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A general formulation is given for studies of the vibrational properties of systems which
have two-dimensional periodicity and one or two surfaces. Although layered structures and
other systems with interfaces fall within the scope of this formulation, the principal motiva-
tion is to provide a framework for calculating and interpreting vibrational surface properties.
No assumption is made concerning crystal structure, surface orientation, the interaction be-
tween particles, or the number of particles per unit cell. Also, the treatment is applicable
to reconstructed surfaces, surfaces with adsorbed impurity particles, etc. , as well as unre-
constructed clean surfaces, provided that the two-dimensional periodicity is preserved. A
discussion is given of the properties of the vibrational modes: In general, the displacement
ellipse for a given mode can have any orientation. For surfaces with "axial-inversion sym-
metry, "however, one axis of the ellipse is always normal to the surface. If the surface has
"complete reflection symmetry" with respect to a given plane, then for any two-dimensional
wave vector parallel to the plane the modes will separate into two classes: one-third of the
modes will be pure shear-horizontal (SH) modes, and the other two-thirds will be polarized
strictly in the sagittal plane. It is possible for surface modes of one class to lie within the
bulk subbands of the other class. If the crystal has either axial-inversion symmetry or a
three-dimensional center of inversion, then the complex dynamical matrix can be reduced to
a real, symmetric matrix of the same size. If both symmetries are present, as is the case
for many surfaces of interest, then a further reduction is possible. Finally, notations are
suggested for distinguishing two-dimensional vectors and for labeling symmetry points in the
two-dimensional Brillouin zone associated with a surface.

I. INTRODUCTION

The study of elastic surface waves goes back al-
most a century, to the investigation by Lord Ray-
leigh in 1885 of surface waves in an isotropic elas-
tic continuum. ' In 1911, Love treated another type
of surface wave which can exist when a macroscopic
layer of one material is supported by a substrate
of another material, 3 and in 1924 Stoneley consid-
ered a type of wave which can propagate along the
interface of two materials. Rayleigh waves, Love
waves, Stoneley waves, and other waves in more
general layered media' are of importance in seis-
mology.

In the past 15 years there have been many studies
of surface waves in anisotropic media. ' For a
surface wave in an anisotropic medium, the dis-

placement u at the point with position vector r
= (x, y, z) is given byz

u(r) =Z c„j"exp[i(q" ~ r —(ut)J
n=1

3
=Z c„q exp[i(q",z+q„x+q„y —&ot)],

n=1

where (q„, q„) is the propagation vector, which is
two-dimensional and parallel to the surface plane,
and q", is a complex number which determines the
attenuation of the wave with distance from the sur-
face. (We take the z axis to be perpendicular to
the surface. ) For the special case of a true Ray-
leigh wave in an isotropic medium, there are only

two q"„both of which are purely imaginary, and

vibrations are limited to the sagittal plane. ' The
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more general waves having the form given in Eq.
(1.2) have been called "generalized Rayleigh
waves. ""

Very recently there has been great interest in
surface waves in piezoelectric materials, ' ""6
because of their advantages over bulk waves in
acoustic-delay lines and other signal-processing
applications. '~

In contrast with the vast amount of work on sur-
face vibrations in elastic-continuum models, there
has been relatively little work on the more general
problem for discrete lattices (especially in the case
of monatomic materials). The continuum approxi-
mation is, of course, valid only at long wavelengths,
where the microscopic discreteness of the solid
is unimportant. For wavelengths of the order of a,

few atomic spacings, elastic-continuum theory is
no longer valid and the methods of lattice dynamics
are necessary.

A complete understanding of surface vibrations
therefore requires detailed lattice-dynamics calcu-
lations for realistic models. One reason for the
interest in such an understanding is the influence
of surface vibrations on other surface properties:
These vibrations affect low-energy electron-diffrac-
tion intensities in a number of ways, ' and have an
important effect on the scattering of atoms and
molecules from surfaces at sufficiently low ener-
gies. '9 The vibrational spectrum also determines,
in part, the surface specific heat, surface free en-
ergy, and other thermodynamic functions. More-
over, the surface phonons should play an important
role in determining the electron-phonon interaction
in sufficiently thin films, or for electronic states
localized near the surface; one effect of this elec-
tron-surface-phonon interaction is an enhancement
of super conducting-transition temperatures in very
thin films which apparently has been observed. '
As a final example, the structure of the surface is
in some cases dependent upon temperature, and
this fact implies that the structure is affected by the
lattice vibrations. Even if the structure does not
change, the thermal expansion at a surface is de-
termined by the lattice vibrations.

In addition to studies of one-dimensional mod-
elsas 2' (in which wavelike surface modes are not
possible, of course), there have been a number of
treatments of surface modes in three-dimensional
lattices ' ~ ~: Lifshitz and Rosenzweig 9 found that,
in a diatomic crystal, surface modes can exist in
a gap between acoustic- and optical-bulk modes,
and optical-surface modes have been obtained in
recent calculations for model-diatomic crystals
and for ionic crystals. so'~ 3' (Surface modes in
ionic crystals have apparently been observed exper-
imentally. 38) Gazis, Herman, and Walliss have cal-
culated the surface modes in simple force-constant
models of monatomic crystals. Finally, Feucht-

wang has given a general formulation of the lat-
tice-dynamics problem for a semi-infinite crystal
with short-range interaction

The previous calculations of surface modes have
generally been based on rather simple models. An
unrealistically simple model can, of course, yield
results which are unphysical. As examples, we
mention the failure of the Montroll-Potts model to
yield Rayleigh waves, in disagreement with elas-
ticity theory, '9 and the fact that the qualitative
features of the surface-mode spectrum are sensi-
tive to changes in the surface force constants.

It is therefore particularly important to use real-
istic models in the calculation of vibrational sur-
face properties. The results of the following papers
in this series, ' '" and of earlier calculations of
physical quantities at a surface, ' were obtained
with a model which is more realistic than previous
models in being based on the consistent use of a
Lennard- Jones potential

P(r) =4~[(o/r)" —((r/r) ],
where & and o are potential parameters. A particle
interacts with all of its neighbors, and the displace-
ments of the particles near the surface from their
positions in the bulk are taken into account. An
advantage of this potential is that it yields results
that depend only on the shape of the potential, and
not on the potential parameters. Some other advan-
tages are discussed elsewhere. 43 We regard this
model as the best that can be used for general stud-
ies of surface vibrational properties, i.e. , a more
accurate interaction model would involve specializ-
ing to a particular material. Furthermore, to ob-
tain an accurate interaction model for materials of
interest (e.g. , metals and materials with covalent
bonding) is a matter of considerable difficulty even
for the bulk, and the surface problem is much
harder because of the change in electronic states
and other properties near the surface.

Although Feuchtwang has given a formulation of
the lattice-dynamics problem for a semi-infinite
crystal which can in principle be used for calcula-
tions, it is more convenient in practice to perform
calculations for slab-shaped models with a finite
thickness and two surfaces. The justification for
using a slab-shaped model (of sufficient thickness)
is that the results obtained are essentially the same
as would be obtained with a semi-infinite crys-
tal, 20'22'44 with three qualifications: (1) Since there
are two surfaces, there are two nearly degenerate
surface modes of each kind, which are mixtures of
the modes associated with the individual surfaces.
This matter is discussed in Sec. III. (2) Since
there are only a finite number of layers, there are
only a finite number of modes in the bulk subbands,
whereas there would be an infinite number in a
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II. LATTICE DYNAMICS OF A CRYSTAL WITH ONE
OR TWO SURFACES

If the instantaneous position of a particle (atom
or ion) is represented by r(1~), then

r(lg) = ro(la)+u(lz), (2. 1)

semi-infinite crystal. (The term "subband" is de-
fined in Sec. II. ) (3) At large wavelengths there
are surface modes with large penetration depths.
Such modes will be strongly affected by the trunca-
tion of the crystal at a finite thickness, and the re-
sults for a slab will therefore be quite different
from the results for a semi-infinite crystal. Cal-
culations based on slab-shaped crystals are there-
fore not valid in the long-wavelength limit, and in
this sense are complementary to continuum calcu-
lations, which are valid only at long wavelengths.

The use of a slab-shaped model is, however,
valid for the calculation of all surface modes ex-
cept those which are deeply penetrating. It is found
that (except at long wavelengths) the only important
effect of increasing the thickness of the model is
to populate the bulk subbands more densely. For
most wave vectors, the positions of both the sur-
face-mode frequencies and the bulk subbands do
not change much beyond a thickness of about 10
layers. 3o' 4

In Paper II, we give detailed numerical results
for monatomic fcc crystals whose particles inter-
act through a Lennard-Jones potential, and Paper
III ' will deal with adsorbed monolayers. In the
present paper, however, we are concerned with
providing a general formulation and discussion
of the lattice-dynamics problem that will serve as
a foundation for these papers and future work. The
basic formalism is given in Sec. II, and Sec. III
contains a discussion of some properties of the vi-
brational modes.

The material in these sections applies both to a
crystal with two surfaces, which has a finite (though
arbitrarily large) thickness, and to a semi-infinite
crystal with one surface. ' It is also applicable
when there is reconstruction, adsorption, etc. , as
long as some sort of two-dimensional periodicity
is preserved. Finally, no assumption is made
concerning the effective interaction between par-
ticles, the number of particles per unit cell, the
crystal structure, or the surface orientation. Un-
less explicitly stated otherwise, there are no as-
sumptions or approximations beyond the two-di-
mensional periodicity, the usual adiabatic approxi-
mation, and the quasiharmonic approximation.

The main results of Secs. II and III are summa-
rized in Sec. IV.

the set of numbers 1= (I„l2, l3) and the index v

specify a particular particle: l, labels a layer of
particles parallel to the surface plane, l, and l2
specify the points in the two-dimensional lattice
(or net) which spans a plane, and g distinguishes
different particles in the unit cell associated with
a particular 1. We assume that the same two-
dimensional lattice can be used for all the layers,
but the contents of the unit cell associated with a
lattice point and a plane may differ from one layer
to another.

We take the z axis to be normal to the surface
and represent the unit normal by z. Since two-di-
mensional vectors, with only x and y components,
are frequently encountered in surface physics, we
adopt the convention of writing such vectors with
bars over roman type, e. g. ,

r = (x, y, 0) = (x, y), r = (x, y, z) = r + ~,z . (2. 2)

We adopt a similar convention for the set of num-
bers 1:

1 = (l„ l~, fg), 1 = (l„ l~) . (2. &)

We will also label symmetry points in a two-di-
mensional Brillouin zone by barred letters (e.g. ,
I') to distinguish them from points in a three-di-
mensional zone (e. g. , F).

The position of the two-dimensional lattice point
1 is represented by ro = (x~, yo, 0). In terms of the
primitive lattice vectors a, and a»

ro=l,a, +l,a, . (2. 4)

A two-dimensional reciprocal lattice vector G is
given by

6 = n~b~+ nqb2, (2. 5)

where n& a.nd n~ are integers and the primitive-re-
ciprocal lattice vectors b, and b2 are defined by

R2X Z
b~=2g

Rg ~ R2X g
gxa,

b2= 27r-
R2 ~ g Xag

(2. 6)

Equation (2. I) can be rewritten

r(le) = ro+ ro(lBK)+U(1K) . (2 'f)

Here ro(4 ~) is the "basis vector" that gives the mean

position of a particle (of the vth type in the l~th

layer) within the large unit cell associated with the

lattice point 1. Its projection on the xy plane is
ro(f,~).

As usual, we make the adiabatic approximation
and assume that the total energy of the system can
be taken to be a function of the particle positions,
and we expand this energy 4 in a Taylor series:

where ro(1 v) gives the mean position of the particle
and u(l v) is the time-dependent displacement. Here
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1
+—3 5 e~(IK;I'K')u (IK)u, (I'K')+ ~ ~ ~,

fico f'g'g

(2. 8)

mhere

(2. 9)

SaC,

su (1 )su (1' ') i

The subscript "0"indicates that the quantities in
large parens are evaluated with all particles at
their mean positions.

We now make the quasiharmonic approximation,
which consists of neglecting all terms but the sec-
ond on the right-hand side of Eq. (2. 8). The sum
of the first term and the third, fourth, etc. , are
regarded as a "small" perturbation. In this ap-
proximation, the equations of motion are

2

M.(l,)~ u~(IK) = —~ e„(IK; I'K')~(I 'K') .
1 If'

Notice that in the full quasiharmonic approxima-
tion the force constants C,~(1K;1'K') are to be
evaluated at the mean positions of the particles,
with thermal expansion taken into account, rather
than at the positions of static equilibrium. In the
strict harmonic approximation, thermal expansion
is neglected and the force constants are evaluated
at the static-equilibrium positions. The first term
in Eq. (2. 8) then vanishes identically. Notice that
even in the harmonic approximation, as defined
above, the static relaxation of particles near the
surface is to be taken into account.

The present formulation encompasses the follow-
ing varieties of harmonic or quasiharmonic theories
which have been used in studies of surface vibra-
tions: (1) In a "partial harmonic theory" the force
constants are determined for particles in the bulk
(i. e. , deep within the crystal) at their positions
of static equilibrium. The force constants for
particles near the surface are then taken to be the
same as those for particles in the bulk. (2) In a
"full harmonic theory" the force constants are
evaluated independently for each pair of particles
in the crystal, according to Eq. (2. 10), with the
mean positions taken to be the positions of static
equilibrium. The relaxation (static displacements)
of the surface particles, and the resulting changes
in the force constants near the surface, are taken
into account. 7 (8) In a "partial quasiharmonic
theory" the force constants are evaluated according
to Eq. (2. 10) with the mean positions taken to be
the positions corresponding to uniform thermal
expansion throughout the crystal. The picture is

as follows: We start with a static crystal in which
the interparticle spacings near the surface are
different from those in the bulk owing to static re-
laxation. We then allow the particles to vibrate,
and the crystal will consequently expand. In this
approximation we assume that the expansion is uni-
form, so that the spacing between any two particles
in the crystal (including those near the surface) in-
creases in proportion to the spacing between any
other two particles. (4) In a "full quasiharmonic
theory" the force constants are evaluated according
to Eq. (2. 10) without approximation. The thermal
expansion is not assumed to be uniform, i. e. , the
"differential thermal expansion" near the surface
is taken into account.

Since we mant to eliminate the effect of edges and
corners, we impose periodic-boundary conditions
with respect to translations parallel to the surface.
Then the crystal is invariant under a translation
through a two-dimensional lattice vector, so that
the force constants 4 ))(IK;1'K') depend only on the
difference of 1' and 1:

u (1K)= u (l,K) exp[i (q„x~+ q,yo
—~&)]

=u, (I,K)exp[i(q r,' —(ut)].

(2. 18)

(2. 14)

Here O. =g, y, or z and ~ is the vibrational fre-
quency. For later convenience we write

u (I K) = [ÃM (I )] ' q $„(l K) 8'

(2. 15)
where N is the number of two-dimensional lattice
points (Ã- ~), M„(l~) is the mass of a particle with
index K in the l~th plane, g (IOK) is normalized to
unity (see below), and Q, gives the amplitude of
vibration.

The physically distinct solutions correspond to
values of the wave vector q lying in the first tmo-
dimensional Brillouin zone (BZ) associated with the
two-dimensional lattice. In Fig. 1, the Brillouin
zones for the five two-dimensional lattices are
depicted with the notation that we mill adopt for
labeling the symmetry points and lines. This no-
tation is adapted from that given by Koster48 for
three-dimensional lattices. The distinct values of
&o(q) correspond to values of q lying in the irredu-
cible element-i. e. , that part of the BZ which, un-
der the two-dimensional symmetry operations of
the crystal, can be mapped into the rest of the BZ.
In Fig. 1, the irreducible element is the region
within the heavy lines.

4 ~q(lK; I 'K') =4„g(lsK; ISK'; 1' —1) .
This two-dimensional translational invariance of
the force constants implies that the normal-mode
solutions to Eq. (2. 11) have the form of two-dimen-
sional Bloch functions:
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THE FIVE PLANE NETS

P- OBLIQUE

ing to a particular q. If there are s(lp) particles
per unit cell in the lpth layer [i.e. , » = 1, 2, . . .,
s(lp)], then P= 1, 2, .. ., 33t, where St=/, ,s(lp). The
eigenvectors $,(l,»; qp) have 3% components.

Since the $,(I,»; qp) are the eigenvectors of an
Hermitian matrix, they can be taken to satisfy the
usual orthogonality-normalization condition

X

t Qs

C-RECTANGULAR

+
ij

9
zI

P-RECTANGULAR

+
X

G $ (l,k;qp)g(I, »;qp')=5~. (2. 19)

and the completeness condition

Z~)~(lpk; gp)t'f(lp» q qp) =5~p5. ..5„„, . (2. 20)

Notice that the eigenvectors are normalized to unity
over the whole crystal. Also notice that if Eqs.
(2. 19) and (2. 20) are satisfied by a given set of
eigenvectors, they will automatically be satisfied
for a new set defined by

5' (I,»; qp) = e""'].(I, kgb) (a. as)

P-SQUARE P- HEXAGONAL

FIG. 1. Brillouin zones for the five two-dimensional
lattices. The irreducible element is the area enclosed by
heavy lines. The labeling of the symmetry points, and
the choice of the x and y axes, are adapted from those of
Koster (Ref. 48). The tilde is used to distinguish these
axes from the x and y axes of Refs. 22, and 40—42.

(o~(- q) = (u~(q), (2. 22)

regardless of crystal structure, if we choose p
properly. Also, we have

where P(p) is a real number which is independent
of n, lp, and». The transformation (2. 21) will
thus produce an acceptable set of eigenvectors if
the original set was acceptable.

According to Eqs. (2. 16) and (2. 18) we have

(,(I,»; -(y)=e'""' l( ,I»qP) . (2. 23)

If Eqs. (2. 14) and (2. 15) are used in Eq. (2. 11),
the result is

D~p(lpk; lpk; q)&p(l,'k';qp) = (o~ (q)$~(lpk; gp) ~

If we redefine the eigenvectors for the wave vector
—q according to Eq. (2. 21), with t/r(P)= —g(P), then
the phase factor in Eq. (2. 23) will disappear. We
can therefore adopt the convention

)'a'8
3

(2. 16) ~.(I,»; —qp) = (+(f,k; qp) . (2. 24)

where the dynamical matrix D,p(lp»; fpk'; q) is de-
fined by

D,p(lpk; Isk i q) = [~~(lp)iifz (fp)] Z @,p(1»; 1'»')

In the special case of a crystal in which all the
particles in a given layer are identical, the z and
k' indices can be suppressed. Then Eq. (2. 16) be-
comes

&& exP{iq ~ [rp + rp(lpk') —'rp —rp(lpk)]].

(2. 17)
ZD.,(I,I,'; q) (,(I,'; qp) = ~,'(q) t.(I„qp) . (a. 25)

&& exp {iq ~ [Fp'+:rp(lpk ) —rp(lp»)]],
(2. 18)

and the index P is defined below. In rewriting Eq.
(2. 17) as Eq. (2. 18), we have used Eq. (2. 12)
plus the fact rpt= rp —rp, according to Eq. (2.4).
Also, the summation over 1

' in Eq. (2. 17) has been
changed to a summation over (1 -1'), and (1 -1')
has been renamed l'.

In Eq. (2. 16), we have explicitly indicated the de-
pendence on the wave vector q, and on an index P
which distinguishes the different modes correspond-

In this case, %=N3, where N3 is the number of lay-
ers in the crystal, so p =1, 2, . . ., SN3. Notice that
the dimensionality of the dynamical matrix is the
same for a monatomic crystal and a crystal in
which each layer is composed of a different species
of particle. Layered structures and crystals with
adsorbed films are therefore, in this sense, not
harder to treat computationally than monatomic
crystals with surfaces.

This concludes the formulation of the lattice-dy-
namics problem. The procedure for calculating
the vibrational modes is to determine the dynami-
cal matrix according to Eq. (2. 18), and then to de-
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termine the eigensystem by solving Eq. (2. 16) nu-
merically. In Sec. ID, some properties of the vi-
brational modes are discussed.

8 = q ~ ro(l x) —vt,
then

(3.3)

III. PROPERTIES OF VIBRATIONAL MODES

A. Displacement Ellipse

The vector $(l~x; qp) for a fixed ls and x will be
called a "polarization vector, " since it gives the
polarization of a particle of the zth type in the lsth
layer, i.e. , it specifies the direction of motion of
such a particle when the crystal is vibrating in the
mode labeled by q and p. If we define a dimension-
less quantity U(le) by

U„, = Re)» cos8 —Imt'~ sin8, (3.4)

U,,/Ref„, = cos8 . (3.5)

If sin8 in Eq. (3.4) is written as + (1 —cos28)'~~ and
the expression for cos8 in Eq. (3. 5) is substituted
into Eq. (3.4), then one obtains after some alge-
braic manipulations

Re)'~ ((Re(„,)'+ (Im)„)'

U(1 z) = Re/(l~x) cos[q ro(le)-art] = (Imt„, )', (3; 5)

—Im)(isa) sin[q ~ ra(1 z) —&ut],

then according to Eqs. (2. 14) and (2. 15),

Reu(lx)~U(lx) .

(3. 1)

(3.2)

which is the equation of an ellipse. We have tacitly
assumed that Ret', . 40 and Imt'„. 4 0; if either condi-
tion does not hold, the path is a straight line.

The major and minor axes of this "displacement
ellipse" are given by the maxima and minima of
lu l':

It is evident from these equations that the motion of
a particle about its mean position traces out a
curve which lies in the plane defined by Re)(low) and
Imt'(l~a). This curve is depicted in Fig. 2.

The curve can be shown to be an ellipse as fol-
lows: Let the (x, y', z')-coordinate system be de-
fined such that Re/(lax) is parallel to the x y plane
and Im)(l~a) is parallel to the x' axis. If we define

FIG. 2. Path of a particle as it moves about its mean
position in a single normal mode with polarization vector
$(le&). The vectors from the origin are respectively
proportional to Re) and Im). Re) and Im) are not neces-
sarily perpendicular, but the path is always an ellipse.
If the surface has "axial-inversion symmetry, " then Re)
and Im) are perpendicular to one another and one is
perpendicular to the surface; one axis of the ellipse is
then perpendicular to the surface.

a'Iu I'
= —sin(28) (~ Re) ~3 —

( Imt
~

~)

—2 cos(28) (Re)') ~ (Imt') . (3. I)

[ro + rp(lyly )]—ro(lgK)

= —{[ro + ro(lsx')] —ro(l~x)}. ; (3. 9)

A zero derivative occurswhen

, 2(Ret) (I ()
2 I Re/ I' —

I imp' I

'
Given $(l~x), therefore, one can determine the ma-
jor and minor axes by finding the solutions to Eq.
(3.8) and then substituting into the equation U
= Re) cos8 —Imt' sin8.

In general, the displacement ellipse can have an
arbitrary orientation. However, suppose that the
crystal has the following symmetry: Each particle
lies on an axis, normal to the surface, such that a
rotation of 180 about this axis carries every par-
ticle in the crystal into a position formerly occu-
pied by an equivalent particle (i. e. , one with the
same l~ and x). If this condition holds, then we
will say that the crystal, or surface, has "axial-
inversion symmetry. " We will now show that in
such crystals the displacement ellipse has one axis
perpendicular to the surface and the other parallel
to the surface.

Consider the particle labeled by l3 and ~ for which
1 =0. Because of the symmetry described above,
for every other particle labeled by I ', /~, and x',
there is an equivalent particle labeled by 1", ls,
and g' such that
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where the plus sign holds if n = p or (n, p) = (x, y)
or (n, g) = (y, x), and the minus sign holds other-
wise. Therefore we have

@ 3(l3K& l3K &1 ) =+4,3(l3K; l3K;1 ) .
Equations (3.9) and (3. 11) then imply that

C 3(13K l3K';1")exp(iq ~ [r3 +r3(13K ) rQ(13K)]].

(3.11)

= + (4~ (l3K; l3K
'; 1')

x expfiq ~ [r3I + r3(13'K') —r3(l3K)]}) . (3. 12)

i.e. , the 1' particle and the 1"particle are the same
distance from the original particle, but on opposite
sides of the rotational axis which passes through
it. The force constants of the 1' and 1"particles
are related by a rotation of the coordinate system
through 180 about this axis: After such a rotation,
the position of the 1' particle in the transformed co-
ordinate system is equivalent to that of the 1"par-
ticle in the original coordinate system. The trans-
formed force constants for the 1' particle must
therefore be equal to the original force constants
for the 1"particle. Equation (2. 10) implies that
the transformed force constant 4 3(l3K; l3K'; 1') is
given by

4(g3(13K~ l3K ~ 1 ) = + 4~3(l3Kq l3K l 1 ), (3. 10)

= ImD, 3(l~K; l3K'), p=z and a=x or y

(s. 21)

Im( (l3K;p)=0, n=x or y

Re), (l,K; p) = 0, n = z

for all /3 and ~, or else

Re/ (l3K;p)=elm/ (l3K;p), n=xor y

—Imp (l3K; p) = cRe) (l3K; p), n = K

(3.23)

(s. 24)

(3. 25)

(s. 26)

where c is a constant independent of E, and g. If
Eqs. (3. 25) and (3.26) hold, then we can define a
new set of eigenvectors with components $', (l3K'P)
according to Eq. (2. 21), with tang(p)=c, so that

$~(l3K; p) = ii$m~(l 3K/)/cosp(p), n = x or y

= —ImD~3(l3K; l3K ), n= 8 alld p= x or y .
(3.22)

Since the original matrix with elements D,3(13K;
l3K') is Hermitian (see Appendix C of Ref. 22), the
new matrix defined by Eqs. (3.20)-(3. 22) is sym-
metric. Since the vectors with components g"'(l3K)
and (I3'(13K) satisfy the same eigenvalue equation
(3.15), they must differ by only a multiplicative con-
stant. (In the interest of -simplicity, we will as-
sume here and throughout this section that there is
no degeneracy. ) Then we have either

The terms on the left- and right-hand sides of Eq.
(3. 12) are added together in the summation for
D,3(13K; l3K'), according to Eq. (2. 18). We thus have

the following result:

$', (13K; p) = Re) (l,K; p)/costCt(p), n = z .
(3.27)

(s. as)

or (n, P) = ( y, x), (3. 13)

ReD, 3(l3K; l3K') = 0, otherwise . (s. 14)

imD„3(13K; l,'K') = 0, n = p or (n, p) = (x, y) Unless Eqs. (3.23) and (3.24) hold, therefore, we
can always choose $, (l3K; p) to be purely imaginary
for n=xor y and purely real for n=z. We will
adopt this convention, so that we have the following
result:

This result implies that the eigenvalue equation
(2. 16) consists of two decoupled equations:

(l3K) = Im)„(13K)=~Re&, (l3K) = 0

for all l3 and z, or else

(s. 29)

5 A, (13K; 13K')&,"'(13K'; P)
g' ff'83

= C03) I (l3Kq P) P

where

$"'(l3K; p) =Re) (l3K; p),

= —Imp (l3K; p),

g' '(l3K; p) =1m), (13K;p),

=Re) (l3K; p),

A. ~(13K; 13K')

Z 1p 2y

o. =xor y

(s. 15)

(3. 16)

(s. 17)

(3.16)

(3.19)

=ReD,3(l3K;l3K'), n= p or else n&K and ptz

(s. ao)

Re)„(l3K)= Re/, (l3K) = Im), (13K)= 0 (s. so)

for all l3 and K. In other words, either Im)(l3K) is
perpendicular to the surface and Re/(13K) is parallel
to the surface, or else Imp(13K) is parallel and

Re((l3K) perpendicular.
The assertion in the paragraph preceding Eq.

(3.9) has now been proved: Re((l,K) and Im((l3K)
are perpendicular to each other, so it is apparent
from Eq. (3.1) that these vectors give the axes of
the ellipse. Since either Re)(13K) or Imp(13K) is
normal to the surface, one axis of the ellipse is
normal to the surface.

As a final remark on surfaces with axial-inver-
sion symmetry, we mention that the eigenvalue
problem for such surfaces has riow been consider-
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ably reduced. Suppose that we define a normalized
vector a (l3K) which is a solution to

S~ Q D 3(13K; l3K', q„0)(3(13K q'„Op)
8=x, c l'

8 4~3(13K l3K')a3(l3K') = &a a, (13K) .
l' ft'8
3

Then according to Eqs. (3.16)-(3.19) and (3.29)
and (3.30)

(3. 32)

= v3 (q,0)$ (l3K; q„Op), n = x or z

ZD»(l3K; 13K'; q„0)f,(l3K'; q„0p)
l3

= uP3(q„0)$„(13K; q„Op) .

(3. 34)

(3. 35)

As long as we are interested in calculating only the
vibrational frequencies (d and the magnitude of the
polarization vectors, the original problem ex-
pressed in Eq. (2. 16) can thus be reduced to that
of Eq. (3.31). In other words, we can calculate
the eigensystem of a real symmetric matrix rather
than that of the original complex matrix. In the
Appendix, it is shown that a further reduction is
possible if the crystal has a center of inversion.

B. Waves Along Symmetry Directions

Now we return to the more general problem of
an arbitrary surface. We will use the term "sub-
band" to refer to the range of allowed frequencies
for a particular set of modes at a fixed value of the
propagation vector q. ' A subband corresponding
to a set of bulk modes will be called a "bulk sub-
band. "

Any mode whose frequency lies outside the
bulk subbands must be a surface mode. However,
the converse is not necessarily true; i.e. , it is
possible for a surface mode to have a frequency ly-
ing within the bulk subbands, as we will now show.

Suppose that each particle lies on one of a set of
parallel planes perpendicular to the surface, and
that a reflection through any one of these planes
carries every particle in the crystal into a position
which was formerly occupied by an equivalent par-
ticle (i. e. , one with the same l, and K). We will
then choose a typical such plane and say that the
crystal, or surface, has "complete reflection sym-
metry" with respect to the typical plane.

First consider the case when the crystal has
"complete reflection symmetry" with respect to
the xz plane. When q„=o, it is then easy to show
the following, using Eqs. (2. 10) and (2. 18) together
w;th arguments like those leading up to Eq. (3.12):
For every term in the summation for D 3(13K; l3K';

q„0), there is another term which is equal to a 1
times the first term. If aP and either a=y or
p=y, then the minus sign holds; otherwise the plus
sign holds. It follows that

D 3(13K; l,'K '; q„O) = 0, n 4 p and either t3. = y or p = y .
(3. 33)

The eigenvalue equation (2. 16) then decouples into
the pair of equations

There will therefore be two classes of solutions-
those with $,(13K) = 0 for all l3 and K, and those with

$„(13K)= $ (l3K) = 0 for all l3 and K. [If $„$„and
$, are all nonzero, then we can define two new

eigenvectors, one with components t",'=0, $„'40,
$,

' 40, and the other with components $„"e 0, ('„' = $,"
=0, each of which satisfies Eqs. (3.34) and (3.35),
so that there is degeneracy in this case. ] Now sup-
pose that the frequency &u3(q„O) lies within a bulk
subband that is associated with bulk modes belong-
ing to only one class. If the mode labeled by p be-
longs to the same class, then it should ordinarily
be a mixed mode; however, if the mode labeled by

p belongs to a different class, then it must be a
surface mode, since there is no bulk mode of its
class with frequency u&~(q„O).

In short, we have the following result: In some
cases there will be a symmetry-induced decoupling
of the eigenvalue equation which will lead to a di-
vision of the modes into two classes, with the mem-
bers of one class automatically orthogonal to those
of the other class. In such a case we will say that
there is a "partitioning" of the modes into mutually
orthogonal classes. Then any mode whose fre-
quency lies within the bulk subbands for its class
will ordinarily be a mixed mode, and any mode
whose frequency lies outside the bulk subbands for
its class will always be a surface mode. If there
is no partitioning, a simpler statement surfices:
A mode lying within the-bulk subbands is ordinarily
a mixed mode, and a mode lying outside the bulk
subbands is always a surface mode.

We can generalize the above result for the xz
plane: If the surface has "complete reflection sym-
metry" with respect to any given plane, then for
any q which is parallel to this plane there will be
a partitioning into two mutually orthogonal classes
of modes. Two-thirds of the modes will belong to
the first class and will be polarized strictly in the
sagittal plane; i.e. , $(13K) will lie in the plane of
q and 2. One-third of the modes will belong to the
second class and will be pure shear-horizontal (SH)
waves, "i. e., $(l3K) will be perpendicular to q
and z.

To prove these assertions, we translate the sym-
metry plane to the origin, and then rotate the co-
ordinate system until the translated plane coincides
with the x'z plane in the new (x', y', z) coordinate
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rp(1'", lz, K') = —rp(1', —l3, K'), (s. s8)

where we have used 1"' to label the lattices point
corresponding to the "partner" of the 1', —l3, K'

particle. Using arguments like those leading up to
Eq. (3.11), one can show that

system. Then the surfac~ will have "complete re-
flection symmetry" with respect to the x'z plane.
Consequently, for q; = 0 there will be a partitioning
into two classes, with (& = 0 for the first class and

$„, = $; =0 for the second class. It is evident that
q= (q„., 0) is parallel to the x'z plane, and thus to
the original symmetry plane, and that the $ have the
polarizations described above. Finally, there are
twice as many modes in the first class as in the
second, since Eq. (3.34) has twice as many solu-
tions as Eq. (3.35).

C. Slab-Shaped Crystals with a Center of Inversion

Up to this point, only two-dimensional symmetries
have been discussed, and no symmetry has been as-
sumed with respect to the third dimension. For the
remainder of this section, however, we will assume
that the crystal has a finite thickness and that the
following is true: Consider an arbitrary particle
which is labeled by K and (- l3), which is associated
with the lattice point 1, and which has the mean
position rp(1, —l3, K). Then there is some particle,
identical to the first particle in its mass and other
properties, which is labeled by z and l3, which is
associated with some lattice point 1", and which
has the mean position rp(1 ", l3, K), such that

rp(1 ", /3, K) = —rp(l, —l3, K) . (s. s6)

If this condition holds, we will say that the slab-
shaped crystal has a "three-dimensional center of
inversion. " We will not assume any symmetries
besides this one (and the two-dimensional period-
icity).

According to Eqs. (2. 12) and (2. 17),

D~p(- l3«; —l3« )

= [M„(/3)M~ (l3)] ~ Zz. 4,3(- lz«; —/3«'; 1' —1)

& exP(iq ~ [rp(1', —l3 «) 1p(1 /3 K)]} y

(3.37)

since M„(—/3) = M„(l3) according to the comments
preceding Eq. (3.36). If we substitute 1', /3, and
K' into Eq. (3.36), we obtain

r, (l"', /,', «') —r,(1",/„K)

= —[rp(1', —l3, «) —rp(1, —/3, K)] . (3.40)

Equations (3.37), (S.39), and (3.40) give

D~p(- /3«~ —l3K )

= [M„(l,)M„,(l,')] '~3Zz, @~(/3«; l,'K; 1 -1 )

&& exp (- zq ~ [rp(l"', l3, K') —rp(1", l3 K)]

= [M.(/3)M~ (/,')]-"3Z,, C,(/, K; l,'K'1')

xexpf- zq [r,'+r, (l,'«') —rp(/3«)]} (3.42)

= D*p (l3«; l3«'), (s. 4s)

according to Eq. (2. 18).
From Eqs. (2. 16) and (3.43), it follows that

]„(-l,«; p) = e'""']*(/3«; p) . (s. 44)

We can always change to a new set of eigenvectors
according to Eq. (2. 21) with p(p) = —zz/(p):

g'(/ K;P)=e '"' ' '$ (/, K;P) . (3.45)

Then we have $,'(- l3«; p) = $'*(/3«; p). We can thus

always take

$, (- l3«; p) = $*(/3«; p), (s. 46)

and we will do so. "
In a crystal with a three-dimensional center of

inversion, all surface modes will occur in nearly
degenerate pairs, provided that the thickness of the

crystal is much larger than the attenuation depth

of the modes in question. If the eigenvector asso-
ciated with one mode has components $,(/3«; p, ),
the other mode in the pair will have an eigenvec-
tor with components

(s. 41)

where 1'" implicitly depends on 1' through Eq.
(3.38). However, it makes no difference whether

we sum over 1' or 1'" in Eq. (3.41), since in either
case 1"' ranges over the complete set of lattice
points. Therefore, if we change the summation in

Eq. (3.41) to a summation over 1"', then change it
again to a summation over (I"'—1"), and finally
rename (1"'-1")to call it 1', we have

D 3(- l3«; —l3«')

C'&~(/3«; l3K; 1 —1 ) = 4~3(- lzK; —lzK ~ 1 —1 ),

(s. 39)
~ n(/3 & Pz) + Z~ &(/3 & Pl) &

(s. 47)

in view of Eqs. (3.36) and (3.38). We also have

from these equations

where the plus sign holds for /3& 0 and the minus

sign for /3&0. We will now justify these asser-
tions.
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Consider a crystal with an arbitrary, very large
thickness which has a three-dimensional center of
inversion; we will denote this crystal by C. Next,
let S' and S denote semi-infinite crystals that co-
incide with C for /3 & 0 and l3 & 0, respectively. For
every particle in the l3th layer of S', having mean
position rp(liz), there is an identical particle in the
layer of S labeled by (- Is), having mean position
—rp(lz), because of the inversion symmetry of C.
Consequently, the following is true: Let u" (llz; qp)
represent a normal mode in S'. According to Eqs.
(2. 14) and (2. 15) we have

u" (liz; qp) = [NM„(ls)] ' ~s Qp)' (lsd; qp)

u' '(ly; —qP) = [TrM„( I,)] '~'Q-, t' (- tsK' qP)

&:exp{-zq [r,'+rp(tsg)] —(ut] .

Equation (2. 24) implies that

(3.48)

zz' '(1~; qp) = [XM„(-I,)] 'tsQ, ]',*(-lac; qp)

&& exp{iq ~ [rt+ rp(lsy)] —s)t}, (S. 50)

and Eq. (2. 22) implies that the modes in Eqs.
(3.48)-(3. 50) have the same frequency. Now sup-
pose that these modes are localized at the surface
and consider the following thought experiment: We
cut both S' and S into two pieces, the first piece
consisting of the particles for which l3 & 0 and the
second consisting of those for which E, &0. We

join the l3 & 0 piece of S' to the l3 & 0 piece of S .
The resulting crystal is identical to C. Since C
has an arbitrarily large thickness, the surface
modes will be only infinitesimally affected by our
surgery, and to an arbitarily good approximation
the surface modes in Eqs. (3.48) and (3. 50) will
still be normal modes of C. They will also be de-
generate, according to the comment following Eq.
(3.50), so any linear combination

u (lzz; qp) = [ÃM„(ls)] Qp[a]'„.(lsp; qp)

+ bt' ~ (- ls~; qp)]

&& exp {zq [rp+ rp(lsK)] —(dt t (3. 51)

will also be a normal mode of C [In getting from

x exp{i q ~ [rp+ rp(lsz)] —art)I,

(3.48)

where the superscript s indicates that this mode is
for a semi-infinite crystal. The corresponding
mode in S, which will be called u' '(lz; —qp), is
obtained by letting rp(lv) - —rp(liz), Is ls'.

t ~(lsK; Pz) = $ ~(lsKj P)+ $~ (- lsK; P),

$, (lsx; ps) = z[g~(ls~, p) —&',*(-lslz; p)],

(S. 53)

(s. 54)

which are adapted to the inversion symmetry of
C. Equation (S.47) follows immediately, since we
can neglect the second term in Eqs. (S. 53) and

(3. 54) for ls & 0, to an arbitrarily good approxima-
tion, and we can neglect the first term for le&0.

If the thickness of the crystal is not very large
with respect to the attenuation depth of t' (Isa; p),
then the degeneracy of g (tse;P, ) and $ (lsv;Ps) is
broken and Eqs. (3.47), (3. 53), and (S. 54) are only
approximately true.

IV. CONCLUSION

The purpose of this paper was to provide a gen-
eral formulation of the lattice-dynamics problem for
a crystal with one or two surfaces. It should be
regarded as complementary to the paper on the dy-
namics of a semi-infinite crystal by Feuchtwang. ~

Feuchtwang's treatment was based on a represen-
tation of the vibrational modes in terms of three-
dimensional Bloch functions (with a complex b,).
Here we have not used such a representation. The
present formulation is also more general in that
no assumption was made concerning the range of
the interaction. Feuchtwang's work, which in-
volved a more careful treatment of the difficulties
peculiar to a semi-infinite crystal, was oriented
more toward formal conclusions than actual calcu-
lations, whereas one of the primary objectives of
the present work was to provide a framework for
calculations of vibrational surface properties. An-

other objective was to determine some of the prop-
erties of the vibrational modes, in order to explain
the results of calculations+ and possible future
experiments.

Section II was largely devoted to establishing a
serviceable notation. In particular, the convention
was adopted of writing two-dimensional vectors in
roman type with a superior bar (e. g. , r) in order
to distinguish them from the corresponding three-
dimensional vectors (e.g. , r). We have found this
convention to be convenient and not likely to cause
confusion. Also, a system of labeling the symme-
try points in a two-dimensional Brillouin zone was
adopted. This system was derived from that of

Eq. (3. 50) to (3. 51), we have used the fact that

M, (- Is) = M„(ls) in C.]; i. e. , in the r~ormal mode for
C given in Eqs. (2. 14) and (2. 15), we have

(I Iz; qP) = a$' (Iyc; qp)+ b)'*(- I v; qp) . (3. 52)

We can satisfy Eq. (S.46) with the choices a= b = 1

or a= —b=z, so that the surface mode $'(lsz;P) in

the semi-infinite crystal leads to the degenerate
pair of surface modes in C given by
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Koster for three-dimensional lattices. In the case
of a square lattice, it is in essential agreement
with the notation in a number of previous publica-
tions.

Also in Sec. II, we discussed the various versions
of the quasiharmonic approximation used in studies
of surface-lattice vibrations. The eigenvalue equa-
tion for the normal-mode frequencies was obtained
in the usual way, with the assumption of the adiaba-
tic approximation, the quasiharmonic approxima-
tion, and two-dimensional periodicity.

In Sec. III, the properties of the vibrational modes
were considered. For an arbitrary crystal, a
particle moves in an elliptical path about its mean
position if the crystal is vibrating in a single
normal mode. This ellipse may have any orienta-
tion in general, but if the crystal has "axial-inver-
sion symmetry" then one axis of the ellipse is
normal to the surface. [This condition holds, for
example, in the case of an fcc crystal with one
atom per unit cell which has a (100) or (110) sur-
face. ] For such crystals, the original dynamical
matrix can always be reduced to a real symmetric
matrix of the same size. If the crystal has a
three-dimensional center of inversion, then the
eigenvalue problem can be reduced still further;
the final result is a pair of eigenvalue equations,
each involving a real symmetric matrix which is
(approximately) one-ciuarter the size of the original
matrix. These reductions can be useful in calcu-
lations, since the required computer time and mem-
ory are greatly decreased.

In the case of any crystal with a finite thickness
and a three-dimensional center of inversion, we
can choose $ (- Ega) = $*(Egz). The dynamical matrix
for such a crystal can always be reduced to a real
symmetric matrix of the same size. The surface
modes will always occur in nearly degenerate pairs,
if the thickness is large compared to the penetra-
tion depth of the modes.

If the crystal has "complete reQection symmetry"
with respect to some plane normal to the surface,
then for any wave vector q parallel to this plane the
vibrational modes "partition" into two classes. The
modes in one class are polarized strictly within the
sagittal plane, which contains q and the normal to
the surface. The modes in the other class are
polarized strictly perpendicular to the sagittal
plane. 'g Whenever there is such a "partitioning"
into several mutually orthogonal classes of modes,
it is possible for surface modes of one class to
exist within the bulk subbands for another class.
In fact. a mode which lies outside the bulk subbands
for its class must be a surface mode.

Regardless of crystal symmetry or the direction
of q, any mode whose frequency lies above or be-
low the bulk subbands for its q, or falls in a gap be-
tween the bulk subbands, must be a surface mode.

In this Appendix we show how the eigenvalue equa-
tion for a surface with axial-inversion symmetry
can be further reduced if the crystal also has a
three-dimensional center of inversion. Let us de-
fine

B~g(lgz'; Egz ) = W~g(lgxj Egcc'),

(n, p) = (x, x), (y, y), (x, y) or (y, x), l, & 0, l,' & 0

(A1)
= W g(Egcc; —Ega'),

(n, p)=(x, z) or (y, z), lg&0, lg&0 (A2)

= W g(- Egv; Egcc'),

(n, p) = (z, x) or (z, y), lg&0, lg&0 (AS)

= W~g(- Egtcj —Egz'),

(n, p)=(z, z), lg & 0, lg & 0 (A4)

where W,g(lgv; Egz') was defined in Eci. (C9) of Ref.
22. We also define

C,g(E3Kj Egz ) = W~g(- EgKj —EgK ) ~

(n, p) = (x, x), (y, y), (x, y), or (y, x),

lg &0, lg & 0 (A5)

= W, (—Ega; Egz'),

(n, p) = (x, z) or ( y, z), lg&0, Eg&0 (A6)

= W~g(lgzj —lgcc ),

(n, p)=(z, x) or (z, y), l, & 0, l,' & 0 (A l)

= W~g(lgzj lgIc'),

(n, p)=(z, z), l, &0, l,'&0. (A8)

Finally, we define

Finally, we mention that there is no general re-
striction concerning the dependence of the amplitude
or polarization of a vibrational mode on the distance
from the surface. ' In general, the polarization for
a given mode can change from one layer to the next.
For example, the particles in one layer may vibrate
perpendicular to the surface while those in an ad-
jacent layer vibrate parallel to the surface. In gen-
eral, the amp1itude of a surface mode need not de-
crease monotonically, or even regularly, with dis-
tance from the surface, and it certainly need not
decrease exponentially.

APPENDIX
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5, (I,x) = v, (f,x), Q=x or p» E3&Q (A9) otherwise . (A19)

=v (-I,x), (Alo)

(All)c (I,x) = v (- I,x), o. = x or y, I, & 0

= v (IgK) ck = x Is & 0 (A12)

where v (I,x) was defined in Ref. 22. Equations
(3. 13) and (3.14) of this paper, in conjunction with
Eqs. (CQ) and {C12)of Ref. 22, imply that

For each solution to Eq. (A14), let

v„(f,x)=c (l,x), 4&0 and n=x (A2O)

=c (-Isa), 1~&0 and c.=xor y (A21)

=0, otherwise . (A22)

Finally, let

+~g{IBKq ISK )bg(4K ) = QP5&{lgK) &

gft' 1~3 & 0

Z 5 C~(4x; Isa')cq('lsx') = &o~c (I~x) . (A],4)
ge s~&0

3

(ITIC
'

lglC) = 8 g(lgK' ISK )

Cg~(I3Ã q lgK) —C~(lsK& IOK ),
(A15)

We have thus reduced the original eigenvalue prob-
lem to Eqs. (A13) and (A14), each of which involves
R reRl symmetl 1c matrix which 1s approximately
one-quarter the size of the original matrix. The
modes Rre CRlculRted Rs follows: First solve Eqs.
(A13) and (A14). For each solution to Eq. (A13),
construct a complete eigenvector with components
v (lsx) by letting

v (I,x)=b (I,x), I, &Oand a=xor y

= 5 (- l~x), l3 & 0 and n = x

(A17)

(A18)

Here the prime on the first summation indicates that
there is no E3=0 term if p=s, and the double prime
on the second summation indicates that there is no

I,'=0 term if P=xor y. Using Eq. (Cll) of Ref.
22, one can show that

g (E,x) =-,'2'~'[v (I,x)+iv (-I,~)], I, &0 (A23)

=u (I,x), I, =O (A24)

= a2'~'[v (-I,x) —iv, (l,x)], I, «0 . (A25)

If the eigenvectors 5 (4x) and c (4x) form complete
orthonormal sets in their subspaces, then the $ (l3«)
given by Eqs. (A23)-(A25) will automatically form
a complete orthonormal set satisfying Eqs. (S.29),
(3.30), and (3.46).

At this point it is appropriate to make several
corrections to Appendix C of Ref. 22: Equation
(C13) should be replaced by Eqs. (A23)-(A25)
above, and the contents of the third paragraph of
Appendix C down to Eq. (C8) should be replaced by
the contents of Sec. IIIC of this paper down to Eq.
{3.46). Finally, 1,' in Eq. (CS) should be I'. We
also mention several other minor corrections to
Ref. 22: In Eq. (3. 1), the equality sign should be
replaced by a proportionality sign, in Eq. (AV) the
plus sign should be an equality sign, and in Ref.
6 the volume number should be 19 rather than 18.
In Figs. 8 and 9, (M&/ho)'~ should be replaced by
{Me)'~ /Ko, as in Figs. 4, 5, and 12.
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