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Transport in a Magnetic Field. IV. Cyclotron Resonance and Related Effects*
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The surface impedance of an ideal slab is calculated for Azbel' -Kaner geometry using the
formulas of I and II in this series. The cyclotron-resonance frequency and the subharmonic
frequencies are unshifted by particle interactions. This result is dependent on the details of
our formulas of I and II. Additional structure in Z is found including a TE surface-plasmon
resonance.

I. INTRODUCTION

Charged particles moving in a magnetic field may
be excited by illumination by rf energy, at the fre-
quency of their cyclotron precession. For free
electrons

where m is the free-electron mass. Electrons in
solids, however, are subject to a variety of forces
mhich complicate the interpretation of those reso-
nances observed. Our purpose in this discussion is
to study the interpretation of observed cyclotron
resonance in a simple metal.

Charged particles deform the crystal lattice about
them; this deformation tends to follom their motion,
and thus having to drag a portion of the lattice
about, the electrons may be made effectively more
massive and the cyclotron-resonance frequency cor-
respondingly reduced.

The electrons also interact with one another, and
this might be expected to change their' cyclotron
mass, the value of m which must be used to make
Eq. (i) match the observed resonances.

Azbel' suggested that the quasiparticle mass is
measured in cyclotron resonance. This suggestion
is based on the Silin transport equation applied to
the anomalous-skin-effect frequency range. Lut-
tinger has further considered this problem in an un-
published study. Platzman and Jacobs have re-
ported Luttinger's agreement mith Azbel' .

In previous publications me have obtained equa-
tions for electron magnetotransport mhich differ
from Silin's in just the combined effects of interac-
tions and cyclotron precession. Vfe apply these

transport equations here to cyclotron resonance.
%e find that the fx'equencies are unshifted by the in-
teractions, that the bare particle, rather than the
quasiparticle, mass is measured, that the observed
mass changes should be attributed to the phonon and
lattice interactions.

The effects of these interactions are considerably
larger than those to be expected from particle-par-
ticle interactions by more than one order of magni-
tude. The question me raise is therefore unlikely
to be resolved in direct measurements of cyclotron
resonance.

In III of this series, me discussed the conduction-
electron spin-resonance (CESR) exp™""0'
Schultz and Dunnifer and the interpretation of them
given by Platzman and %oUf using Silin's3 formu-
lism. The cyclotron mass is used in interpreting
these experiments, and the question. of whether or
not to incorporate interparticle effects influences
the algebraic form of the results. Since cyclotron
resonance is itself a result of a transport process,
homever, it mould be inconsistent to use our trans-
port formalism on the CESR measurements but using
a cyclotron mass interpreted by Silin's equation.
%e found in III that our transport equations led to
a single parameter fit of the data using a cyclotron
mass mhich mas unshifted by the interactions. This
paper provides the detailed justification for that un-
conventional usage.

The theory of cyclotron resonance is complicated
by the skin effect. Because the electron gas is so
highly conducting, rf energy penetrates only a short
distance into a sample. In the frequency range of
interest, this distance is much smaller than the cy-
clotron radius. Many different wavelengths are
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II. WAVE EQUATION

From Maxwell's equations we can write a wave
equation on the electric fields and current:

BE ~E 4m Bj 4mi~j

By c ~c Bt c (2)

all quantities being assumed to vary in time like
e'"'. We let y& 0 be the interior of the metal and

y & 0 the exterior. The constant magnetic field lies
in the z direction. If the space y & 0 were filled with
a similar metal sample, we would have

E(y) = E(-y); BE(y) BE(-y)
By By

Now E(y) is a continuous function, but E' = BE/By
has a step discontinuity at the surface, hence

therefore required for a description, i.e. , Fourier
analysis, of the rf internal fields, and surface con-
ditions are of some importance.

Cyclotron resonance is observed as a series of
peaks in the derivative dZ/dH, where Z is the sur-
face impedance and H the dc magnetic field. We
therefore devote our attention to the surface imped-
ance. We write down Maxwell's equations for the
interior of the metal. This gives one linear relation
between E and j, the Fourier components of the
electric field and the current density. A second
relation must be found from the equations of motion
of the electron gas. To obtain this second linear
relation, we write the Liouville equation for the
density matrix in a representation appropriate to
specular electron reflection at the metallic surface.
We express the current density j~ as an integral of
certain matrix elements of the density operator, ob-
taining these matrix elements from solving the
Liouville equation. The matrix elements prove to
be linear in E&, and this provides our second rela-
tion between E; and j;, the conductivity.

The surface impedance is found from E at the
sample surface, and this quantity is found by inte-
grating E;, j; having been eliminated between the
two relations. We identify the cyclotron-resonance
peaks and an additional collection of higher-frequen-
cy resonances associated with modes localized on
the surface. We note as mentioned that the cyclo-
tron resonances are unshifted.

III. TRANSPORT EQUATION

To obtain a solution of (5), we need to know the
conductivity o(q, e) =j,(&u)/Z, (~). We have else-
where given a transport equation for an electron
gas disturbed by an electromagnetic field. The con-
ductivity so obtained proves appropriate for the

specularly reflected cas'e but this assertion requires
demonstration.

The one-electron basis function must vanish at the

surfaces y = 0 and L. Appropriate funcU. ons are

~i (kgx+ egg) S

k„=a 2vn/L 0 0 . (8)

The total density of states in energy is unchanged.
Under the action of a magnetic field, the wave

functions u„- tend to evolve into

vp=8 " g coskyy.

These functions are not independent of the up,'

Sf, =Q Qtss nj
gl

When

k, = k, -=2m'/L,

all the a~. vanish. Similarly, when

k, = ko= (2m+1)v/L,

the a~&=0. Thus if it were not for the boundary con-
dition, we could replace the u„by the v~, .

To determine the relative error introduced by such
a substitution, we evaluate the coefficients a,

sss S =Z ( ~ ) (sinn —
)(

—)'

But the sum on the right-hand side can be written

sin(2p+ 1)yv/L 2 '~ my'cos
2P+1 g L

where

k„=nv/L, n = 1, 2, . . . .
There are twice as many positive values of k„with
these boundary conditions as with periodic boundary
conditions, which would give us the condition

B2E
2 =2E'B(y)+nonsingular part.

By

Fourier analyzing gives

2E' —q'E, +(cu /c ) E, —(4vi(u/c ) j,=O,

where

(4)

(5)

We can terminate the sum over n to keep m —n =P
small, approximating v, as a finite sum. The mea-
sure of the error will be the difference between

unity and

~0 sin(2p+1)yv/L 2 "'
2P. 1

E, = f e "' E(y)dy ~ This approximation becomes valid for
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2PO=I /~ (14)

To use this approximation, we must have that the
spread in k values, &k, of functions used for ex-
pressing a single v~, must be«k~, andy „, the
smallest y value for which (14) holds, should be
«rf skin depth. In fact, as we shall see, cyclotron
resonance is dominated by the q = 0 terms in E, so
that the latter condition is stronger than necessary.
However, for typical experimental conditions, these
restrictions can be simultaneously well satisfied.
When y &, is of the order of one lattice constant,
4k = k& and the skin depth is many lattice constants.
We are led to standing waves sink, y and cosk,y as
basis functions for the formulation of the transport
problem. We make the same error by combining
sink„y and cosk„y into exponential running wave func-
tions appropriate to the bulk problem.

The quantities we calculate are certain integrals
over the electron distribution. The important quan-
tities are determined by the angular variation of the
distribution over the Fermi surface, and depend
only weakly on the precise variation of distribution
with energy. If our concern were with quantities
depending on more precise information about the en-
ergy dependence of the distribution, say the specific
heat or Seebeck coefficient, we should need to take
better account of the boundary conditions. &l/kz is
not small compared to ((T/&z or to q/kz for reason-
able values of y &,. Our expressions contain things
like xp=ng„--np, which we write

grate this equation over )k). In this process, the
details of the precise behavior of the functions near
k& are washed out, as we mentioned, and we are
left with an integrodifferential equation on Q as a
function of angles 8 and y. We measure 8 from the
magnetic field direction, and obtain

eI k~j = —— dQ(zcos8
m 4m

+y sin8 cosy+ x sin8 siny) S(8, y) (19)

8 -S~ . eBI—p(8, y)+, ks (7 I — —u(8, y)8t ' m* mc 8p

i'= —qcosysine E, kg
mco

sZ V(kk')s(. —2V(q)ZS);.
)

. (20)
fi

To solve this equation, we assume steady-state
conditions, whence

8
ih ~(8, y) = —h&u m(8, y), (21)

. 8
k(s) sass s(—+) ss(s, s ) =2(s, v), (22)

and treat the integral portions on the right-hand side
all as an inhomogeneous field

&;=((I k/k, )6(n-e, ). (16)

However, that this may be spread out over a range
~k, rather than confined strictly to the Fermi sur-
face, proves insignificant as long as ~k«k+.

From Ref. 4 we have

g= sine,
I'kgq
m*vc

x = (o/&o„

eiE,k~h(8, y) =q cosy sin8 ' cos8
mw,

(24)

89) . e
gp —gg, » —iS' — Bxk V +g8t " " mc

=SS 2; ksZ V(kk')SSS —2V(q)ZS;)men gl

(16)
where

eS ~ ~p
j = ——~ k' X)-. ~

gt

I k6k= -Z V(kk') nk. .2m (18)

Consider the right-hand side of (16). X k is the only
rapidly varying function in the neighborhood of
k = k&. S g must thus have the same rapid variation.
On the left-hand side, the term in B instructs us to
take a directional derivative perpendicular to B and
k, thus tangential to the Fermi surface. We inte-

Z [v(kk') —sv(q)[s ) . (22)
c a'

E(Luation (22) has the solution

((s s(ss+ ks &

x f ((s s( s'+ )(s')h(8 yl )dy (26).
To proceed with the solution, we need an expression
for h(8, y). It is important to note, however, before
specifying V(k, k') that while g(8) and h(8, y) contain
reference to the electron interaction potential func-
tion, X =(d/&o, =(dmc/eB does not. The factor m is
the bare mass, not the quasiparticle mass, as we
have elsewhere stressed. In Silin's formulation,
m* will appear here and & will be interaction depen-
dent.

We write
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V(kk') = Vo+ V, cosg+ V2P2(cosg)+ ~ ~, (2V) +(88 g ) Q sb (88 )e((88'

g= oo

(28)

where g is the angle between k and k'. Since S)", is
localized to the Fermi surface we can drop the de-
pendence of the interactions on k and k' . The
functions P, (cosg) can be reexpressed in terms of
the separate angles 8, 8', q, y' by use of the addi-
tion theorem on spherical harmonics:

cosg=cos8cos8'+ ,'sin—8sin8'(e'"e "'+e '"e")
(28)

For convenience sake we truncate after the term in

V„ including higher terms would be straightfor-
ward, though tedious. We must also expand
&(8', q'),

h(8, ((())=AD+A)e' +A (e ~+Arne~('+A ae
2(' (30)

The series terminates at one power of e""higher
than the expansion for V(k, k'):

A = ' ~ & (8')+& (8') sin 8'd8'

. 0

(31)

A2=AO=A 2, (32)

Now we can write h(8, ((()) as a sum of terms in e'":

A, = ' -+ sso(V)sinlYdV (- Vs —3V~) s cosd Scs(V) sind'cosd'd8'
V~) =A, (33)q sin8 ieE,hz cos8 h)

2 moue, 4v &u,

To evaluate the integral in Eq. (26), we expand

0
2" (n —m)!m!

Integrating gives,

I

by Eq. (19). Furthermore, we observe that

A, =A, =A, =O

is a solution of the system consistent with

Aq=A (40, A, SO,

(36)

(SV)

so(8 +) e((g sin(8) Q ( )883 1(2gd
(n —m)!m!

e-f (n-2m- j )g)

X
(n —2m-j+&) '

(36)n=0, ~ ~ m=-n, n. j= —2, 2.

To give a complete solution for K)(8, (()) we should
need to insert (35) into (31) and (33). This would

give a 4~4 algebraic system in the integrals of Q,
over ~. The solutions of this system would then

give the A~ and thus X) (8, y). However, to find j,
requires only finding an integral of $(8, ((()) as given

I

that is, the rf fields are transverse to q inside as
well as outside the metal. Hence we need only cal-
culate

eS k'
(j,},= ——"~ sin8cos8 &(8, ((())d8d((().

(38)

Now g(8) is a symmetric function of 8 about the mid-

point of the range 0, g, sinecose, however, is anti-

symmetric. Therefore only the similarly antisym-
metric parts of &(8, y) can contribute to the inte-

gral, (38). But by Eqs. (Sl}-(33), onlyA, and A,
need be found, and indeed only the antisymmetric
parts of those; to find the current, we need only find

5)0 ~ cosesin~de

d((() cos8sin8 S)(8, y)d8

A e((2m 88+9)3)(lg)88-( )883s)

2r
d8dycos8sin8e'd""' Z

&
(n —m)!m! (2m —n+j —&)

1 Do ~-i(n-2 -j)
d8dqcos8sin8 E e"' J;(g) Z A&(- 1)"—

2r 2 (n —m)!m! (n —2m —j+X)

A, (-1)" g " &(. 2. ~)(g)
de cos~ sine ~~

~

, „„~m!(n —m)! 2 n —2m —j+X
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d8 cos8 sin8 Z l+x (4O)

where the J„are Bessel functions. We use Eq. (33), and obtain

cos g s g 0 E E 1 Q gf gI ggdg f g f $ g l g 1+1 g dg

cos sin 8 + D() Q d8.q g . g ie&,k~ k~V~
" 2/ J~&

m&o, &u 4v9E(d, 0 „g(l+x) &

(41)

If we call the second quantity in large parentheses G(g, X) we can write

Do = i —cos 8 sin38 G(g, X) d8
eE,k~

(
qkzVx a . 31 — ' cos 8sin 8G(g, k)d8 ~. (42)

The conductivity is obtained by multiplying:

o(8 ~)=-—eS' k~3 D j,
m 2g g g

I

Using Eq. (6),

Z = —(2i(o/c') f"E, dq/E '.
IV. SURFACE IMPEDANCE AND CYCLOTRON RESONANCE

The surface impedance is obtained from the ratio
of E(O) to SE(O)/Sy =E'.

Z = —(4mi(o/c ) [E(O)/E') . (44)

We combine Eq. (43) with (5) to yield E, in terms of
Ef.

4'(u j
Ft ca

d= s ( ~-S — s, eosesinHG(d, n)de ( — eosssinSG(d, n)de) de. (45)
41M ('" N ~ 8k Iq kpVqq '

p . p

c c m c c 87/ (dC pC p C 0

This expression, integrated over q, is the surface
impedance. The problem of finding Z is thus com-
pletely reduced to quadratures. Clearly the impor-
tant features of this expression are governed by the
function G(g, X). As a function of &, G consists of
a series of simple poles at all integer real values
of X except 0. The large responses Dp atthesepoles
constitute cyclotron resonance and the subharmonics
characteristic of Azbel' -Kaner geometry.

Our primary interest is in locating and interpret-
ing well-separated resonances. As X goes through
a resonance, the term in the series for that single
resonance will dominate the remainder. We tempo-
rarily study G(g, X) by taking the terms singly and
throwing away the remainder. For example, for
I= —1, we have

(46)

k'V ~, , 2p-=~ ' cos 8sin 8 —J', (g)~d8.
6leak(ddl') g

0

As we shall see, cyclotron resonance is dominated
by small q. We thus approximate the integrals in
n and P by the leading terms in q, whence

n=-,' ((o~/(o, )' (u~/c ), (47)

P = +&0 (R,) 2m~k+ V,/3II m; R, = Rkz/m~(d, . —(46)

With these approximations, the integration in (46)
can be performed. Experimentally, it is convenient
to study

BZ mc+H BZ
BH e B&

Integrating and differentiating in (46) yields

BZ imnc 1
sx 4(() (X —1)

where

[) —1 —n+p(u /c +2(d p' (1 —x)' '/c]'

n= az- cos 8-sin 8 —J,a(g) d8,
2+m c (dcq g

We observe a resonance at ReX=Re&u/&u, =l with a
square root of a Lorentzian line shape; this is the
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Expressions of this form become successively more
difficult to integrate; n = 1 we have considered; n & 4
cannot be treated analytically. However, by reduc-
ing the fraction in the integrand, this expression can
be written as the ratio of two polynomials in q:

(o i —q') ~ ~ ~ (~.—q')
Z= o'0 dq p

(po q)-" (p. q)-P ~

~CO

By writing the factors in the numerator as
(n& —P &)+ (P; —q ) we note that the fraction can al-
ways be expanded as a sum of integrals like

CO 1
a=y, » ~q, (52)

(r& q) (r-a q) "-(& -q')

where the y& are a subset of the P&.

This kind of expression can be integrated by the
method of residues:

1 iver
a=~a II ua. (53)

Singularities, i.e. , resonances, occur at y, =y; and

y& = 0. But y& = 0 implies that-the denominator of
(52) and hence of (51) can be factored. Since the
constant term in the denominator is (X —n)&a /c, we

see that at least one resonance occurs at X =n. If
we approximate G(g, X) less drastically by keeping
more than just leading terms, we shall have more
complicated q dependences than in (50). However,
the constant term in the denominator of the integrand
for Z will always be of the form

(X —n, ) (X —na) ~ ~ ~ (X —n~) (u /c,
where the n& are integers, their number determined

by the quality of the approximation. Cyclotron res-
onance and all its subharmonic resonances occur at

&u = n eH/mc . (54)

This conclusion is unaffected also by the termina-
tion of the expansions of V(k, k'). Carrying V(kk')

to higher order in e""" ' will introduce more terms
A& in the resulting expansion of k(8, y). The crucial
point, however, is that after the integrand in (45)
has been expanded as a series in q, the coefficients

cyclotron-resonance line and is unshifted by the in-
teractions. It is important to bear in mind that this
equation is valid only near & = 1.

Successive poles of G(g, X) occur at higher fields,
that is, smaller X. Referring to Eq. (41), we notice
that each successive resonance is associated with
a higher-order Bessel function. Upon expansion the
leading terms of these Bessel functions are succes-
sively higher in powers of q. Thus in place of Eq.
(46), we need to consider

4i(o " (o', ~'q

«00

1 1 2nq~
—1 &+1 ya-]. ' (56)

The interaction terms have been dropped for sim-
plicity. This correction gives resonances in Z at

(d = 6 (d~(Q + 1)

=+ (opu~/c v 5 + O(co, /(o~).

The electronic excitation giving rise to this reso-
nance is a TE surface plasmon. The small-q ap-
proximation is not valid, however, so the frequency
location here is meaningless.

"Small q" means g & 1 which from Eq. (23) leads
to

qR, &1

or wavelengths long compared to a cyclotron radi-
us. (A different approach yields a criterion quz/e
& 1 in the limit co,- 0. This is slightly less restric-
tive but not sufficiently so. )

The integral for Z, Eq. (46), can be singular in
two characteristically different ways. First the
term in n can become infinite, leading to a 1/q
singularity in the integrand; this is the cyclotron-
resonance fundamental and is a form of "infrared
catastrophe. " Also, the complete term in q can
vanish leading to an integral of a constant over an
infinite range. This "ultraviolet catastrophe" is the
TE surface-plasmon effect. But an "ultraviolet
catastrophe" means the integral is dominated by
large q or terms of high powers of q, which terms
we have discarded in obtaining this expression for
Z. Hence, taking q small is more a mutilation of
Z than an approximation to it.

The location of the resonance in frequency is in-
fluenced by our long-wavelength conductivity-muti-
lation procedure, but its existence is not. In fact,

become singular at integer values of X only, and
these singularities give the cyclotron resonances.

We note finally that our conclusions are in agree-
ment with Kohn' who found for the case of large
skin depth that the cyclotron-resonance fundamental
is rigorously unaffected by particle interactions.

V. ADDITIONAL RESONANCES

Equation (49) for BZ/N, shows an additional "res-
onance" at

X = n+ I —uo(nP/c)"'+P~'/c'. (55)

However, (49) was obtained by assuming IX —1 ~«1.
This "resonance" occurs at a frequency X»1 for
typical metallic parameters, hence at the very
least, we would have to include the l =+1 terms in
approximating G(X., 8). We should thereby have con-
structed a long-wavelength approximation to G

(since J, -g '-q '). In this case in place of o.q /
(X —1) in Eq. (46) we have
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not only the surface-plasmon resonance but also
other types of resonant structure in Z and its deriv-
atives must be expected, all caused by the presence
of the surface.

Equation (46) and the resulting magneto-optical
resonance it seems to predict were obtained by
severely truncating the expansions of G(g, X). The
existence of the resonance may be suspect on this
account. If we make the truncation less severe, the
integration becomes rapidly more difficult and ana-
lytic expressions become unavailable. However, we
can determine enough in general to be sure that im-
proving the approximation increases rather than de-
creases the resonant structure in Z and its deriva-
tives.

Ignoring the interaction terms, the surface imped-
ance is of the form

2 g dg
0 aP+ a1$ + a2Q' + '

The coefficients a2 and higher are all of the form of
sums of terms in &2(X -p) '; a, contains a constant
as well as a pole, (X —1) '. Truncating the expan-
sion after a1, a& = 0 for j& 2 gives an obvious singu-
larity in the integral when a, (X) goes to zero. In-
clusion of the a2 term, however, although it makes
the integral convergent at a, = 0, does not destroy
the singularity. Instead, the original singularity is
slightly shifted and an additional weaker singularity
is introduced at a2(X) = 0.

Equation (57) can be written in the form of (52) and

integrated, (53). Singularities occur in the inte-
grand at y &

= 0 and y &
=y& .1/2

The first singularities lead to cyclotron reso-
nance. The latter occur at y& = -yz . Consider
y1 and y2 as the confluent roots. The surface im-
pedance is proportional to

1 1 1
+ g/2 II

y2 /&1, 2 y2 yg y2 y1

and as y, -y2, this becomes

1/2 1/2
y1 y2 y1 y2 . &&1 2

which is singular only for y1 ——-y2 . It is further
important to note that every term in the sum for Z
contains an odd half-integer number of powers of
the y;. Thus, as a function of the y &, the singular-
ities of Z are all branch points and equal in number
to n, where n is the order of polynomial approxi-
mation to G(g, X).

As a function of the a„Eq. (5V), the singularities

of Z may still be seen to be branch points. We have

2 2n.ap+ap +' ' ' +an+

=ro(~ -rg) (x'-y2) ~ ~ ~ (xo-y„).2

Equating like powers of x, we obtain

an yp~

„a,=r oEr„

1~a„2=yp —~ y; y;
2 ggj

1 n.o=ro
f& j&0 ~ ~ ~ 1=0

The y& are solutions of the equation

ap+a1y+apy + ~ ~ a„y = Q.2 5

Hence

=-y ~~ca,y
- .

Ba,

The singularities of By&/Ba&, expressed as func-
tions of y&, are thus poles. If one now constructs

BZ g BZ By(

Ba~ By; By) '

we have that the singularities of this expression
must be branch points. We construct finally

BZ gg BZ By; Ba
BX ] ~ By] Ba~ BX

The a& are all polynomials in X, in general contain-
ing linear terms as well as even powers of X. At
least some of the terms in Ba//BX must be constants
and therefore BZ/N. must have branch-point singu-
larities. We have seen one such singularity appear
in the approximations which permit expressing Z in
simple form.

VI. CONCLUSIONS

The formalism of Ref. 4 leads to cyclotron-reso-
nance frequencies which are unshifted by many-body
effects in an interacting system. Additional reso-
nances at other frequencies may also exist in the
surface impedance or its derivatives with frequency.
We should finally note that the formalisms of Refs.
2 and 4 differ only in the combined effects of orbital
cyclotron precession and particle interactions.
Hence, this discussion of extra resonances, which
is essentially independent of the. particle interac-
tions, is likewise independent of the choice of trans-
port equations.
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A general formulation is given for studies of the vibrational properties of systems which
have two-dimensional periodicity and one or two surfaces. Although layered structures and
other systems with interfaces fall within the scope of this formulation, the principal motiva-
tion is to provide a framework for calculating and interpreting vibrational surface properties.
No assumption is made concerning crystal structure, surface orientation, the interaction be-
tween particles, or the number of particles per unit cell. Also, the treatment is applicable
to reconstructed surfaces, surfaces with adsorbed impurity particles, etc. , as well as unre-
constructed clean surfaces, provided that the two-dimensional periodicity is preserved. A
discussion is given of the properties of the vibrational modes: In general, the displacement
ellipse for a given mode can have any orientation. For surfaces with "axial-inversion sym-
metry, "however, one axis of the ellipse is always normal to the surface. If the surface has
"complete reflection symmetry" with respect to a given plane, then for any two-dimensional
wave vector parallel to the plane the modes will separate into two classes: one-third of the
modes will be pure shear-horizontal (SH) modes, and the other two-thirds will be polarized
strictly in the sagittal plane. It is possible for surface modes of one class to lie within the
bulk subbands of the other class. If the crystal has either axial-inversion symmetry or a
three-dimensional center of inversion, then the complex dynamical matrix can be reduced to
a real, symmetric matrix of the same size. If both symmetries are present, as is the case
for many surfaces of interest, then a further reduction is possible. Finally, notations are
suggested for distinguishing two-dimensional vectors and for labeling symmetry points in the
two-dimensional Brillouin zone associated with a surface.

I. INTRODUCTION

The study of elastic surface waves goes back al-
most a century, to the investigation by Lord Ray-
leigh in 1885 of surface waves in an isotropic elas-
tic continuum. ' In 1911, Love treated another type
of surface wave which can exist when a macroscopic
layer of one material is supported by a substrate
of another material, 3 and in 1924 Stoneley consid-
ered a type of wave which can propagate along the
interface of two materials. Rayleigh waves, Love
waves, Stoneley waves, and other waves in more
general layered media' are of importance in seis-
mology.

In the past 15 years there have been many studies
of surface waves in anisotropic media. ' For a
surface wave in an anisotropic medium, the dis-

placement u at the point with position vector r
= (x, y, z) is given byz

u(r) =Z c„j"exp[i(q" ~ r —(ut)J
n=1

3
=Z c„q exp[i(q",z+q„x+q„y —&ot)],

n=1

where (q„, q„) is the propagation vector, which is
two-dimensional and parallel to the surface plane,
and q", is a complex number which determines the
attenuation of the wave with distance from the sur-
face. (We take the z axis to be perpendicular to
the surface. ) For the special case of a true Ray-
leigh wave in an isotropic medium, there are only

two q"„both of which are purely imaginary, and

vibrations are limited to the sagittal plane. ' The


