z2 —x') —,'X(~tgg) [-zg+xe+z4-x6]

z xy(x2 —y') —:~(«~g) [yi-x2-y4+xs]

t28 x(y2 —z2) —,'X(mt2„) [ 2-x, +x,-x,]
y (z2 x2) ye+ye y4+ye]
z(x -y ) 2N(%2„) [z~-z2+z4-z5]

0;. is any AO @which is rotationally symmetric about the M- I; bond axis; x&, y;, z~ refer to the Cartesian compo-
nents of degenerate ~-type AO's referred to the M-I

&
bond axis; see Fig. 1.

'iV(aalg) = (1+4 (ol I aI) + (al I o4)) I~I, IV(o tl ) = (1—(ol I ol))I ~I, N(aag) = (1—2 (ol I at) + (ol I o4))
I ~I, N(IItI„)= O+2 (gl I gI)

+ (gl I g4)) ', N(atlg) = (&+2(yI I gI) —(yl ly4))
' ', &(gtlg) = (& —2(yl I gI) —(yl I yI))

' ', X(IItg ) = (& —2(gl Igl) + (gl I gI)) '~I.

atomic {like) orbitals (AO's-g's). These in turn
may be linear combinations of real Slater-type
orbitals {STO's-)('s) or Gaussian orbitals {GO's).
The AO's may have parameters appropriate to free
M or I., or those parameters may be chosen by
other criteria.

The nth AO {which is associated with a particular
center in the system) is written in the form

q„=Z„)(„d, {l)

with the STO or GO set X and coefficient set
d completely specified from the outset. The set
g„ is normal but not necessarily completely orthog-
onal. To take advantage of symmetry, the P„set
is transformed into the corresponding set of nor-
malized symmetry-adapted orbitals g»„belonging
to the subspecies y of the irreducible representa-
tion F:

&Iry= ~or ~~. I]'. P.l rw

with the constants p„~r„such that

0{I'1)I(lrI = )larI

where 8{I'y) is the projection operator belonging
to Fy and N»~ is the normalization factor required
to make

f {)„„)'do= l .
The familiar functional form of pertinent X's is

given in Table I.
Each MO is approximated by a linear combina-

tion of symmetry-adapted orbitals and thus trans-
forms according to the irreducible representations
of eq'.

Air y=~g ~gr y~Nr

In most, but not Rll, succeeding RppllcRtlons,
"perfect pairing" is assumed; namely, two elec-
trons, formaQy occupying the same MO, are as-
signed to two molecular-spin orbitals differing
OgEy in spin factors. A collection of all MQ's

having identical iF values is called a shell. ' If
all MO's of a shell are formally doubly occupied,
the shell is termed closed; a partially occupied
shell is termed open.

The variational coefficients C~«are thus defined
to be independent of y. Each MO will occur mul-
tiplied by a spill fllllc'tloI1 {G OI' p) to fol'111 a nlo-
leculRx'- spin or bit Rl.

Electronic Configurations and States

For the cluster M" J6, with A being the atomic
number of M belonging to the first transition series
and I. being a first-row ion, there are A —g y 6& 10
electrons to be accommodated in MO's. One may
assume that the 11 lowest-energy MO's will be
essentially undisturbed free-ion inner- shell AO's

of M and I,. The valence MO's, which may be
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(though not necessarily} approximated by linear
combinations only of the 3d, 4s, 4p, and ligand-
centered orbitals of Table I, will be given appro-
priate group-theoretic symbols and assigned a
principal quantum number. Thus the (60+A —s)-
electron configurations of principal interest are

((Is„) (2s„) (2p„) (Is~i) (1st,s)2(1st, ~)2

(Is~,)' (Is~, ) ' (Is~,) ' (3s„)'(3P„)')

((1&/, )'(le, )'(It»)'}{(2eg,)'(2t») '(2e, )'f

((3t»)8(lt2 )8)((lt»)6(its„)8/[(2ta, }"(3e,)") .

Braces have been introduced to indicate groups
of MO's having similar bonding character: The
first group contains localized inner-shell, or core,
AO's; the second contains MO's largely 2s~ in

character; the third group is largely 2po'~ in char-
acter; the fourth is M-L n bonding; the fifth is
nonbonding ligand 2pm; and the sixth contains

x+y =A —z electrons in antibonding MO's which

are largely 3d in character and which give rise
to most of the chemical and physical properties
of interest.

For a given state of a given configuration let 4
be the total electronic wave function in the MO ap-
proximation. 4 will be an antisymmetrized prod-
uct (Slater determinant} of all the occupied molec-
ular-spin orbitals, or a linear combination of such
determinants.

For each assignment of the x+y electrons to the

2t2 and 3e MO's there will generally be several
states, as documented by Griffith, '4 for example.
Each (many-electron) state is further classified
according to its total spin- and space-symmetry
properties. Thus it may, in most cases, be iden-

x=2 -!v.'+Z ' ~ v.„(p) )a +ap

1 gZZ,
u &v +ev a &5 ~a5

V„,(p) is a one-particle approximation to contri-
butions to the electronic energy which arise from
the environment of the complex and here presum-
ably has at least full cubic symmetry. Here p, v

index the electrons and a, b the nuclei; Z, is the
charge of nucleus a. Using the Hamiltonian of
Eq. (6), the total energy of the state described by
4 is independent of M~ and

E=&c'ixi@) .

By standard methods, Eq. (7) reduces to

(7)

tified by giving values for x and y for the total
spin (S} and its projection (Ms ) and indicating the
irreducible representation (I') and subspecies (y)
according to which it transforms. In a few cases
ambiguities remain, and for those it is necessary
to specify also S, Ms, I', and Mr for the (2t2, )"
and (3e )" portions of the configuration.

For the above-described configurations, the
precise functional form of 4 can be obtained sim-
ply by appending the product of all the closed-shell
molecular-spin orbitals to the (2tz, )"(3e,)' wave
functions given in, or derivable from, the tables
in Ref. 14, for example, and completing the anti-
symmetr ization.

Total Energy

We shall employ a nonrelativistic Hamiltonian
operator and assume fixed internuclear distances.
Thus, in atomic units,

C C C

E —V,„,=2K H(il'y)+2 Z Z [ J2'(il' yi'I"'y') —K(iI'y, i'r'y')j
&ry r r

C+Z [2'(il'y, 2tz ) —xK(iI'y, 2t2, )+2yJ(iI'y, 3e ) —yK(iI y, 3e )] G(x, y;SI') .
aery

(6)

The superscript c limits the summation over il" to
orbitals associated with closed shells. The vari-
ous terms in Eq. (8) are defined as follows:

Z~ Zy

a &b ~ah

The "one-electron" energy

is independent of y. The Coulombic interaction
(or "direct") integral is

~e& ~ r g)

=ff %& re (1) (I/ri2) 4&ry (2) dv~ dvs .
(11)

The exchange integral is

K(il'y, i'I'y }=(4&ryA r y ~4gr~4'& r ~'}
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=fJ P, „(1)P, , „.„,(1) (1/x, ) P,. „(2)

x Qt ri &i (2) dv1 dv2 (12)

Also let

The last term, G (x, y; Sl'), includes all electro-
static interactions among open-shell electrons and
will be considered later.

Some economies result from defining two-elec-
tron integrals averaged over the subspecies of the
dr-fold degenerate shells according to

I(iI", i I" ) =(1/dr)Z„I(ii'y, i I' y ) for I=J;K.

For more general orbitals it has been shown by
Griffith that nine independent integrals are re-
quired. '4 (A tenth occurs only in configuration-
interaction calculations. )

We have chosen to use a different independent
set of integrals, namely, J(tt), K(tt), J(et),
K(et), J(ee), K(ee), K(tg, tg), J(tf, ee), and
K(tf, ee). Here, and wherever else it is clear
from context, the symbols t and e will indicate
the 2ta, and 3e MO's, respectively. In Table II,
the relationship of our (e —t) integrals to Griffith's
and Hacah's parameters is given. Now define

G (x, y; SI') = a.,J(tt) ~ p, K(tt) + y K(tt)

Now Eq. (8) may be written

(i4)
+ et, J(et) + p,K(et)

+»J(«) + 5,K(.t)

E —V,„,=2K dr H(ii')+ —2 2 drdr. P(ii', i I' )
&r 2 fr f'I"

+~,J(ee)+p, K( ee) . (i6a)

+ xe(2t,z) +y a(8e, )

+2+ [xd P(ii', 2t )+yd P(iI', 3e )]
lr

+G(x, y;Sr) . (15)

We have derived appropriate coefficients for all
states of the t2 e,' configurations. They are given
in Table III. Note that when x+y )5

G(x, y; SI') = G(6 —x, 4 —y; Sl")+6(x-8)P(tt)

+(4x+6y —24) P(et) +4(y —2) P(ee) .
(16b)

Note that here the sums include 0gly opge member
of a degenerate closed-shell set of orbitals.

G (x, y; SI') includes the Coulombic and exchange
interactions among the electrons of 2t2, and 3g,
as determined by the particular state of the indi-
cated configuration. For all cases in which these
two MO's are radially identical d atomic orbitals,
expressions for Q have been tabulated by many
authors in terms of the Slater-Condon integrals
Fo Fp and F4 or Racah parameters A B and C

All the integrals in Eq. (15) depend upon the MO
variational coefficients C&&r and integrals over the
preselected basis functions X»„. If the expression
for each &t~r„ is inserted into Eq. (15), then that
equation may be restated in the following matrix
form, which is useful in formulating actual compu-
tational procedures:

E—Vnuc = HDg —2 D~ +Dt —2 Do ~Do
1 1

TABLE II. Independent integrals in t2 -e~ interactions.

Present work

J(tt) —= k[(f f I &(f+ Qf I nn&+ ('-f I &&&]

&(tt) -=-.'l. ($( t k$&+($n~n$&+ &k~ ~ ~$&l

tt(t&, t&) -=(fnI nf&

J(et) —= —,'[($$ I «) + (($1 88)]

&(«) = 2[&hz I zk&+(f8[ 8f &1

z(eo, tf) -=(ee I CK&

z &ee, t&)
-=(et I &0&

J(ee) —= —' [(88 I 88) + (88 I «)]
Z(ee) =--,'[(88i 88&+ (8z I «&]
.=- «&'n»

Griffith

—.'(a+2S)

3(a+2j)

d+c/~3

g+ pg/v5

d- c/&3

—,'(e+f)/2

Hacah

A+-GC

3

3A+ +—108 5C
3 3

38 +C

A+C

28+C

A —48 +C

48+C

A+2C

2A+48+2C
B~3

Qv I n)z) = ffu (1)v (1) (1/zap) gg (2) z(2) dvg dv2.



OPEN-SHELL SELF-CONSISTENT-FIELD MOLECULAR-ORBITAL. . . 1725

TABLE III. Cubic-field electrostatic matrix elements G(x, y; SI'), +"G(x, y; SI') = o'1 J(tt) +piK(tt) +pi%(tf, tK) +&2J(et)
+P2r7(et) +/2 J(ee, tk) +&2K(ee, tL) +0'3 J(ee) +PBZ(ee).

Config-
uration

'T2

TerIQ

0

Tf

'T2

1@

3
2

3
2

Ti

'T2

'T1

'T2

3A2

ig

4A,

2g

Ti

'T2

('T, X2Z) 4T,

'T

'T2

Ti

(1T2X2g) 2T2

Tf

(1@X 2Q) 2A2

. 2Ai

('A, X2Z) 2Z

(iEX28) 2E

3
2

3
2

3
2

3
2

1
2

1
2

1
2

( T2X A2) Ti

(2T2X 1E) 2Ti

T2

('T, x'A )'T,

( T2& A2) Ti
28

2
—2

'T1

Ai

'T2

'E

15
2
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Config-
uration

t2e 2

T8ITQ

(4A x 2E)5E

(Ex E) Ai

sE

(4Aix 2E) SE

(2T X2E) 3

'T2

iTi

'T2

(2T2x 2E) ST2

Ti
iT

iT

(EX E) Ai

iA2

iE

(STi x SA,)&T2

(AiX A2) A

('E xA,)'E

('Ti x iE)3Ti

'T2

( Tix Ai) Ti

('T, x'A, )'T,

('T2x 'A2)'T2

(iAi X iAi)'Ai

(iE x iE)iAi

(iT2xiz) iT,

('T, x 'A, )'T,
(iT xiE)iT

( T2x Ai) T2

(1Ex iE) iE

(iE x iAi) iE

(iA x iE) iE

2

9
2

9

9
2

9
2

9
2

9
2

9r
2

3
2

3
2

3
2

3
2

3
2

3
2

3

5
2

5
2

3
2

( T2x E)ST

T

'T2

Ti

iAi

T2
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uration
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TABLE III. (Continued)

Term

('T, x 2E)4T

4T

'Ti

T2

(iT x 2E)2T

'T2

(iE x2E)2Ai

A2

2E

(iAi x 2E)2E

2

2

i5
2

i5
2

i5
2

15
2

9
2 0

3

3
2

5
2

3
2

1
2

(A2x A2) Ai

('T x3A, )'T,

( Tix A2) T2

(2E x 3A2) 4E

(4A2x iE)4E

(A2 Ai) A2

('A, x 'A, )4Ai

(A2x3A ) Ai

(2E x iE)2Ai

A

2E

(2Ex iA )2E

(2E x iE)2

(2Ti x iA )2Ti

(2Ti x iE)2Ti

T2

(Tix A ) T2

(2T x iA )2T

(2Ti X iE)2T2

Tf

('T2X'A )'T,

9
2

9
2

2

9
2

9
2

9
2

9
2

9
2

9
2

6 —1 0

0

'Forx+y~5, Gb;, y; S, I']=6@-x, 4-y;
"All missing entries are zero.

S, I'] +6(x —3)P(tt) + (4x+6y —24)P(et) +4(y —2)&(ee).

The matrices in E(l. (16) are defined in the fol-
lowing e(luations. ' (a) Density matrices: First
let

where n(iI') is the number of electrons in the open
shell il" The row. matrices (vectors) for D =D,
or D, (k & I)

D«1'» I) = &a(r &((r (2- ~ar)

Then we have

D, (1";k, l) =2K, d D(iI';k, I)

D, (I",k, l) =n(iI') D(ii"; kl),

(is)

(i9a)

(19b)

=
J J D (r; 11), D (r; 2 i ), D (I'; 2 2 ) ~ ~ ~ D (I'; » ) ~ ~

are inserted into the complete density vectors
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D, = [[D~(a&), D, (tq„), D, (e ), D, (t„), D, (t„), D, (t,„)l), (21a)

D, =/f 0 0 , D. (e,), D, (t„), 0 0 (21b)

wherein the ordering over I' (arbitrarily) follows
that in Table I. Then we have

=(x„„(g)l——,
' &'„+z,z, /~, „+v,„,(p) x„„(p,) } .

(22)

(c} Two-electron matrices: With the elements of
D, and D, indexed by the triplet (I'; P, f ), 6' and g
must be symmetric square (super-) matrices cor-
respondingly indexed. A typical element of 6' is

6'(r; ~, f
l
r ~ & ~ f ) = (4r, &r r ~ l 4 r g &r r, )av

& /i4«ary&a r'~'I &ir~&r r Y)av

& (&ary &&'r'r' I &a'r'r'&rry)av ~

where the subscript av indicates averaging over y
or y as in Eq. (18). The elements of Q are defined
so that, for the specific cases at hand,

—,'D, &D, =& D, &D, —G(x, y; SI') . (24)

Suppressing the 4, l indices for clarity and letting
8(f lf}, 8 (el t), and 9 (e I e) be supermatrix ele-
ments such that

D. (&) ~(el &)D.«)'+ 2D.
I «) ~(el &}D.(e)'

Dt =Dc+Do

For the cases specifically considered, n(atm, ) = x
and n(ae, ) =y; for other open-shell configurations
there will be different n(ir) and different contribu-
tions to D,. (b) The one-electron matrix H is set
up in form identical to D„merely by replacing the
elements D(i I'; 0, l ) by

a(r;u, f)

[F.(r) + a, (r)]C, (r) = e, S(r) C, (r), (26a)

and if an open-shell MO also belongs to I' its coef-
ficients are contained in

I

Roothaan SCF procedure. Open-shell configura-
tions, on the other hand, give rise to problems
basically centering around the matter of maintain-
ing orthogonality among all (completely or par-
tially) occupied MO's upon solution of the SCF
equations.

This problem has been discussed in general by
Roothaan" and others'6 and in this application by
Watson and Freeman, Sugano and Tanabe, and

by Simanek and Sroubek. Physically, one might
say that an electron in an open shell is subjected
to a Hartree-Fock potential different from that
which acts upon an electron in a closed shell.
These different potentials produce different effec-
tive one-electron operators. The open-shell MO
obtained from the latter operator is therefore not
automatically orthogonal to the closed-shell MO's
of the same symmetry species obtained from the
former. This orthogonality constraint may be im-
posed through the addition of certain "coupling op-
erators. " Although more general formulations
have been given, ' the original one of Roothaan is
sufficient here.

When the total energy given by Eqs. (15) or (17)
is a minimum with respect to the variational coef-
ficients C„~ such that all MO's remain mutually
orthogonal, it is found that the optimum coefficients
satisfy certain pseudoeigenvalue equations, namely,
the open- shell Hartree- Fock- Roothaan equations.
The coefficients of any closed-shell MO belonging
to I' are contained in the matrix equation

+D, (e) 8(el e)D, (e)
'

=G(x, y; SI'),
LF. (r)+R, (r)]c.(r) = ~.s(r) c.(r) . (26b)

then the nonzero elements of g are of the form

~(t
I
t) = 6(&

l
t) —(2/x'} ~ «I f»

C(el f) = 6'(el f) —(2/xy} 9(el t),

&(ele) = 6'(ele) —(2/y') &(ale)

(26}

Thus 4 depends upon the particular state consid-
ered, as G (x, y; S I') is drawn from data in Table
III. g~ is zero, except for elements arising from
symmetry species (I"s) in which open shells occur.

III. SCF EQUATIONS

Configurations containing only completely filled
shells may be treated by the regular Hartree-Fock-

In the present formulation, these equations are in-
dependent of the subspecies y of the given species
I'. There is one Eq. (26a) for each I' occurring
in the molecular system and one Eq. (26b) for
each I' associated with an open shell. Each factor
in these equations is an N~ &&N& matrix, where N~
is the number of variational functions chosen to
approximate g«„, according to Eq. (5). The fac-
tors are as follows:

(a) C, (I") and C, (l") are matrices of MO coef-
ficients whose rows are indexed according to the
basis functions X,~„and whose columns are indexed
according to the MO's Q,.», arranged so that the
coefficients for occupied MO's occur first (on the
left). The remaining columns describe the "vir-
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tual" MO's. Only one of the columns of C, (I') cor-
responds to the open shell; its identification will
be discussed later.

(b) S (I') is the (symmetric) overlap matrix whose
elements are

s„(r)=s»(r) =&4»
I
}«„&, (27)

independent of y.
(c) e, and e, are diagonal matrices, an element

of which, e, (ir) or e, (i r), is the orbital energy
of the dr-fold degenerate MO Q, r„described by
the ith column of C, (1") or C, (I'), respectively.

(d) F, (I') and F, (I') are the effective one-elec-
tron operator matrices for the closed- and open-
shell MO's, respectively, defined according to

F, (I') =H(I')+ P(I"),

F, (I' ) = H (I' ) + P (I' ) —Q (r ) .

(28a)

(28b)

P=D, 6 Q=D, g .

The elements of these segments are used to form
the square matrix contributions to Eqs. (28a) and

(28b).
(e) R, (I') and R, (r) are the previously men-

tioned "coupling operators" which maintain orthog-
onality among all MO's belonging to the same T'.

They are defined by

Here, H (I') is a symmetric matrix with elements
defined in Eq. (22). P(I') and Q(I') are convenient-

ly developed first as supervectors, namely, the
segments belonging to I' of the respective row ma-
trices

Trial vectors (input to the first iteration) may
be chosen to approximate the ionic character of
the complex.

For input vectors to the (g+ l}th iteration our
experience with transition- metal clusters indicates
that, while one can usually pick the m occupied
closed shells as the m vectors associated with the
m lowest eigenvalues of the nth iteration closed-
shell Fock matrix, it is preferable to pick those
nth iteration vectors which maximally overlap the
m vectors of the (n —1)th iteration. The choice of

the open-shell eigenvector from the solutions of

F, is generally made also by choosing the vector
which has the maximum overlap with the open-
shell vector of the (n —1)th iteration. On conver-
gence, the open-shell vector is orthogonal to the
occupied closed-shell vectors.

At convergence we have

~.=c.(r) F, (r) c.(r),

~, =c.(r) F.(r) c.(r),
since

c.(r) R.(r) c.(z) =c,(r) R. (r) c,(r) =o.
The converged eigenvalues have been defined such
that the total energy of the state considered is given

by

z= v,„,+Z'd, [H(tr)+~, (tr)]
&r

+2 f(il') d [H(iI') +f (ir)], (31)

R, (r) = „"' Z [T, (r)+T,'(r)],
2dr nr &

(soa)

R, (r) =
ad

' Z [T, (r) + T, (r)],2~r —nz
(sob)

where gr is the number of electrons in the open
shell belonging to 1 and

where f(i1'} is the fractional occupancy of the i I'
shell; e. g. , f(aug) =~@and f(seg} =b.

The eigenvalue for an occupied MO belonging to
a closed shell or a virtual MO having a 1" different
from that of any occupied open shell is given by

~.(ir) =H(tr)+2 Z d, 7(z'r', tr)

T, (r) = s (r ) c, (r ) c, (r ) Q (r),
with C, (r ) being the ith column of C, (r ) or C, (I')
depending upon whether T, (I') is used in Eqs. (soa)
or (30b), respectively. Note that only one term
occurs in the sum in Eq. (soa).

The eigenvalues and eigenvectors explicitly oc-
curring in Eqs. (26a) and (26b) are obtained from
the secular equations

+2 2 f(i'r')d„p(i'r', ir); (sa)

(33a)

note that the sums include only occupied MO's.
In general, the eigenvalues for occupied 2t~ and

se, MO's are given by

~(2t„) = H'(2t„) + q(at„),

detIF. +R —e.sl =0 «tIF. +R, —e, s

Since the F and R matrices are implicit functions
of the coefficients C~«, the usual iterative proce-
dure must be used.

e (se~) + H (se~) + g (se~),

where

H'(at„ ) =H(at„ ) +2 Z P(zr, at„),
«r

(ssb)
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H (se } =H(sez)+ 2 Z P(iI', 3e ),
~r

(34b) +2 C Z P(ir il" },
fr J' r'( core

(s6)

and where

zI(at~) =(I/x) [anz J(tt) +2PzK(tt) +ayzK(g, g)

+ n, J(et)+P, K(et)+y, Z(e8, g}
+52K(e8, tL)], (35a)

8'=E- Eo, (37)

H""(ir) =H(zr)+2 2 d .P(il", i I' )i'r'C: core

(ss)

z)(3e, ) =(1/y) [naJ'(et)+ paK (et)+y'zJ'(e8, tN)

+ |zgK(e8, tf) +anqJ'(ee) +2p2K(ee)], (35b)

with the n„.. . 52 coefficients drawn from Eqs. (16)
and Table III.

IV. CORE APPROXIMATION

No calculation implied by the preceding formula-
tion is impossible to carry out at the present state
of computer programming, especially if Gaussian
functions are employed. Considerations of
time, cost, and the analysis of physically signifi-
cant models prompt the investigation of certain
approximations. ' Here we shall merely present
the "frozen-core" approximation and later report
conclusions regarding certain other numerical ap-
proximations in connection with specific transition-
metal clusters.

As was suggested above, the inner-shell (or core)
AO's are often presumed not to be greatly disturbed
in character upon molecular formation although sig-
nificant changes in inner-shell orbital energies may
be detected. ' Theoretically, an improper treat-
ment of inner shells has many serious implications.
For instance, complete orthogonality among all oc-
cupied orbitals ought to be maintained. Qnce this
is instituted, there is no practical benefit (except
as certain classes of integrals become vanishingly
small) to giving inner shells any special treatment.

W'e shall, however, consider the following ap-
proximation: MO's designated as inner shell AO's
are maintained orthogonal to valence shell AO's on
the same center, but their nonorthogonality to AO's
on all other centers is neglected. These inner shell
AO's will exactly retain their previously fixed free-
ion character during the variational treatment.

This approximation amounts first to limiting the
sum over k in Eq. (5) to inner-shell or valence-
shell symmetry orbitals, as Q,» is an inner-shell
or valence-shell MO, respectively, and second to
restricting the variational calculation to valence-
shell MO's only. For inner shells Q,„„=),, z,„.
There are no formal alterations' in the total wave
functions C. Let us make the following definitions:

Eo= V,„,+2 Z dr H(iI')
fr c core

+ xH-" (ata, ) +yH""(se, )

+2K [xdrP(iI', 2tm ) +ydz P(ir, se )]
&r

+c(x,y;sr) . (s9)

Here, now, the indicated sums are over valence
orbital's only.

Similarly, variation of W with respect to the re-
maining valence MO coefficients yields Hartree-
Fock-Roothaan equations identical in form to Eqs.
(28) but containing the same restrictions as Eq.
(39). Equations (16)-(35) are preserved in form,
except with 8' replacing E- V,„„with

H ""(I'; k, l ) = H(I'; k, E)

+2 Z d, .s (r';i, i~r;k, f) (40)
ire C: core

replacing H(I';k, I) in Eq. (22}, with

H-"(ir) =c, (r) H-"(r) c,. (r) (41)

replacing H(iI') in Eqs. (31)-(34b), with the ex-
plicit sums over MO's ranging only over the oc-
cupied valence MO's, and with the indices k, l, jg,
l no longer including the basis functions &»„de-
scribing the inner-shell AO's.

V. EXCITATION ENERGIES

Three classes of electronic transitions are often
discussed: (a) the "d-d" transitions among the
at& and 3e MO's, (b) the so-called "charge-trans-
fer" transitions connecting those MO's largely cen-
tered on the ligand, and (c) excitation of core elec-
trons to the valence-shell or virtual orbitals. In
this section we shall discuss them only to first
order. Configuration-interaction ("second-order" )
effects will be discussed in Sec. VI.

The energy expression for any state of any con-
figuration can be set up and optimized with respect

For a given basis and metal-ligand distance Eo be-
comes a constant. Then W, the total electronic
energy of the valence orbitals of a cluster, is

W= 2Z'd, H-"(z r) +-,'Z' Z'd, d, .T (ir, z'r')
gr fr l'r'
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to the appropriate variational coefficients. In gen-
eral, however, there is the serious problem of
maintaining orthogonality among all the states hav-

ing the same spin and space symmetry. 0 Wave
functions for higher excited states may be con-
structed from occupied and virtual MO's obtained
from the solution of Eqs. (26) for the ground state
provided the solutions used are orthogonal. It is
clear that the unoccupied MO's obtained from
F, (I') will not necessarily be orthogonal to the
open-shell MO's defined by F, (I'). It may be pos-
sible in this case to obtain suitable MO's by con-
struction. By this procedure, the orthogonality
problem is circumvented, but the transition energy
so computed will be more positive than that ob-
tained by subtraction of independent ground- and

excited-state SCF total energies by an amount

called the "reorganization energy" by Mulliken. 2'

d-d Transition Energies

Strong-field crystal and ligand-field theories

~Z =n(IODq) + ~G, (42}

where n is the number of electrons passing from
2t2~ to 3e~, 10Dq is the crystal- or ligand-field
splitting parameter, and AC is the change in the
Coulombic and exchange interactions among the
electrons of the 2t,.and 3e shells during the tran-
sition.

Assume that the excited state! x-n, y+n; s I' )
and the ground state I x, y;

s I') involved in the
transition are both described by the same set of
MO's. Take E(SI') as given by Eq. (15) and
E(S I' ) by

have long been used to predict and interpret spec-
tra arising from the d-d transitions among the
states of the (2t2 )"(Se,)", (2t2, )" '(Se,)"', etc. ,
configurations. By these theories, some particular
transition energy bE is described, to first order,
by

!

E(S r ) —&,„,=2K d H(iI')+ 2Z Z d d„.P(iI', i'I")+(x-n) H(2t2 )
~r 2rr gr

+ (y + n ) H (3e~ ) + 22 [(x- n }P (i I', 2ts ) + (y + n ) P (i I', Se ) ] + G (x —n, y +n; S'I") .
&r

(43)

Direct subtraction, and cancellation of equal terms,
gives

~z =E(s', r') —z(s, r)

=n([e (Se,) —g (Se,}]—[e (2t~) —g (2t~)])

+(G(x-n, y+n; S'r') —G(x, y;Sr) j,

bE = g ddI + b,G, (44)

where use has been made of Eqs. (32}-(35b).
Obvious changes result from invoking the frozen-

core approximation. Equation (38} exactly paral-
lels Eq. (36}. It represents a possible partitioning
of the transition energy, one which corresponds to
that used in crystal-field theory. Note, however,
that "10Dq" by the open-shell SCF theory is found

to be given not by the difference of the open-shell
eigenvalues; rather, from each eigenvalue first
must be subtracted the interelectronic contribu-
tions to it from the 2t2, and 3e~ shells.

This specification is in close accord with the
basic postulates of crystal-field theory, in which

1QDq contains the effects of all charge distributions
other than the 3d electrons of the metal. This
present identification of 10Dq differs from an alter-
nate partitioning made by other workers, who de-
fine 10Dq as equal to bE of the lowest d-d excita-
tion for which, by crystal field theory, AG is-

I

ZerO 22 ~ 11

While formally the quantity nH = H (Se~) —H (2'~)
is here identified with 10Dq, we anticipate the re-
sults of subsequent numerical calculations which
often yield a great quantitative disparity ar, 2 The
reason is that, within the SCF theory, the parti-
tioning of rE by Eq. (38) is arbitrary. "Fluctua-
tions" in bH are accompanied by compensating
fluctuations in b,a.

One should recall that only if 2t2, and 3e were
radially identical 3d orbitals mould the large
Racah A parameter disappear from b,G. , This is
rarely the case; 2t2 and 3e may both deviate, sig-
nificantly and differently, from their free-ion
character and the total Coulomb interaction may
change appreciably in the excited state.

Other Electronic Transition Energies

By the same reasoning as used for d-d transi-
tions one may work out total energy and transition-
energy expressions corresponding to Eqs. (15),
(3V), and (38}, for the charge-transfer and core-
excitation transitions.

Alternatively, an independent SCF calculation
may be done for the excited state. Because of the
significant relocation of charge density accompany-
ing these transitions, an appreciable reorganiza-
tion energy may be anticipated.
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Off-diagonal
element

Configuration
pair

(t') —(te)
(t')-(&')
(t') —( ')
(t )-(te)

State

—2~3a
~6K (et)
W3&' (et)

—2$

3Tf g
fAfg

1T2 g

(b) t3~e~

TABLE IV. Off-diagonal electrostatic interaction matrices for t ~e" and t "e" configurations. X' (et) =E(ee, tg)
—X (et) and P'(et) =P (et) —P(e8, t&). Elements for the complementary configurations t "e+" and t ~e " are the same
apart from phase changes in the complementary wave functions, which are irrelevant for energy calculations.

(a) t' "e"

4T'i g

t2(3@I pe
te (A2 )

t' PT*, e)e

2~3i

te (3A&J

2~3i

2
i g

t3

t '('Tg Je
t'('T, g)e
te2(3A2 g)

2(fg )

~33i
—~3i

0
—&3Z' (et)

t2(3T )~

Fsi
~ ~ 0

—$&' (et)

—32

t2(iTi g)e

-v3i
' (et)

te (3A2$

~3K'(et)

te2{'Eg

—~3m' (et)
3 g

i
v 3Z' (et)

t3
t'('Tf g)~
t ( T2g)e
te2(fAf g)
t e2(fsg)

2Q

t3
t '('A„)e
t2(fE )~

g3

t3

—32

5i
2R(et)
z' (et)

0

t'('T( ge
—3$
~ ~ ~

——z' (et)
—3z
—3z

t2(iT, ),
Gi

—-'Z' (et)

t2('Ai )e
—2~6i

—2P' (et)
~3K (et)

t e2(fAf g)

2Z (et)
—3z

2P' (et)

t'('E )e

&6 i
—2P' (et)

~ ~ ~

—~z' (et)

t~2 (iE )

z' (et)
—3z

2P' (~t)

0
~s z (et)

—~s z'(et)

VI. CONFIGURATION INTERACTION

There generally are several first-order states
of a particular spin and space symmetry (say SI')
arising from different distributions of x+y elec-
trons among the 2' and 3e, MO's. A better (and
often much better) representation of the true wave
functions and energies for the system may be ob-
tained by writing

e(sr) =Z„a„c„(sr), (45)

p (46)

The K„„=(4„[R(C„) are the first-order energies,
obtained as discussed in Sec. V. H„„=(C„[R( 4„)

where the C„(SI') are the first-order SCF MO wave
functions each defined for a definite configuration
and constructed from the same orthonormal set of
MO's, as described in the previous sections, such
that (4„)C ) =5„„. The a„are new variational co-
efficients such that g„a„m= l. Optimization of
(4'(Sr) IXI 4'(S r)) leads to the secular equation

have been derived by Tanabe and Sugano in terms
of Racah B and C parameters for all possible
cases where 2t~, and 3@~ are d orbitals with the
same radial dependence. 24 Griffith has also given
some results for the more general orbitals and
has indicated how to derive the remainder. '4

While it goes beyond the scope of the present
investigation to develop all these elements for
general tz and g orbitals, we do present in Table
IV the elements for states arising from the d2 and
d3 atomic configurations. Elements arising from
complementary d and dv configurations are the
same except for sign changes due to phase rela
tionships between complementary wave functions.
Elements for other configurations can be worked
out in a straightforward manner using the wave
functions tabulated, for example, by Watanabe. 2~

In addition to the first-order states just con-
sidered is a great host of others arising from the
same sorts of configurations as are involved in
charge-transfer spectra. Although their diagonal
energies, on the average, are at least several eV
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higher, they may be expected to influence signifi-
cantly the positions of some of the higher d-d elec-
tronic states which have been observed.

VII. GENERALIZATIONS

This present discussion has assumed a perfectly
octahedr al complex ion made from a first transi-
tion-series metal ion and first-row ions as ligands.
This formulation is easily generalized to other sys-

tems with other symmetries, merely by the proper
changes in basis, projection operators, Hamilton-
ian, limits on sums, and resulting modifications
of specific energy expressions.

Furthermore, one may assume that any pertinent
relativistic effects and consequences of nuclear mo-
tion, as well as transition probabilities, can be han-
dled by methods already developed in the context of
general ligand-field theory. .
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