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We report the first thorough study of vibrational surface modes in realistic crystal models.
This study was based on calculations for monatomic fcc crystals with (111), (100), and (110)
surfaces. The most important general result is the following: In addition to the class of
surface-mode branches that persist into the long-wavelength limit, studied extensively by pre-
vious workers, there is a second class of surface modes that exist only at relatively small
wavelengths (of the order of an atomic spacing). The existence of such modes was pointed out
in two earlier publications, but a detailed examination of the properties of these modes is pre-
sented in the present paper. For the (111) surface, there are five distinct surface-mode
branches; for the {100)surface there are apparently at least 19; and for the (110) surface there
are ten. A number of series of mixed (or pseudosurface) modes have also been identified.
Many of the surface modes are primarily localized in the second layer beneath the surface or
.some deeper layer, rather than the surface layer itself. At some symmetry points, modes
are obtained in which a single layer vibrates almost independently. Several cases have been
found in which surface-mode branches attempt to cross each other and as a result exhibit hy-
bridization. The surface modes and mixed modes have been studied throughout the interior of
the two-dimensional Brillouin zone, as well as along the symmetry lines. The dispersion
curves are shown, graphs are given for the attenuation of many of the modes with distance
from the surface, and the polarizations of the modes are described. The behavior of the modes
with respect to uniform changes in the density and changes in the surface force constants has
been investigated: In all cases the Gruneisen parameters for surface modes and bulk modes
are approximately the same for uniform changes in density. If the surface force constants are
increased by neglecting the relaxation of the surface particles, the surface-mode frequencies
are increased, as one expects. In some cases, these frequencies are raised into the bulk
continua and the modes become delocalized. This fact implies that the surface relaxation is
important, and the qualitative features of the surface-mode spectrum are sensitive to changes
in the surface force constants. Although the calculated surface-mode spectra are rather com-
plicated, all of the surface modes and mixed modes can be explained in terms of a simple
phenomenological model in which these modes are regarded as "peeling off" from the bulk
bands in a systematic fashion: A mode which is primarily localized in the first layer peels
off first from a given bulk band, then (if the perturbation due to the surface is strong enough)
a second mode which is primarily localized in the second layer peels off, etc. , with the nth-
layer mode having the same character in the nth layer as the first-layer mode has in the first
layer.

I. INTRODUCTION

In the preceding paper' we gave a formal treat-
ment of the lattice-dynamics problem for an arbi-
trary crystal with two-dimensional periodicity and
one or two surfaces. In this paper we will present
the results of detailed numerical calculations for
monatomic fcc crystals with (111), (100), and (110)
surfaces. Some of these results have been briefly
described in previous publications. ~'

The work of this paper is part of a program to
study the vibrational properties of realistic model
crystals with surfaces. As discussed in I, the
model used in the present work is a slab-shaped
crystal of finite thickness in which the particles
interact through a Lennard-Jones potential. The
justification for using this model, the motivation
for studying vibrational surface properties, and a
description of the previous work in this area have

been given elsewhere. '4
In Sec. II of the present paper, we discuss the

relationship between the vibrational modes in a
crystal with two parallel surfaces and those in a
crystal with three-dimensional periodic boundary
conditions. It is pointed out that there can be gaps
within the bulk subbands' for a crystal with sur-
faces, and that surface modes can exist within these
gaps. In Secs. III and IV, the calculated surface-
mode spectra for the (111), (100), and (110) sur-
faces are presented and discussed. It is found that
these spectra are surprisingly complex. In addition
to the usual generalized Rayleigh waves, which
exist in the long-wavelength limit, there are many
other surface modes which exist only for relatively
small wavelengths. In Sec. V, it is shown how the
surface-mode spectra, despite their complexity,
can be interpreted in terms of a very simple model.
In Sec. VI, the effects of changes in the surface
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force constants and the density are examined. It
is found that the surface relaxation must be taken
into account in order to obtain the correct qualita-
tive features of the surface-mode spectra. In
Sec. VII, results for the surface frequency distri-
bution function f'(~) and an "effective frequency
distribution function" f (~; ls) are presented and
discussed. Finally, in Sec. VIII the main conclu-
sions of the preceding sections are summarized.

H. MODES OF VIBRATION IN A SLAB

As discussed in I, the normal-mode solutions

for a crystal with two parallel surfaces have the
form

u (1)=u, (l,) e'"'0 ""

when there is one particle per unit cell. Here
q= (q„, q„) is the two-dimensional propagation vector
and the other symbols are defined in I. Distinct
solutions correspond to values of q lying within the
first two-dimensional Brillouin zone (BZ), which
is determined by the crystal structure and the sur-
face orientation. The modes in the whole BZ are
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FIG. 2. (a) Frequency ~ vs
two-dimensional wave vector
q, for ij lying along symmetry
lines I'M and El and BZ edge
MK, in the cise of a three-layer
slab with (ill) surfaces. M is
the mass of a particle and e and
0. are the Lennard-Jones poten-
tial parameters. )See Eq. (1.3)
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FIG. 4. Conventional BZ and "slab-adapted" BZ for the
(111) surface.
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ness, but for which periodic boundary conditions
are applied in the z direction. In the case of the
first slab, there will be surface modes and mixed
modes in addition to the bulk modes. In the case
of the second slab, all of the modes will be bulk
modes, since there are no surfaces. The "sever-
ing" of the periodic boundary conditions to obtain
the first slab from the second one can be regarded
as a (strong) perturbation which alters the vibra-
tional modes, and in fact converts some of them
into surface modes and mixed modes. '

In the slab with three-dimensional periodic bound-
ary conditions, the three-dimensional translational
invariance implies that each normal-mode solution
has a well-defined (and real) three-dimensional
propagation vector q= (q„, q„, q,). The distinct solu-

.00 I

AB BZ

.OIO

AB BZ

FIG. 5. Slab-adapted BZ's for (110) and (001) surfaces.
The BZ for the (100) surface is, of course, identical in
shape to that for the (001) surface, but is less convenient
to display.

ONAL FACES

FIG. 6. (110) cross section of the first three-dimensional
BZ and the nearby region of reciprocal space.

tions correspond to values of q that can be chosen
to lie in a nonprimitive three-dimensional BZ,
which will be called the "slab-adapted" BZ. This
BZ is not the same as the usual BZ for an fcc crys-
tal, since our choice of fundamental lattice vectors
for the slab is not the same as the usual choice for
an fcc crystal (see Sec. II of I).

In Figs. 4 and 5 we show the "slab-adapted" BZ's
which are appropriate for the surfaces studied in
this paper —namely, the (111), (100), and (110)
surfaces. For comparison, we also show the con-
ventional (primitive) BZ for anfcc crystal. In the
case of the (111) surface, the (m+ 3)th plane in the
slab is equivalent to the nth plane. There are thus
three particles per unit cell in the slab, as com-
pared with one particle per unit cell for the usual
choice of primitive translation vectors, and the
slab-adapted BZ consequently has one-third the
volume of the conventional BZ. In the case of the
(100) or (110) surface, the (n+ 2)th plane in the slab
is equivalent to the nth plane. There are thus two
particles per unit cell in the slab, and the slab-
adapted BZ has one-half the volume of the conven-
tional BZ.

One can remap the normal modes for the conven-
tional BZ (one particle per unit cell) into the slab-
adapted BZ (two or three particles per unit cell).
As an example, we will explicitly show how such a
remapping proceeds in the case of the (111)surface.
In Fig. 6, a (110) cross section is shown of three-
dimensional reciprocal space. The six-sided figure
centered at the origin is the cross section of the
conventional first BZ. One can show tha, t this BZ
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FIG. 7. (a) Dispersion curves (& vs q
relations) along the line between the points

[0, 0, 0] and [1, 1, 2j of Fig. 6, in the de-
scription with one particle per unit cell. (b)
Dispersion curves between the origin and the

edge of the slab-adapted BZ for q»=0, in the
description with three particles per unit cell.
(c) and (d) ~ vs q relations between the origin
and the edge of the slab-adapted BZ for non-
zero values of q». (e), (f), and (g) Dependence
of vibrational frequencies on the two-dimen-
sional propagation vector g= (q„, q~) for a
21-layer slab with periodic boundary condi-
tions in the s direction. (e) is a superposi-
tion of {b)-(d). The points I', R, and E are
defined in Fig. 1.
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can be mapped into a volume consisting of three
hexagonal slabs, whose cross sections are labeled
by the encircled numbers 1, 2, and 3 in Fig. 6;
i.e. , the pieces that lie within the hexagonal slabs
and not within the conventional BZ are obtained
from the pieces that lie within the conventional BZ
and not within the slabs by translating the latter
through reciprocal lattice vectors (of the nonprimi-
tive lattice). There is consequently a one-to-one
correspondence between the normal-mode solutions
for values of q lying in the conventional BZ and
those for values of q lying in the hexagonal region.

In the description with three particles per unit
cell, the values of q are limited to the hexagonal
slab labeled "1"(which is the same as the slab
shown in Fig. 4). The modes for a given value of
q in this description correspond to the modes for
three values of q in the description with one par-
ticle per unit cell, one value lying in each of the
three hexagonal slabs labeled "1," "2," and "3."

In Fig. 7 we show one way in which the normal-

mode frequencies can be obtained for the slab-
adapted BZ. In Fig. 7(a), the &(q)-vs-q curves
are shown for q lying on a straight line between the
points [0, 0, 0] and [1,1, 2], in the notation of Fig.
6. The first third of this line lies in the slab
labeled "1"and the last third in the slab labeled
"3',"which is equivalent to the one labeled "3."
The middle section of the line lies in "3 " also, but
it is equivalent to a line lying in "2" (with the direc-
tion reversed), because of the inversion symmetry
evident in Fig. 6. When the frequencies in Fig.
?(a) are appropriately remapped from slabs "1,"
"2," and "3"into slab "1,"we obtain the curve in
Fig. 7(b).

The results shown in Fig. 7(b) correspond to
q, =o, where the z axis is now taken to be perpen-
dicular to the planes of the slab —i.e. , in the [111]
direction according to the notation of Fig. 6. In
the succeeding frames we show results which were
similarly obtained for other values of q, lying be-
tween the top and the bottom of the slab-adapted
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FIG. 8. co vs q for a 21-layer slab with (111) surfaces. Here a is one-half the lattice spacing, so that ~2a is the
nearest-neighbor distance; 0/a = 1.297 corresponds to the density of a static crystal. The lines marked S& (i = 1, 2, 3, 4, 5)
correspond to surface-mode branches in a semi-infinite crystal. In a slab with two surfaces, there are actually two
nearly degenerate modes corresponding to each surface mode in semi-infinite crystal, so the lines in this figure are ac-
tually double lines. Ordinarily the two lines nearly coincide, but for S& near the origin (I'), the penetration depth be-
comes large, the degeneracy is broken, and the lines separate. In addition to the five distinct surface-mode branches,
there is a series of mixed modes MS3 which can be seen as a disturbance in the lowest bulk band along KI'.

BZ. These values of q„ including q, =o, are the
values appropriate to a slab-shaped crystal which
is 21 layers thick. (Recall that a unit cell spans
three planes, so that there are ~~= 7 allowed values
of q, .) In Fig. 7(e), all of the results of Figs.
V(b)-V(d) are superimposed to show the complete
spectrum of vibrational frequencies for values of
(q„, q„) lying along a line extending from the origin
to the edge of the slab-shaped BZ. This line cor-
responds to the line T'19 in Fig. 1. Finally, in
Figs. 7(f) and 7(g), we show the results obtained
by following a similar procedure for the lines MK
and KF.

The curves in Figs. V(e)-V(g) correspond exactly
to those in Fig. 8. The only difference is that the
former results are for a 21-layer slab with periodic
boundary conditions in the z direction and the latter
are for a 21-layer slab with two free surfaces.
The differences between these two sets of curves-
in particular, the presence of surf ace modes in
Fig. 8—are due to the "perturbation" which results
when one "severs" the periodic boundary conditions
in the z direction to create two free surfaces.

It should be emphasized, however, that the re-
sults shown in Figs. 7 and 8 were obtained in com-
pletely independent calculations. All of the results
of this paper (and the others in this series) are
based on direct calculations for slab-shaped crys-
tals with two free surfaces, without recourse to any
method in which the surfaces are regarded as a
perturbation. The results of Fig. 7 serve as a
check on those of Fig. 8. We have carried out sim-
ilar calculations for the (100) and (110) surfaces,

in order to check the bulk bands obtained in calcula-
tions for the slabs with surfaces against those ob-
tained by the procedure described above. In all
cases there is agreement.

III. SURFACE MODE SPECTRA

A. (111)Surface

In Fig. 8, the -vs-q relations are shown for a
21-layer crystal with (111) surfaces. The modes
labeled S&, S2, S3, S4, and S, all lie outside the bulk
bands and must therefore be surface modes. That
these modes are indeed localized at the surface is
shown by the fact that their calculated eigenvectors
are large near the surface and show a rapid de-
crease with increasing distance from the surface.
In Fig. 9, the squared amplitude

f
&(m)

f

=
f
$„(m) f

+
f

$~(m) f'+
f
a, (m)f (3.1)

for S&, S2, S3, and S4 is plotted as a function of the
layer index m, , with m=1 for the surface layer.
(We take IS = 0 at the center of the crystal, so for a
21-layer crystal m= 1 corresponds to la= 10.) Both
the fretluencies ~ and the eigenvectors $, (ls) are
obtained by solving Etl. (2. 2) numerically. We re-
call that the displacement amplitude lu (ls) I in Eq.
(2. 1) is proportional to I $,(l3) I for a monatomic
crystal, according to Etl. (2. 15) of I, so 1$(m) l2

is a measure of the amplitude of vibration in the
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FIG. 9. Squared amplitude I ( (m) ) vs layer number
m for the surface modes shown in Fig. 8. Here m =1 for
a surface layer and m = 11 for the center layer. The
vertical scale is logarithmic. The mode S& (I'M) is that
mode on the S~ branch which lies halfway between I' and
M in Fig. 8. The modes 83 (KF) and Sz(KI') lie on the 8&
and S4 branches, respectively, just to the right of X in
Fig. 8. 8~(M) and S2 (M) lie on the S& and S2 branches,
respectively, at the point M.

mth layer when the crystal is vibrating in a partic-
ular mode.

Notice that the vertical scale in Fig. 9 is loga-
rithmic and that all of the modes 8& decrease by
more than an order of magnitude between the sur-
face and the center of the crystal. The mode 8&

decreases rather smoothly with distance from the
surface, both at the point J0 and at a point half-way
between I' and M. The decrease is, in fact, ap-
proximately exponential. As one expects, the rate
of decrease is larger for the larger value of q
(i. e. , the point M); as the origin is approached, the
penetration depth increases.

The surface-mode branch S, is typical of the
"generalized Rayleigh waves" found in continuum

theory, '0' in that it lies beneath the bulk bands,
persists into the long-wavelength limit, and shows
an approximately exponential decay in amplitude
with increasing distance from the surface. None
of these statements, however, is true of Sz, 83, and

84. These modes lie in gaps between the bulk
bands, they are absorbed into the bulk bands and
cease to be surface modes for small values of q,
and their amplitudes show, in Fig. 9, a rather com-
plicated dependence on the distance from the sur-
face: l $ l' does not decrease monotonically, or
even regularly, and it certainly does not decrease

exponentially.
"Gap" modes like 8&, 83, and S4 appear to be a

very commonplace occurrence. We have also found
them in calculations for the (100) and (110) surfaces
(see below}. They have subsequently been found in
a poj.nt-ion model of ÃaC1.

Along the line I"K there is a mixed (or "pseudo-
surface"} mode MSS which represents, in effect,
an extension of S3 into the bulk bands. This mode
is visible in Fig. 8 as a disturbance in the bulk
bands, above the bottom of these bands and just
beneath the next envelope of bulk modes.

All of these modes —S„S~, S3, 84, and MS3-
are localized primarily in the surface layer, as
can be seen in Fig. 9. The polarizations in the
surface layer are as follows: 8, is primarily a
"shear-vertical" (SV) mode; i. .e. , it is primarily
associated with vibrations normal to the surface.
S3 and MSs are primarily "shear-horizontal" (SH)
modes; i.e. , they are primarily associated with
vibrations in the direction transverse to g and
parallel to the surface. S~ and S4 are primarily
longitudinal or "P" modes; i.e. , they are primarily
associated with vibrations in the direction parallel
to q. "

The surface mode 8, lies under all of the bulk
bands, rather than within a gap in these bands, but
like the "gap" modes it also does not persist into
the long-wavelength limit. In fact, it exists as a
surface mode only in a narrow region near Z. At
a very small distance from K, along the line 1"K,
S, enters the bulk bands and ceases to be a surface
mode. Unlike the other surface modes for the (111)
surface, 8, is localized primarily in the second-
layer beneath the surface, and in this layer it has
the same polarization that S, has in the surface
layer —i.e. , mainly SV.

B. (100) Surface

The surface-mode spectrum for the (100) surface
is considerably more complex than that for the (111)
surface, as can be seen in Fig. 10. There are
also a number of interesting features not seen in
the results for the (111)surface:

First, there are two surface-mode branches
located within the bulk bands —namely S3, along the
line 1'M, and S4, along the line FX. As pointed out
in I, along symmetry lines that are associated with
reflection planes of the crystal, such as I'M and
I'X, the modes "partition" into two classes, with
the modes of one class polarized strictly within the
sagittal plane and those of the other class polarized
strictly perpendicular to this plane. It is possible
for a surface mode belonging to one class to lie in
the bulk bands associated with the other class. In
fact, if a mode lies outside the bulk bands for its
class, then it must be a surface mode. Inspection
of the eigenvectors shows that both S, (along I'M)
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FIG. 10. ~ vs g for a 21-
layer slab with (100) surfaces.
Besides the indicated surface
modes S&, S». . ., S&&, there
appear to be two other surface
modes at M (above S2), at least
five others at X (above S5), one
more above S&o, and possibly
several more above Ss. There
thus appear to be at least 19
distinct surface-mode branches
for the (100) surface, plus
several associated series of
mixed modes.
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FIG. 11. Graph of l g(m) l vs m for surface modes S&

and Sz at the point along 1 X indicated by the arrows in
Fig. 10, and for S& and $3 at the point along M Y' indicated
by the arrows.

and S~ (along I'X) are polarized strictly within the

sagittal plane and that the bulk modes surrounding
them are polarized strictly normal to the sagittal
plane. Ss and S, must therefore be surface modes.
That they indeed are is shown by the graphs of their
squared amplitudes 15(m} [a versus the layer num-
ber m. For both modes ~ $ ~s falls by more than
two orders of magnitude between the surface and the
center of the crystal.

Although the surface-mode branch S, persists
throughout the region between the lines I'X and
1"M, it undergoes a drastic change of polarization
between these lines: Along I'X, it is strictly SH
(polarized normal to the sagittal plane). Along
I'M, it is polarized strictly within the sagittal plane
and is predominantly SV (polarized normal to the
surface). On the other hand, S4 is predominantly

SV along 1X and is predominantly SH just before
it enters the bulk bands between X and M. What
happens in the region between I'X and FM is the
following: S, and S4 approach each other closely
(just to the right of X in Fig. 10}, but do not quite
cross. ' In the region where they nearly cross,
there is a sudden interchange of character: Going
from left to right, S, changes from SH to SV, and

S4 from SV to SH. This behavior —the mutual avoid-
ance of two branches with an interchange of char-
acter —has analogies in other physical situations,
such as the hybridization of "crossing" bands in
electronic band theory. '

It should be mentioned that $4 is distinct from S»
which is of some interest in its own right. Both
S2 and S, are localized primarily in the second layer
beneath the surface. As can be seen in Figs. 11
and 12, the same is true of S3 and S,. Also, S, is
localized primarily in the third layer beneath the
surface. Although they are not graphed, S,&

is
mainly localized in the second layer, S» in the
third layer, and S, in the fourth layer. We thus

again have the result that it is possible for a mode

localized near the surface to have its maximum

amplitude in some layer beneath the surface layer.
At the point X, S, and S, are concentrated almost
entirely in the first and second layers, respectively,
and at the point M the same is true of S, and S~;
i.e. , at these points we have "single-layer" modes
in which the first or second layer vibrates almost
independently of all the others. Moreover, there
are a number of other modes (at least five) at the

point X, just above S„which are strongly localized
in the third, fourth, etc. , layers. There are two

other modes at the point M, jQst above S» which

are strongly localized in the third and fourth layers.
All of these modes appear to lie very slightly under
the bulk bands and to be completely localized near
the surface.

An analogous situation exists about midway be-
tween X and M, at the "bottleneck" in the upper
bulk band caused by the twisting of this band between
X and M. Above S» there is a mode which is pri-
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FIG. 12. Graph of f $(m)1 for surface modes S&, $4,
$6, S„and $8 at the point along XM indicated by the ar-
rows in Fig. 10.

marily localized in the fourth layer, and which
appears to lie very slightly beneath the bulk bands
and to be completely localized near the surface.
Furthermore, there is another such situation at
the bottleneck in the middle bulk band between X
and M. Above S9 there are several modes which
are primarily associated with the fifth, sixth, etc. ,
layers; some of these modes may be completely
localized near the surface.

We thus have the result that at each of the four
bottlenecks in Fig. 10—for the lowest bulk band
at X and M, and for the upper and middle "bands"
between X and M—there is a series of "single-
layer" modes associated with the first, second,
third, etc. , layers. The series at X includes S„
S„etc., and every mode has SH polarization. The
series at M includes S„S~, etc. ; every mode is
polarized within the sagittal plane and is primarily
SV. At the bottleneck in the upper band of bulk
modes, the series includes 86, Ss, S,o, etc. Each
of these modes is polarized strictly parallel to the
plane of the surface in the layer where its amplitude
is largest; specifically, $„=t'„and $, = 0 in this
layer. ' ' At the "bottleneck" in the middle band,
the series includes the mixed mode MS4 (which
represents an extension of S4 into the lowest bulk
band), S„, Sv, S9, etc. ; MS4 is associated with the
first layer, Sgf with the second, 8, with the third,
and 89 with the fourth. For each mode in this
series, $„=—t'„ in the layer where its amplitude is
largest. '6

It can be seen in Figs. 11 and 12 that the ampli-
tudes of the surface modes depend in a rather com-

plicated way upon the distance from the surface,
just as in the case of the (111)surface. As one
expects, S, and $4 show a larger attenuation for
larger values of q (compare the results of Fig. 11
with those of Fig. 12). For small q, S, shows an
approximately exponential decrease w ith distance
from the surface; for large q this is no longer true.

The a,ttenuation graphs for points on the edge of
the BZ, given in Fig. 12, show the following be-
havior for every mode: Except for the surface
layer (m=1), the values of it(m}I2 for odd m lie
approximately along one straight line; the values
for even m lie approximately along another straight
line; and the two lines are parallel. The results
for Sf S4 and 86, which are largest in amplitude
at the surface, fall off monotonically in a "stair-
case" pattern. The results for S7 and S„which
are largest in amplitude in the second or third
layer, fall off nonmonotonically in a "mountain
range" pattern. These features appear to result
from the symmetry associated with a point on the
edge of the BZ in the case of the (100}surface. '~

In addition to the surface-mode branches de-
scribed above, there is a mixed mode labeled M,
in Fig. 10. This mode has its maximum amplitude
in the first layer, where it is polarized primarily
in the x direction. It thus has approximately the
same character as S3, which reaches maximum
amplitude in the second layer. It should be men-
tioned, however, that 8, changes its character
somewhat as a function of g: At the point indicated
by the arrow in Fig. 10, 83 has some x polarization
but more z polarization in the second layer; at
this point, it also has appreciable amplitude in the
first layer, where it is polarized primarily in the
x direction. To the right of this point in Fig. 10
(nearer 1"), S, becomes more strongly localized in
the second layer and becomes strongly polarized
in the x direction within this layer; i. e. , it ac-
quires the same character in the second layer as
M, has in the first layer.

C. (110)Surface

The surface-mode spectrum for the (110) surface,
shown in Fig. 13, is about as complex as that for
the (100) surface and has many of the same fea-
tures. In fact, there is some kinship between the
results for 1X in Fig. 10 and the results for I'X
and I'F in Fig. 13, and between the 86 gap in Fig.
10 and the S7 and S, gaps in Fig. 13: If the longer
edge of the two-dimensional unit cell for the (110)
surface were continuously shortened until it equaled
the shorter edge, then the (110) surface would
change continuously into the (100) surface; the
points X and F would become equivalent to the point
X for the (100}surface; and the point S would be-
come equivalent to the point M. Consequently, the
results for SFI' in Fig. 13 would become the mirror
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FIG. 13. ~ vs q for a 21-layer slab with (110}surfaces. In addition to the 10 distinct surface-mode branches, there is
a mixed mode MSV which can be seen as a disturbance in the bulk bands along S Y below S&.

image of those for I'XS, which would become the
same as those for I'XM in Fig. 10. The evident
similarities between 1"XS in Fig. 13 and I'XM in
Fig. 10 are thus not difficult to understand.

It should al.so be mentioned that in the dispersion
curves for the line I"S for the (110) surface (not
shown here)one can observe a feature correspond-
ing to the "quasigap" in which S3 falls along I"M
for the (100) surface in Fig. 10. This feature per-
sists to the point S, and, in fact, is responsible
for the existence of Sv as a surface mode at this
point (see below).

In Fig. 13, there are five cases of surface modes
lying within the bulk bands —namel. y, Sz along I'X, '
Sv along I'X, S, at S, S, along 1"Y, and S,o along
I'X. Four of these cases (all but S7 at S) are ex-
plained in the same way as S, and S, for the (100)
surface, since I'X and 1 Y are associated with re-
flection planes and there is consequently a "parti-
tioning" of the modes into two classes, as discussed
in I. The line I"S is not associated with a, reflection
plane; using symmetry arguments, however, one
can show that there is still a "partitioning" of the
modes into two mutually orthogonal classes at the
point S, so that it is possible for a surface mode
of one class to exist in the bulk bands for the other
class at this point. An examination of the calculated
eigenvectors at S shows that S~ and the bulk modes
surrounding it belong to different classes, so Sv
must necessarily be a surface mode. '9 This result
is confirmed by the attenuation graph in Fig. 14.~0

The dependence of amplitude upon distance from
the surface is again rather complicated, as shown
in Figs. 14, 15, and 22(a). There are also modes
which are primarily localized. in some layer beneath
the surface: Sa in Fig. 15 and Ss in Fig. 22(a) have
their maximum amplitude in the second layer; S4
in Fig. 15 and Ss in Fig. 22(a) have their maximum
amplitude in the third layer. Although S,o is not
graphed, it is strongly localized in the second
layer.

There are two cases in Fig. 13 of the hybridiza-
tion of two surface-mode branches: Between X
and 7, S, and S~ approach each other but do not
cross. At X, S, is polarized mainly in the z direc-
tion (SV) and Ss is polarized entirely in the y direc-
tion (SH). ~~ At S, S, is polarized mainly in the y
direction, and S~ entirely in the z direction. The
interchange of character occurs in the region of
closest approach near S.

Near the point Y, along S Y, S3 descends out of
the lowest bulk band. At the point where it first
appears, S3 is polarized primarily in the x direc-
tion. (This is the same polarization as that of MS,.
As one might suspect from looking at Fig. 13, S3
represents an extension of MS7 into the region be-

0.!

O.OI ——

O.OOI—

FIG. 14. Graph of ) $ (yn} t
2 for surface modes shown

in Fig. 13. S&, 82, and S& (I'X}are plotted at the point
along I'X indicated by the arrows ia Fig. 13. S& gS)
and S,(S} are plotted at the indicated points along XS.
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FZG. 15. Graph of ) $(m) t for surface modes Sf 82,
S3, S4, S~, and Ss at a point along YT." just to the right of
Y in Fig. 13.

low the bulk bands. ) After its emergence, S3 ap-
proaches S~ and they exchange character: At F,
Sz is polarized entirely in the x direction (SH) .and

S~ primarily in the z direction (SV). At this point,
S, is still polarized mainly in the y direction (lon-
gitudinal).

It may seem strange that the lowest-frequency
surface mode along I'7, S„ is primarily longi-
tudinal, since one ordinarily associates high fre-
quencies with longitudinal waves. However, if q
lies on the line I'Y then a longitudinal polarization
corresponds to vibrations in the (100) direction.
Since there are no nearest neighbors in the (100)
direction, particles at the surface [for a (110)
orientation] can vibrate with considerable freedom
in that direction. It is therefore not surprising that
the lowest-frequency surface mode should be as-
sociated with vibrations in the (100) direction.

At Y, the modes S„S2, and S, are all primarily
localized in the surface layer, but Sz is much more
strongly localized in this layer than are S, and S,.
This fact presumably accounts for the result that
S2, with in-plane (SH) polarization, has a lower
frequency than S„which is mainly SV.

Along I'X, the modes S~ and S» are related, in
that both have strictly SH polarization and they have
their maximum amplitudes in the first and second
layers, respectively. Just above S» there is what
appears to be a mixed mode with SH polarization
which has its maximum amplitude in the third
layer. Along XS, Sv and S, are similarly related:
Sv is strongly localized in the first layer, and S, in
the second layer; each mode is polarized strictly

in the x direction in the layer where it has its max-
imum amplitude. There are also two mixed modes
above S, at the bottom of the uppermost bulk band
where the bottleneck occurs between X and S.
These modes have their maximum amplitudes in
the third and fourth layers, respectively, and each
is polarized in the x direction in the layer of max-
imum amplitude.

About midway between S and Y, S, has its maxi-
mum amplitude in the second layer, where it is
polarized principally in the x direction. It thus has
the same character in this region as MS7, which
is polarized mainly in the x direction in the first
layer, where it has its maximum amplitude. The
mode S6 reaches maximum amplitude in the second
layer and is polarized strictly in the y direction
there. There is a mix d mode above S6, at the
bottom of the bottleneck in the uppermost bulk band
between S and Y, which has its maximum amplitude
in the third layer and is polarized in the y direction
within that layer.

Between the midpoint of SY and the point Y, S,
undergoes a change of character, and at Y it has
roughly the same character as S, (maximum am-
plitude and longitudinal polarization in first layer,
considerable amplitude and SV polarization in sec-
ond layer). Its frequency is much higher than that
of S„however, because it has a smaller amplitude
in the surface layer. The surface mode S9 assumes
the character lost by S,: S9 reaches maximum
amplitude in the second layer and has SH polariza-
tion. (To the left of Y, SQ rises up into the bulk
bands and becomes unrecognizably mixed with the
bulk modes. ) It is apparent that S2 and SQ at Y are
related modes, since both are SH. There is also
an evident relation between S3 and S, at this point:
Each of these modes has SV polarization in its layer
of maximum amplitude —the first layer for S3 and
the third layer for S4.

D. Comparison with Continuum Calculations

It should be mentioned that many of the qualitative
features of our results for small cI (large wave-
lengths) can also be observed in the results of
treatments based on the continuum approximation,
which is valid in the long-wavelength limit. " The
most extensive work in this field is that of Lim and
Farnell, ' and a review of the field has been
written by Farnell. ' We mention, for example,

. that the results for the (001) surface of Ge, the
(110) surface of KC1, and the (111) surface of Si,
shown in Figs. 1-3 of Bef. 22, are similar to the
long-wavelength results in Figs. 10, 13, and 8,
respectively, of the present paper. As a rough
rule, one expects the long-wavelength behavior to
be qualitatively similar for materials with cubic
symmetry. However, in some cases the values of
the elastic constants can also be important: The
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squared amplitude is also given in Fig. 17 for MSg
at a point 4. 6' off the line I'Y for the (110) surface.
It is fairly evident that all these modes are in fact
mixed modes, as they have to be.

V. SIMPLE SCHEME FOR INTERPRETING
SURFACE-MODE SPECTRA

O.OI

O.OOI

lgr, '~.:«
I

I--I I

'. MS7(IIO) I,
'

MSs(100)~'
~ ~» »

l~

I 3 5

Ss(l
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FIG. 17. Graph of squared amplitude vs distance from
surface for mixed modes MS3 and MS4 for (100) surface,
shown in Figs. 16{a) and 16(e); MS& and MS7 for (110) surf-
ace, shown in Fig. 16(f); and MS9 for (110) surface, at a
point on a ray 4.5'off the line I' Y {not shown in Fig. 16).
For MS3, MS4, MS2, and MS~ the modes are graphed at the
positions indicated by the arrows in Fig. 16.

find a mixed mode MS, which in effect represents
an extension of S8. When the second gap opens, it
contains S„which is in effect an extension of MS, .
The modes S„MS„and S, (near S) all have the
same character, in that all reach maximum ampli-
tude in the second layer and are primarily polarized
in the x direction within this layer.

The surface modes Ss and S» for the (100) surface,
shown in Fig. 10, lie within the bulk bands. The
same is true of Sa, S7, and S,o in Fig. 13, as well
as SQ to the right of F. As discussed in Refs. 1
and 3, surface modes within the bulk continua are
possible only along symmetry lines where there is
a, "partitioning" of the modes into mutually orthog-
onal classes. The modes of one class are "in-
visible" to those of the other class along the sym-
metry line. For points slightly removed from the
symmetry line, however, the modes are again
visible to one another, and any surfacelike mode
lying in the bulk bands will mix with the bulk modes. -

Consequently, Ss and S, for the (100) surface must
degenerate into mixed modes MS3 and MS4 for points
slightly off 1M and I'X, respectively. In Figs.
16(a) and 16(e), MS, and MS, are labeled, and
graphs of their square amplitudes versus distance
from the surface are shown in Fig. 17. Similarly,
we show MS& and MS, for the (110) surface at points
9 ' off the line I'X in Fig. 16(f), and their squared
amplitudes are graphed in Fig. 17. A plot of the

Despite the considerable complexity of the sur-
face-mode spectra discussed above, all the surface
modes and mixed modes can be understood in the
context of a simple phenomenological scheme. This
scheme does not allow one to determine the surface
modes without a calculation, but it does help in
understanding hom they arise.

We begin with the bulk bands for a crystal without
surfaces, such as those indicated in Figs. 7(e)-
7(g). For a monatomic crystal there should ordi-
narily be three such bands (which may overlap),
corresponding roughly to two groups of transverse
modes and one of longitudinal modes. We then in-
troduce the perturbation represented by the surface,
which actually consists of two parts —a "first-
order" perturbation due simply to the truncation of
the crystaL and a "second-order" perturbation due
to changes in the force constants near the surface.
The second part should not be important in mon-
atomic crystals at large wavelengths, where the
surface modes penetrate deeply, but it is important
at small wavelengths, as will be discussed in
Sec. VI.

The strength of the total perturbation depends on
the point in the BZ—i.e. , the value of the two-
dimensional wave vector q. If the perturbation is
strong enough for a given value of q, it will peel
one or more surfacelike modes off a given bulk
band. Ordinarily the perturbation should corre-
spond to a softening of the vibrations, since the
truncation of the crystal allows the surface atoms
to vibrate more freely, and one expects the surface
atoms to relax outward (as they do in our model),
producing a decrease in the surface force constants.
For such a softening perturbation, the surface
modes should be peeled off the bottom of the bulk
band. lf for some reason (e. g. , a change in the
interaction between the particles near the surface),
the total perturbation leads to a stiffening of the
lattice vibrations, then the surface modes should
be peeled off the top of the bulk band. Such high-
frequency surface modes were produced in the cal-
culations of Musser and Rieder when the surface
force constants mere stiffened, but it does not seem
likely that they mill occur naturally in monatomic
crystals, and they do not occur in the present re-
sults, of course.

Ordinarily, the total perturbation due to the sur-
face should first peel off (from a given bulk band)
a mode primarily localized in the first layer. If
strong enough, it should then peel off a mode pri-
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marily localized in the second layer, and so on.
The nth-layer mode in this series has the same
character in the nth layer as the first-layer mode
has in the first layer. Sometimes the perturbation
will not completely succeed in peeling off the mode,
in which case the mode remains within the bulk
band as a mixed mode.

When a mode is peeled off, one of four things
will happen: (a) It may fall under all of the bulk
bands, in which case it will necessarily be a sur-
face mode. (b) It may fall into a gap between two
bulk bands, in which case it again will necessarily
be a surface mode. (c) Along a symmetry line
associated with a reflection plane, it may fall into
a region occupied only by bulk modes to which it
is automatically orthogonal, as discussed in I. In
this case, once more, it will necessarily be a sur-
face mode. (d) It may fall into a region occupied
by bulk modes to which it is not automatical, ly, .or- .".

-,
'

thogonal. In this case it will not be able to Survive
as a pure surface mode and mill be g: Inized mode
instead. The reason for the, rgixing- can be under-
stood by the following rough argument: Let (, be
the 3N3-dimensional eigenvector that the surfacelike
mode would have if there were no bulk modes in the
region where it falls. If this mode is then degen-
erate with a bulk mode g~, it must be made orthog-
onal to g, in order to meet the orthonormality
requirement that is imposed on the normal modes.
(It is "vanishingly probable" that g, and $, will be
orthogonal unless they are automatically orthogonal
as discussed just above. ) The new orthogonal eigen-
vector is (before normalization) $, —($, ~ $,) $,.
This eigenvector contains a bulk part and is there-
fore not entirely localized at the surface.

Occasionally two surface-mode branches will
attempt to cross each other. In such a case there
will be hybridization, with the hybrid branches ex-
hibiting a. mutual repulsion and interchange of char-
acter. The only case where two surface-mode
branches could, in fact, cross is along a symmetry
line associated with a reflection plane, with the
two modes belonging to mutually orthogonal classes
and therefore invisible to one another. Such a
situation does not occur in the present results but
has been found in calculations for NaC1~3 and for
an adsorbed layer [see Ref. 1(b)]. Similarly, a
surface-mode branch which enters a bulk band
will be repelled by the band and tend to bend away
from it. The only exception is along a symmetry
line when the band is invisible to the surface mode
because its modes and the surface mode are auto-
matically orthogonal.

The results of Figs. 8, 10, and 13 can be inter-
preted as follows according to the above scheme:
For the (111) surface, Sz is peeled off the "long-
itudinal band" of bulk modes along MK, S4 is peeled
off the uppermost band along I'K, S3 and its exten-

sion MS3 are peeled off the upper "transverse
band, " and S, is peeled off the lower "transverse
band. " The perturbation is just strong enough to
peel. off a mode near the edge of the BZ, S„which
is the second-layer analog of S,.

For the (100) surface, the first-layer mode S,
and the second-layer mode S» plus third- and

fourth-layer modes, are peeled off the "transverse
bands" near the point M. Near X, the first-layer
mode S„ the second-layer mode S„and a number
of nth-layer modes are peeled off the lower "trans-
verse band. " The first-layer modes S4 and MS4,
the second-layer mode S», the third-layer mode

S7, the fourth-layer mode S9, and a number of nth-
layer modes are peeled off the upper "transverse
band. " The first-layer mode S6, the second-layer
mode S8, and the third-layer mode S&p are peeled

.:-off the "l.ongitudinal band" along XM; along 1M,
the first-layer mode M, and the second-layer mode

S3 are peel, ed off this band.
For the (110) surface, S, is peeled off from the

lower "transverse band, '
Sa and Syp from the upper

"transverse band, " and S7 and S, from the "longi-
tudinal band", .on the left-hand side of Fig. 13. On
the right-hand side of Fig. 13, S, and S6 are peeled
off the "longitudinal band. " Near Y, S, is a first-
layer mode with the same character as the second-
layer mode S,. As S, approaches the lower bulk
bands from the right along S Y, it in effect hybrid-
izes with the modes in the upper part of this band

and acquires a different character —in fact, the
character of a second-layer analog of MS, . The
first-layer mode MS7 is peeled off the top of the
"transverse bands"; as it approaches Y along S Y,
it descends out of the bulk bands to become the sur-
face mode S3, which then hybridizes with S~. At
Y, there are two series of surface modes which
have peeled off from the "transverse bands": The
first-layer mode Sa and the second-layer mode S9
belong to one series, with both having SH polariza-
tion. The first-layer mode S3 and the third-layer
mode S4 belong to the second series, with both
being primarily SV in the layer of maximum am-
plitude. It appears that S, should also be fitted into
this series as the missing second-layer mode. A
serious difficulty with this interpretation, of
course, is the fact that Sy has appreciable ampli-
tude in both the first and second layers, and its
maximum amplitude acually occurs in the first
layer. (As a result, S, also lies below the first-
layer mode Ss. ) According to the above interpreta-
tion of the surface modes, at Y one would expect
S~ to be a second-layer SV-like mode and S, to be
a first-layer P-]&e mode. In fact, each has a
mixture of these two characters. It is as if S, and

S, were in some sense hybridizing near Y—i.e. ,
as if S, were trying to assume a second-layer SV
character upon approaching Y and S5 were trying
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to assume a first-layer longitudinal character. The
behavior of S, on the right-hand side of Fig. 13 is
the only feature of our calculated surface-mode
spectra that does not fit very well into the simple
model of this section.

There are three cases in the present results in
which surface modes attempt to cross each other,
and as a consequence clearly exhibit hybridization;
S, and S4 in Fig. 10, to the right of X; S, and Sz in
Fag. 13, to the left of S; and Sz and Ss rn Fsg. 13,
to the left of Y.

It should be mentioned that the "peeling-off"
description discussed here is also applicable, with
modifications, to other types of surface states be-
sides surface phonons. Discussions of surface
magnons, ~5 surface plasmons, and surface elec-
tronic states~' have recently appeared. In one of
the models of Ref. 25, it was found that a second-
layer surface magnon branch appeared in addition
to the first-layer branch if the surface exchange
parameters were softened. There is an obvious
analogy with S2 in Fig. 10 of tIle present paper~
which is a second-layer surface phonon branch (and
which appears only when the surface force constants
are softened; see Sec. VI). In Ref. 25, it was
found that surface magnon branches could be peeled
off the top of the continuum of bulk magpons if the
exchange parameters were stiffened, just as Musser
and Bieder found surface phonon branches to be
peeled off the top of the bulk phonon bands when the
surface force constants were stiffened. In the
model of Ref. 26, a series of surface plasmons
was peeled off the continuum of bulk plasmons as
the extent of the surface region was increased; up
to three surface plasmon branches were found. In
the model of Ref. 27, up to six surface electronic
states were obtained near the edge of the BZ as the
geometry of the surface region was perturbed.

In the case of all four types of states —phonons,
magnons, plasmons, and single-electron states-
the perturbation represented by the surface can
peel off a series of surface states from the bulk
band or bands. This perturbation consists of two
pRx'ts: The fix'8 t-ordex' perturbation 18 simply
the truncation of the crystal by the surface. The
"second-order" perturbation is a change in the sur-
face force constants (for phonons), a change in the

surface exchange parameters (for magnons), or a
change in the surface geometry and electronic
structure (for plasmons and electronic states. )

VI. EFFECT OF CHANGES IN DENSITY AND SURFACE
FORCE CONSTANTS

It is of some interest to determine how the sur-
face modes are affected by changes in the crystal
density or in the force constants near the surface. ~'

In Fig. 18, the dispersion curves are shown for a
density corresponding to o/a= 1.24. (Since o is to
be regarded as fixed, a reduction in the ratio o/a
corresponds to an increase in a or an expansion of
the crystal. ) This value of o/a represents (approxi-
mately) the correct density near the melting point,
whereas o/a= l. 29V represents the correct density
for a static crystal. The results of Fig. 10 and

Fig. 18, therefore, correspond to the extreme
limits of the crystal density. Notice that there is
vix'tuRlly no difference in the qUalitative features
of Figs. 10 and 18: The surface-mode spectra are
the same, except that the (marginal) surface mode
S„has become a mixed mode MS», and the surface-
mode frequencies have been diminished in propor-
tion to the bulk-mode frequencies. %e thus have
the result that the Gruneisen parameters for the
surface modes are very nearly equal to those for
the bulk modes. The same result is obtained in
calculations for the (111) and (110) surfaces.

One word of caution is necessary, however:
Although the Gruneisen parameters for surface and
bulk modes are approximately equal, the surface
region and bulk region will not actually expand by
the same amount as we have assumed in obtaining
the results of Fig. 18. Ordinarily, there should be
a large degree of thermal expansion near the sur-
face. This differential thermal expansion shouM
have the effect of strengthening the perturbation
associated with the surface and shouM produce two
effects: (a) The surface-mode frequencies should
show a decrease relative to the bulk-mode fre-
quencies as the crystal expands. {b) In some cases,
new surface modes should appear (or drop down
into bulk bands and disappear) as the crystal ex-
pands. If detailed experimental studies of high-
frequency surface modes become possible, it would
be interesting to test these conclusions.

Sio)
w$~

$y

s~ pAspcs„ S2

FIG. 18. + vs q for 000)
surface at a crystal density
corresponding to 0ja =1.24,
vrhere v 2 a is the nearest-
neighbor distance in the bulk.
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As can be seen from a comparison of Figs. 10 and
18, the bulk vibrational frequencies (in the quasi-
harmonic approximation) are reduced by about a
third as a result of this 4-5% expansion. It is
therefore to be expected that the expansion near the
surface of a few percent, due to relaxation, will
have a prof ound effect on the surf ace modes.

It should be mentioned that Musser and Rieder~4
have examined the effect of changes in the surface
force constants on the surface-mode frequencies
for the line I'M in the case of the (100) surface.
Their calculations were based on a force-constant
model with parameters appropriate to nickel. Their
surface-mode spectrum for this direction and sur-
face are in excellent agreement with those of the
present paper (right-hand sides of Figs. 10 and 20),
which have been previously given in Ref. 3. In
addition, they find the same general behavior of
S„S~, and S, with respect to changes in the surface
force constants as was described above (increase
in frequency of S„complete extinction of S~, near
extinction of S3 when the surface force constants
are assumed to be equal to those in bulk).

Musser and Rieder also find a surface-mode

branch below S, which apparently corresponds to
our mixed mode M, (first-layer analog of 8,). This
surface-mode branch is not very prominent, how-
ever. We do not find it in our results, possibly
because of the difference between our model and
theirs. When the surface force constants are stiff-
ened this surface-mode branch rises up out of the
lowest bulk band to become more prominent. An-
other surface-mode branch is peeled, off the top of
this lowest band, and there is evidently hybridiza-
tion when the two surface-mode branches attempt
to cross (see the inset in Fig. 2 of Ref. 24).

It is remarkable that the results of Musser and

Rieder, which are for a model of nickel with non-

central forces and the surface force constants ad-
justed to agree with experimental data, are in very
close agreement with the results of the present
paper and Ref. 3, which were obtained from first
principles for a Lennard-Jones potential.

VII. FREQUENCY DISTRIBUTION FUNCTIONS

In this section we consider the effect of the sur-
face modes on the frequency distribution function

f(~), which is defined such that f(&) d" is the frac-

(b)
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FIG. 22. Graph of squared
amplitude vs distance from
surface for the mixed modes
MS2, MS6, and MS8 at the
positions indicated by the
arrows in Fig. 21. The
surface modes S2, S6, and

S8 for the (110) surface with
relaxation taken into account
(results of Fig. 13) are
graphed at these same points.
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discontinuities and l.ogarithmic singularities, as
opposed to the frequency distribution function for
the bulk, which is continuous and has singularities
in its derivative only. The presence of singular-
ities in f'(&u) is suggested by the histograms of
Fig. 23(b).

In Ref. 31, the values of f(&) and f'(&) are given
for thicker crystals. It is interesting that the
qualitative features do not change in going from
a three-layer crystal to a much thicker one. The
main change is that the peak associated with the
lowest-frequency surface mode becomes less steep,
since its dispersion curve becomes less flat near
the edge of the BZ.

Another quantity that is of some interest is what
we call the "effective frequency distribution func-
tion, "f,(+; l~), for the o.' direction (a=x, y, z) and
the lath layer. %'e define this function by the equa-
tion

b 0.05

0,00

-O.IO

-O.I5

FIG. 23. Frequency distribution function f(~) and sur-
face frequency distribution function f~((d) for three-layer
crystal with (ill) surfaces.

tion of the frequencies lying between & and (&+ 2&).
In Fig. 23(a), the dimensionless quantity
(e/Mo')'~af(&u) is shown for a three-layer crystal.
with (ill) surfaces. [The corresponding disper-
sion curves are shown in Fig. 2(a). ] In Fig. 23(b),
the surface frequency distribution function f'(~) is
shown. This function is defined as the difference
between f(&) and the frequency distribution function
for the bulk, f '(&o), multiplied by an appropriate
normalization factors':

Here N, is the number of surface particles and N
the total number of particles in the crystal with
surf aces.

The peak in f'(&) at low frequencies is, of

course, caused by the presence of the low-fre-
quency surface mode (S, in Fig. 8). The peak at
high frequencies is caused by the "gap" surface
modes (Sa, Ss, and S4 in Fig. 3). Since the surface
modes are in effect pulled out of the bu)k bands,
there must be a depletion in these bands. This
depletion shows up in the negative values of f'(&)
that can be observed in Fig. 23(b).

It may be worth mentioning that f'(~) can have

f (co;f3) d&= = 2 ] 4~(4i + )[
N ~&~' &t0+gotl

where $„(l3;&o) is the (o!, l3) component of the eigen-
vector associated with the normal mode having fre-
quency and N is the number of particles per
layer. The contribution of a frequency to f, (&u; ls)
is thus weighted according to the amplitude of the
corresponding mode in the + direction and the 13th

layer. The mean-square amplitude of vibration
(u~ (ls)) can be expressed in terms of f (+;ls) as
follows:

( 2(f ))
h ~ i( ( )ia coth(hro/2ka T)

"~~* coth(h &/2ka T)
2M

(V. 3)

where Q~ is the Boltzmann constant, M the mass of

a particle, T the temperature, and , „ the maxi-
mum vibrational frequency.

In Fig. 24, the values of f (~; I,) for I, corre-
sponding to the surface layer are given for the

(ill), (100), and (110) surfaces. [We leave out the

index I, and write f (&) when referring to the sur-
face layer. The results of Fig. 24 were obtained
with 21-layer crystals. ] f„(+) is rather flat and

not much different from the bulk f(&) for all three
surfaces. [For the (111) and (100) surfaces, f, (&)
=f„(&).] f,(&) is large at low frequencies because
of the presence of low-frequency surface modes
associated with this direction of vibration. In the

case of the (110) surface, there are also prominent

low-frequency surface modes associated with the

y direction (Sa on the left side of Fig. 13 and S, on

the right side, after the interchange of character).
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One can calculate a similar "effective frequency
distribution function" using molecular dynamics
i.e. , by performing a computer experiment with
the particles taken to obey classical equations of
motion. In this case we define f,((u; I,) to be a
Fourier transform of the velocity autocorrelation
function for the n direction and l, th layer:

" (v (T; t+ t,)v (T; t,))(,
(v.(T; t,)v.(T; t,))„

(V. 4)
where v (1;t) is the o.' component of the velocity of
the particle with index 1 at time t. The angular
brackets indicate an average over the l3th layer
only, and to is an arbitrary initial time.

In Fig. 25 some molecular-dynamics results for
f (&; I,) at the surface are shown, together with the
similarly defined f(&) for the whole crystal. The
statistics are not very good, especially for the
averages over only a single layer, but the peaks in

f (&) occur at about the same place as they do in
the results obtained with lattice dynamics at this
density.

FIG. 24. Effective frequency distribution functions at
surface, f~(~) (cy =x, y, z), for (111), (100), and (110)
surfaces. These results were obtained with 21-layer crys-
tal at a crystal density corresponding to o/a =1.297.

VIII. CONCLUSIONS

Until the present work (including Refs. 2 and 2),
the only vibrational surface modes known to exist
in monatomic crystals were the generalized
Rayleigh waves which are obtained in the continuum
approximation. ' These waves lie beneath the bulk
subbands (except possibly along certain symmetry
directions), and their attenuation with distance
from the surface is rather simple as indicated in

Eq. (1.2) of I.
In the present work it has been found that there

are, in addition to the generalized Rayleigh waves,
other surface modes which are characterized by the
fact that they do not persist into the long-wave-
length limit and therefore cannot be obtained in the
continuum approximation. The dependence of the
amplitude of these modes upon the distance from the
surface is generally rather complex.

The main qualitative findings of the present paper
are the following: (a) The surface phonon spectrum
is remarkably complex even for monatomic crystals
with low-index surfaces. (b) There can be gaps
within the subbands corresponding to acoustic bulk
modes, as shown in the bottom par t of Fig. 7.
(There can also be gaps within the subbands for
optical bulk modes' and, for some materials, gaps
between the subbands for optical bulk modes and
those for acoustic bulk modes. ) High-frequency
surface modes can be, and usually are, present
within these gaps. (c) It is possible for surface
modes to exist within the bulk subbands for propa-
gation vectors q= (q„, q,) which lie along certain
symmetry directions in the two-dimensional BZ,
and such surface modes are a commonplace occur-
rence. Surface modes within the bulk continua are
also possible at other exceptional points in the BZ,
such as the point 8 in Fig. 1. Whatever surface
modes exist within the bulk continua along such a
symmetry line, or at such a symmetry point, will
degenerate into mixed modes for q slightly removed
from the line or point. (d) There can be surface
modes which are primarily localized in some plane
of particles beneath the surface, rather than in the
surface plane itself, and such modes are, in fact,
commonplace. (e) The attenuation of surface modes
with distance from the surface is generally rather
complex. The magnitude l $(ls) i

~ need not fall off
monotonically, or even regularly. (f) The qualita-
tive features of the surface phonon spectrum are
sensitive to changes in the surface force constants.
In the model which we have used for calculations,
if the static relaxation is "turned off, "then some
surface modes are raised into the bulk continua and

are no longer completely localized. This fact im-
plies that a correct prediction of the surface-mode
spectrum must be based upon an accurate knowledge
of the force constants at the surface. However, the
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FIG. 25. Frequency distribution functions f (&) and effective frequency distribution functions at surface, fI(&), calcu-
lated in molecular dynamics computer experiments. (a) f(z) for 11-layer crystal with (ill) surfaces. (b) fg((d) for (111)
surface. (c) f(&) for 11-layer crystal with (110) surfaces. The histogram was calculated for the same model using lattice
dynamics rather than molecular dynamics. (d) f~(co) for (110) surface. (e) f~(co) for (110) surface. All of these results
were obtained with 11-layer crystals at a density corresponding to 0/a =1.28. The temperatures were given by pzT/z
=0.369 for (a) and (b), and by k&T/e =0.335 for (c), (d), and (e).

qualitative features of the surface-mode spectrum
are not appreciably affected by uniform changes
in density, which cause the surface force constants
to change approximately in proportion to those of
the bulk. (g) Despite the complexity of the surface-
mode spectra, all of the surface modes and mixed
modes found can be described in terms of a very
simple phenomenological model. In this model,
the surface is regarded as a perturbation which
"peels off" surface and mixed modes from the bulk
bands. The number of modes peeled off depends
on the strength of the perturbation for a particular
wave vector q. From a given bulk band, the modes
are peeled off in a series of like character, with a
first-layer mode peeled off first, then a second-
layer mode, etc.

The calculations of this paper were performed
for model crystals in which the particles interact
through a Lennard- Jones potential. However, it is
reasonable to expect that many of the qualitative
findings will be of general validity. This expecta-

tion is strengthened by the rough agreement of our
results at long wavelengths with those of Farnell. '
and of Lim and Farnell, ' which were obtained in
the continuum approximation for materials such
as Ge, KC1, and Si. Further support is provided
by the calculations for a discrete lattice model of
NaC1, ' which is, of course, quite different from
the present model in having long-range Coulomb
forces and two particles per primitive unit cell, and

by calculations for a model of Ni with noncentral
forces in which the surface force constants were
adjusted to experimental data.

To our knowledge, there is as yet no experimental
evidence for the existence of the new surface modes
found here, which are present only at short wave-
lengths. (The possibility of their existence was, how-
ever, pointed out for the first time in Ref. 2.) Inprin-
ciple these surface modes and similar modes which
have subsequently been found in calculations for an
ionic crystal' should be detectable in neutron-,
electron-, or atomic- scattering experiments.
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