
TWO-MAGNON BOUND STATE IN fcc FERROMAGNETS

This is in sharp contrast to the sc and bcc ferro-
magnets where no such state exists. It would be
interesting to investigate the behavior of this bound
state for an arbitrary wave vector.

It is interesting to compare the present calcula-
tion of the two-magnon optical spectrum with a
similar calculation in a Heisenberg antiferromag-
net. ' In that case, the attractive interactions
caused a resonant peak to develop just below the
top of the band. The position of this peak was
rather insensitive to the crystal structure and de-
termined by a square-root divergence in the density
of states at the zone boundary. This divergence
occured as a result of the form of the antiferromag-
netic spin waves rather than the structure of the
lattice. By contrast, in the present case, we find
that the ~epulsive force may lead to a bound state,

but the geometry of the lattice is a very important
aspect.
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APPENDIX

The Green's function I,„(&)is calculated near to
the zone boundary. The imaginary part is obtained
from (5. 2) and the real part from the Kramers-
Kronig relation (5.3) using the computations of
Frikkee for ImI„,(e) for —0.96«&3 and the
asymptotic form (5. 2) for —l & s & —0.96. We esti-
mate that, due to the difficulties of the numerical
integration, the real part is correct to about 5%%uo.

See Table I.
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The high-temperature series expansions for the spin-y Heisenberg ferromagnetic model on
cubic lattices are analyzed by a transformation method. Evidence is presented suggesting
that the susceptibility critical exponent (y) and the gap parameter (2d) are both smaller than
the original estimates obtained by Pads approximant techniques. Specifically, we find that
y=l. 36+0.04 and 24=3.50+0.20. The error limits are to be taken as a reasonable confidence
level rather than as a strict bound.

I. INTRODUCTION

Critical properties of all realistic three-dimen-
sional models of magnetism are determined by the
method of exact series expansions. It is generally
accepted that critical values of the Ising model are,
on the whole, reliably established. ' Critical values
of other models, such as the spin-~ XF model and

the spin- —,
' Heisenberg model, have been deter-

mined only recently and with an uncertainty general-
ly greater than in the Ising counterparts. In these
extreme quantum models, the noncommutativity of
spin operators complicates the evaluation of expan-
sion coefficients enormously; moreover, there is
an irregularity in the resulting series, apparently
related to the noncommutativity in some way not yet
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understood, making the job of analysis difficult (and

consequently the estimated values not entirely reli-
able).

For the spin- —,
' Heisenberg ferromagnet on regular

cubic lattices, which is our main concern, there are
now known a sufficient number of high-temperature
expansion coefficients for several functions, from
which one can make estimates of relevant critical
values. However, the generally irregular nature
of the coefficients (i. e. , the magnitudes of these
coefficients change in an irregular fashion) has
taxed the capacity of the existing techniques of anal-
ysis. Although some critical values (notably the
critical points, susceptibility exponent, gap param-
eter) have been estimated, they are in all probabil-
ity not immune from some small but significant
changes as either higher-order expansion coeffi-
cients become known or techniques of analysis be-
come more refined.

Estimates for the critical point and exponent are
usually made from a high-temperature series ex-
pansion by ratio and Pads approximant methods.
Although the two methods are not directly related
and employ different standards of reliability, esti-
mates made by them are often comparable and consis-
tent. When the two methods yield inconsistent values
as they are in some cases known todo, itbecomes dif-
ficult to decide which values are more reliable. If
a series behaves very irregularly, the ratio method
is essentially useless. In such a situation one has
only the Pads approximant method to rely on. Since
any result of series extrapolations (from a finite
number of terms) is not rigorous, it is desirable to
analyze a series by as many different methods as
available to guard against some possible systematic
errors.

The series for the S=-,' Heisenberg ferromagnet
are of the irregular kind and have been analyzed
largely by the Pads approximant method. We pro-
vide here an analysis of these series by a transfor-
mation method. While this method is not new, we

believe that it has not been hitherto applied with
advantage to high-temperature series expansions.
A series whose coefficients of expansion change in
an irregular fashion indicates the presence of more
than one singularity. The transformation method
seeks to isolate the physical singularity, so that the
series represents essentially an expansion of the
physical singularity.

II. HEISENBERG MODEL

The Heisenberg model is defined by the Hamil-
tonian

K= —2JQS, ~ Sz —p, HQ S;,

where S& is the spin operator at site i of a given
cubic lattice, S& is the z component of S; which is

the same as the direction of the external magnetic
field 0, p is the magnetic moment, and J is the ex-
change coupling constant (J& 0 for ferromagnetic
coupling). The first sum in (1) is over pairs of
nearest-neighbor sites only.

The Heisenberg model, which is a natural gen-
eralization of the Ising model, may be realized in

many realistic magnetic systems. Recently, much

effort has been expended in obtaining critical prop-
erties of this model by the method of exact series
expansions as in the three-dimensional Ising model.
For the case of S= —,

' on the fcc, bcc, and simple
cubic (sc) lattices, Baker et a/. have considerably
extended the evaluation of the expansion coefficients
for the susceptibility, specific heat, and some
higher field derivatives of the free energy, all of
which should diverge as the critical point is ap-
proached. The susceptibility series, usually the

best behaved and hence used to determine the criti-
cal point, are markedly less regular than the sus-
ceptibility series of the Ising model. The other
series are even less regular. A thorough analysis
of these series is given by Baker et al. using the

Pads approximant techniques almost exclusively.

Among these estimated critical values, the sus-
ceptibility exponent (y) and the gap parameter (2b)
are of special interest to us. The susceptibility ex-
ponentisestimated' to be y= 1.43+0.01for all three
cubic lattices, and the gap parameter, less reli-
ably, 2b = 3. 63+ 0.03 for the fcc lattice (evidence
for the other lattices is not satisfactory).

If this estimated value for the susceptibility expo-
nent, y= 1.43, by Baker et al. is correct (as indeed
their extensive evidence tends to support it), it
raises certain difficult questions. First, the sus-
ceptibility exponent for the S = Heisenberg model
on the same cubic lattice is estimated to be
y= 1.38. As the series for S= are on the whole

regular, this value can be accepted with reasonable
confidence. Then the small difference between the
values of y for S = —,

' and S= , if it really exists,
would suggest that y might be, at least, weakly spin
dependent. However, this sort of spin dependence
is inconsistent with the basic assumptions of scaling
laws. Second, quite independently, Bowers and
Woolf have advanced, based on somewhat indirect
but reasonable evidence, thaty= 1.38 for all cubic
lattices and for all spin values.

In order to resolve this apparent discrepancy, it
seemed to us that a reexamination of the series for
S = —, by some other methods of analysis, other than
the Pads approximant method, might be in order.
Baker et al. have made abundantly clear that their
estimates are necessarily subject to the basic pro-
cedural assumption of Pads analysis being tenable.
There are two well-known important shortcomings
inherent in the Pads approximant method. First,
Pads analysis seeks convergence and mutual consis-
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tency rather than trend. This kind of criterion has
an obvious built-in danger, Second, the Pads ap-
proximant method unfortunately places too heavy an
emphasis on initial coefficients of a series. Clearly
the asymptotic behavior of a series should not signifi-
cantly depend on initial coefficients.

It is for these reasons that any analysis of a fin-
ite-termed series by the Pads approximant method
ought to be complemented, if possible, by the ratio
method. The ratio method uses only ratios of suc-
cessive coefficients and incorporates a final extrap-
olation. It works best when the physical singularity
unambiguously determines the r'adius of conver-
gence. That is, when the physical singularity is the
only singularity or when it is by far the nearest sin-
gularity (to the origin of the K= J/kT pla'ne). In
such cases, extrapolations by the ratio method can
be exceedingly accurate and reliable. If nonphysical
singularities exist near the circle of convergence,
as in the case of S= —,', the analysis of a series by
the ratio method becomes nontrivial.

HI. TRANSFORMATION METHOD

Suppose by some means the locations of all the
principal singularities of f(K) are known and q &Iq, I.
Consider a conformal transformation, say, K
=G(K). If, bythe transformation, nonphysical singu-
larities K, are mapped onto K, in such a way that
now X; are farther removed from the transformed
circle of convergence (determined by K, ). Then
since the transformed series, say, f(K*)= P p

&b„E*", is dominated by the nearest and strongest
singularity, K,*, it should be possible to apply the
ratio method for the analysis of the series. It will
be seen that the transformation can also improve
the analysis by the Pads approximant method.

What kind of transformation can one apply' For
a completely convergent series, almost any con-
formal transformation may suffice. But for func-
tions, which are or can be given in terms of only a
finite number of expansion coefficients, it is essen-
tial to find the "right" transformation. The desired
transformation must be one which gives

f(K*)-(K —K ) ~, K -K,

A thermodynamic function f(K), such as the sus-
ceptibility, is generally assumed to obey, near its
critical point, a power law

f(K)- (K, —K) ~, K-K,
where q is the critical exponent. The function f(K)
being analytic can be given a power series expansion
about the origin in the form of f(K) =g"„.o a„K", con-
vergent up to the circle of convergence determined
by E, . If K, is the only singularity or the nearest
singularity of f(K), the values of K, and q may be
determined if a sufficient number of the expansion
coefficients a„are known (usually about 10 for
three-dimensional lattices).

If nonphysical singularities K& with strengths q&

exist near the circle of convergence, the power
series expansion may be useful if and only if N- ~,
where N is the total number of exactly determined
expansion coefficients. For a finite N (-10), the
existence of these singularities is manifested
through an irregular variation in the values of a„.
In extreme cases, the behavior of a„may seem ran-
domly changing in both sign and magnitude. In
others the behavior, while irregular, may still be
comparatively smooth, indicating that the strengths
(q;) of nonphysical singularities are weak compared
with the critical strength of the physical singularity
(i.e. , Iq, I «q). But if they are not sufficiently
weak (i.e. , I q& I

~ q), their influence may very well
persist asymptotically. For these cases, obtaining
one or two additional higher-order coefficients
(always a laborious task) is not expected to be of
much direct benefit. This sort of irregular behav-
ior makes it difficult to determine K, and q unam-
biguously.

It must also determine the nth transformed coef-
ficient b„solely by the n exactly known coefficients
a„. That is, b„=f(a„,a„„a„2,.. .a„ao). Thus
transformations such as K*= G(0)+ G(K), where
G(0) is a nonzero constant, are to be excluded.

As is well known, the critical point and exponent
can be obtained by approximating the series expan-
sion in the form of N zeros and D poles (the [N, D]
Padd approximants). The critical point is usually
given by one of real positive poles which appear
most consistently among the [N, D] Pads elements
and which converge to some apparent value. The
critical exponent is given by the residue at that
pole. Among the Pads elements the more impor-
tant or reliable elements are the main diagonal ones
(i.e. , N=D) and the next diagonal ones (i. e. ,
N=D+1).

If a transformation leaves the diagonal elements
of the Padd approximants to f(K) invariant, there is
little advantage to be gained by the transformation
in so far as Pads analysis is concerned. Among
Pads approximants, the most commonly used are
Pads approximants to the logarithmic derivative of
f(K), which converts the singularities into simple
poles. It can be shown that under a bilinear trans-
formation the invariant elements are the less im-
portant [N, D=N+2]. Thus this type of transforma-
tion may indeed hasten the convergence of the main
diagonal elements for the logarithmic derivative of
a function.

The transformation method has been used before.
The ideas and applications of this method are found
in Danielian and Stevens, Baker, Gammel, and
Willis, 9 Gaunt and Fisher, ' Baker, "and Guttmann, "
among others. References to more recent work



A. Ratio Method

The ratio method rests on the observation that
if f(Z) obeys a power law near the critical point Z„
ratios of successive coefficients p„=a„/a„ i are
given by

lim p„=K,i 1+(q —1) —+0 —
3

1 1

g ~ OO
n' (4)

Then, Z, ' represents the asymptotic limit (n-~) and

(q —1) the limiting slope of p„. Estimates for these
parameters can be made by extrapolations provided
that the true nature of asymptotic behavior is indi-
cated in the incomplete series. ' The trend of suc-
cessive ratios may be obtained by constructing a
ratio plot or a Neville table. If ratios are smooth
or regular, estimates for E, and q can be made with
a minimum uncertainty.

For the transformed series, ratios of successive
coefficients r„=k„/k„, are given by

lim ~„=If, ' 1+(q —1) —+0 ~1 1
N~ oo 8

Given the value for E, , we can then get the value
for E,' by the inverse transformation equation
K= G (K*).

B. Pade Approximant Method

The [N, D] Pads approximant" to f(K) is an ap-
proximation by a rational function in the form of the

ratio of two polynomials of degrees N and D. Their
coefficients are chosen such that the coefficients of
the expansion of the rational function, in powers of
K, coincide with those of f(K) through order N+D
Advantages of Pads approximants to the logarithmic
derivatives of f(K) are apparent since the singular-
ities are only simple poles, which are easier to ap-
proximate.

The general procedure of Pads analysis, given
the first n terms of a series, is to obtain all possi-
ble Pads approximants with N+D = 1, 2, . . ., I —1.
If the results of the last few orders are subtantially
unchanged, the Pads taMe is regarded as having
converged. This procedure may be further varied
to check self-consistency.

may be found in I ee and Stanley. The most nota-
ble results seem to be due to Gaunt and Fishex', who
have analyzed the activity and virial series by this
method for phase transitions in a hard-sphere lat-
tice gas model.

IV. EXTRAPOLATION PROCEDURES

%e shaQ briefly describe two principal extrapola-
tion procedures used in this paper in connection
with the transformation method.

V. ZERO-FIELD SUSCEPTIBILITY

The zero-field initial susceptibility is defined in
the usual way:

aa
X= kT 2 InZls-»

The reduced susceptibility, g= ykT/N p', can be giv-
en a power series expansion in the form

8&)=1+~ &A",

TABLE I. Exact coefficients of the susceptibility
series expansions for the 8= ~& Heisenberg model on the
fcc, bcc, and sc lattices. After Baker gg al. (Ref. 3).

g„(fcc)

0 1
1 6
2 30
3 138
4 611.25
5 2 658. 55
6 ll 432. 5125
7 48 726.72619
8 206 142.3674
9 866 895.5063

10

a„6)cc)

1

12
34. 666 666
95.833 333

262. 7
708. 041 666 6

1893.289683
5 012.108631

13235. 513 27
34 737.965 23

a„(sc)

1
3
6

11
20. 625
39.025
68.VVV 083 3

119.429 7619
216.162 276 8
387.193832 7
658.341 539 8

where K= J/kT. The exact values of the expansion
coefficients a„ for 3 cubic lattices (fcc, bcc, and

sc) have been analyzed up to m=6 by Domb and

Sykes, ' Gammel et gl. ,
"and Baker. '6 Subsequent-

ly, Baker et a/. have calculated a~, as, ae for the
fcc lattice and a~, as, a9, a~0 for the bcc and sc
lattices. These values are reproduced in Table I.

The critical points are normally determined from
the susceptibility since the series for the suscepti-
bility are found most regular (hence easiest to pin
down X, accurately). Earlier estimates ' based
on 6 terms are E,=0.246, 0.392, and 0. 588 for the
fcc, bcc, and sc lattices, respectively, andy=3
for all 3 lattices. Estimates given by Baker et al.
using the extended series are E,=0.2492, 0. 39V3,
and 0. 5962 for the fcc, bcc, and sc lattices, res-
pectively, and y=1.43+0.01 for all 3 cubic lat-
tices. ~ These estimates are obtained using Pads
analysis of the susceptibility series, by attaining a
high degree of mutual self-consistency bebveen the

quoted values of E, and y =1.43.
An examination of the susceptibility series re-

veals that unlike other susceptibility series (e.g. ,
the Ising, XF, or S=~ Heisenberg susceptibility )
these series are markedly irregular. The irregu-
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TABLE II. Singularities of the susceptibility series on the fcc lattice given by Pads approximants to the logarithmic
derivative of the series.

D/N

0. 2483
0.1335+0.3756i

0. 2498
0. 2205 +0. 3912i

-2. 228
0.8657

0. 2491
0.1959+0.3272'

—1.480

0. 2482
0. 1300+0.3757i

0. 2443 a 0.0149i
0.1506 +0.4271i

0. 2493
0.1906+ 0.3546i

-0.6903
2. 232

0. 2411

0. 2495
0. 2119+0.3605i

0. 2492
0. 1894+0.3477i

—l.152

0.2526
0.5362

0. 2491
0.1899+0.3389i

0. 2505
—0.9387

larity is evidently due to the presence of nonphysi-
cal singularities. It will be seen that some of the
nonphysical singularities lie close to the circle of
convergence (in the case of the sc lattice, the phys-
ical singularity actually is not the nearest singular-
ity). Although it is not clear whether there is any
physical significance behind these extra singular-
ities, it is assumed that their removal will make
the series behave more regularly. The interference
by the nonphysical singularities may otherwise
make the results of Pads analysis less than totally
reliable, since this method of analysis at any rate
is significantly influenced by these early coeffi-
cients which are interfered most and are meaning-
less in so far as the asymptotic behavior of the ser-

ies is concerned.
Pads analysis can, nevertheless, be used to de-

termine the aPProximate locations of physical and
nonphysical singularities in the K plane. The re-
sults are given in Tables II, III, and IV for the fcc,
bcc, and sc lattices, respectively. In these tables
are shown singularities which are given consistently
by Pade approximant analysis (these shall be called
the principal singularities).

A. Susceptibility for fcc Lattice

The principal singularities of the susceptibility on
the fcc lattice appear to be (i) a positive real pole at
K=K,=O. 25, which is the physical singularity, (ii)
a pair of complex poles at K=K&(K3)-0.19+iO. 35,

TABLE III. Singularities of the susceptibility series on the bcc lattice given by Pads approximants to the logarithmic
derivative of the series.

0.3926
—0.4021

0.5109
—0.5055

0. 0011+1.110i

0.4003
—0. 5329
—0. 0806 + 0.8320i

0.4074
—0. 5564
—0. 0056 + 0.7954i

0.3922
—0.4212

0.3960
—0.4747 ~

-0.0937 +0.3682i

0.3953
—0.4692
-0.0669 +0.3319i

0.3970
—0.4239
—0. 0359 + 0.4368i

0. 3980
—0. 5871

0.4119
-0.5167

0.3953
—0.4694
—0. 0674 + 0.3314i

0.3958
—0.4766
-0.0796 + 0.3700i

0.4020
—0.4621

0.3995
—0.6744

0.3971
—0.4347
-0.0575 +0.4279i

0.3966
-0.3194

0.3891
—0.3638

P, 2l
0.3931

-0.3878
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TABLE IV. Singularities of the susceptibility series on the sc lattice given by Pads approximants to the logarithmic
derivative of the series.

D/N

1.991
0.3230 + 0.1734i

0. 5700
-1.612
—0. 0582 + 0.3692i

0. 6163
-0.9250
—0.1243 + 0.4763i

1 323

0.5828
—0.8020
—0.1050+0.5226i

0.6052
—0.7655
—0.0717 + 0.5266i

0.3206 +0.0952i

0. 5180
0.0148 + 0.2551i

0.5944
-0.6318
-0.0671 + 0.4984i

0. 5965
-0.6784-Q. 0780+ 0.4997i
10.25

0. 5948
—0.7139
—0. 0798 + Q. 5066i

0.7904
—0.4572

0.6272
—0.1757 + 0.4239i

0.5964
-0.6815
—0.0780 +0.5003i

0.5956
—0.0749 +0.5055i

0.3552

0.5658
—0. 1601+ 0.5749i

Q. 5950
—0.7261
—0. 0786 + 0.5069i

0. 2728

0.6365
—0. 0153+ 0.5782i

(iii) a negative real pole at K=K~=- —1, and (iv) a
second positive real pole at E=E4= 2. The physical
singularity E,=- E,= 0.25, shown most consistently
in the Pads table (Table II), determines the radius
of convergence of the power series, being the near-
est real positive singularity. The complex poles,
E& and E&, also shown consistently, lie somewhat
beyond the circle of convergence. The negative
real pole, shown to range from —0. 7 to —2. 2,
probably centers on E:——1 if it exists at all. '
Based solely on this Pads table, the existence of a
second positive real pole is indeed to be doubted.
But we shall show more substantial evidence for its
existence.

If these singularities do exist, it would imply that
the susceptibility has the form

lt(K)- (K, —K) "(K —K) ' (Kq-K) '3

x(Kg —K) ~&(K4 —K) ~4.

If y» )q&), i =2, 3, and 4, the series expansion
about K= 0 is expected to be dominated by the physi-
cal singularity. That is, the values for the expan-
sion coefficients a„are largely determined by the
expansion of (K, —K) ". Other singularities contri-
bute to the expansion coefficients a„ in the form of
small interference, diminishing as n-. An exam-
ination of the susceptibility series shows that al-
though the ratios of the coefficients look relatively
smooth, there is slight curvature, suggesting that
the conditiony»)q&), i=2, 3, or 4, is probably not
satisfied. Since Kz(K~) and Ks lie in a proximity
to the circle of convergence, we may expect the in-

TABLE V. Principal singularities of the susceptibility
and their transformation according to the bilinear trans-
formation.

X
z, {K2)

K3
K4

Kc
K,{K,)
K3

K
K2{K2)

K3
K4

t=0
0. 25

0.19+0.35i
I
2

t=0
0.40

—0.07+ 0.43i
-0.45

t=0
0.60

—0.08 + 0. 50i
—.0.70
25

{a) fcc
t=k
0. 22

0, 18 +0.23i

{b) bcc
1

0.33
0.88+ O. 38i
-0.58

{c)sc

t=1
0.38

0.16+0.45i
~ 2 ~ 33

0.70

t=I
0. 20

0.23+0. 23i
-4)
-0.7

t=1
0. 28

O. 16+0.39i
0.83

t= 2

0. 27
0.25 +0. 29i

1.75
0.49

t=2
0. 17

0. 21 + 0. 15i
I
0.4

t=2
0. 22

0. 22+ 0.21i
-4. 5

t=3
0. 21

0. 24+0. 18i
0. 64
0. 25

terference to come mainly from these singularities.
The interference is thus determined not only by the
closeness of nonphysical singularities to the circle
of convergence but also by the relative strengths of
these singularities.

Relative strengths of the singularities can be
qualitatively observed through an increase or a de-
crease in interference by transforming the singu-
larities. Consider the following bilinear transfor-
mation:

K = K/(1+ tK),

where t is a real number. Depending upon the value



TABLE VI. Coefficients of the transformed susceptibility
series for the fcc lattice.

0
4 5 6 7 89IO

l 1 I l

n b„($)

1 6
2 33
3 169.5
4 841.5
5 4 103.425
6 197S9.075
7 94 657.04494
8 449 V68. 7559
9 2 125 342.763

6
36

204
1121.25
6 057. 55

32 373.7625
171681.0512
904 869.2132

4745 041.979

&n(2)

6
42

282
1847.25

11916.55
76 100.0125

482 493.8762
3 042 285. 684

19 096 820. 32
5.I—

l

0.4

0 0
l

0.5 0.2 O. l

l/n

for I;, the nonphysical singularities can be mapped in
different relations to the physical singularity. In
Table V are given the values of singularities for
t=D, —,', 1, and 2. If the interference comes mainly
from the negative real pole E3, then as may be ob-
served from Table V(a), the bilinear transformation
with I;= —,

' and 1 should reduce the interference the
most. If the interference comes from the negative
real pole and complex poles, the bilinear transfor-
mation with t = 1 and probably 2 mould best serve to
reduce the interference.

The series expansion for the susceptibility in
powers of K is obtained from (8) by applying the
bilinear transformation (10):

where

b„(t)=f(a„,a„„.. . , a„t).
The values for the expansion coefficients b„(t) are
given in Table VI for t= ~, 1, and 2. Ratios of suc-
cessive coefficients of the transformed series show
that for t = —,

' there is nearly as much interference
as for t= 0, but for I;= 1 the series is very regular,
and for t = 2 the series just begins to be regular.
This mould indicate that while the negative real pole

I IG. 1. Ratios of coefficients and linear extrapolants
of the transformed susceptibility series X(K*; 1) for
the fcc lattice.

gives the most interference, the complex poles pro-
vide a not negligible amount of interference (i.e. ,

I qq I
& I q 3l ).

Since the series for t =1 appears to have the least
interference from the nonphysical singularities, me
shall rely for the asymptotic properties on the anal-
ysis of this series. In Fig. 1, ratios of coefficients
r„(l)= b„(l)/b„~(1) together with linear extrapolants
t„(1)=nr„—(n —1)r„, are displayed in a conven-
tional ratio plot. The values for x„and E„are given
in Table VH (fcc). The trend of ratios r„(l), with
increasing n, appears to be fairly mell settled along
the asymptotic line me have provided. Our reading
of the intercept at n= is E,* '= 5. 042+0. 010
(K, = 0.1983+0.004). ' ' Using this value of the in-
tercept and the slope of the asymptote, we obtain
from (5), y = 1.36+ 0. 04. The inverse transforma-
tion K= G '(K *) gives K, = 0. 2475+ 0.0010.'

Although the series for k=2 is not as regular as
the series for I;=1, essentially the same estimates
are given by the coefficients b„(2). From a ratio
plot of b„(2), we obtain K,

' '(2) = 6. 043+ 0. 20 (K,*
= 0. 1655+ 0. 0006), y = 1.36+ 0. 06, and by the inver se

TABLE VII. Hatios of coefficients and linear extrapolants for the three cubic lattices based on the coefficients of the
transformed series b„(t).

r„(1;fcc)

6
6
523
5.496 324
5.402497
5.344 366
5.303 092
5.270 641
5.243 898

6
5
4. 985 293
5.027 192
5.053 708
5.055 452
5.043484
5.029 954

~„(l; bcc)

3.916667
3.827 128
3.777 762
3.742 1S2
3.714 659
3.691 922
3.673 678
3.659109

3.75
3.558 511
3.580301
3.564 281
3.549 521
3.532766
3.527 721
3.52V 993

r„(2; sc)

3
4
3.916667
3.885 638
3.876 934
3.869 958
3.857 719
3.841 578
3.825 157
3.810 973

E„(2)

5
3.76
3.792 553
3.842 115
3.835 081
3.784 285
3.728 587
3.693 791
3.683 317
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TABLE VIII. Singularities of X(K~; 1) on the fcc lattice given by pad& approximants to d/'dK* lnX+*; 1).

0. 2017 0.1935 0.1975 0.1976 0.2020+ 0. 0129i

0. 1972
0.3388 + 0.3838i

0. 1989
0. 2051+0.2635i

0. 1996
0. 2352 +0.2291i

—10.66
0. 6445

0.1995
0. 2278 +0.2293i

-4.677
0.7048

0. 1982
0.1717+ 0.3627i

0.1996
0.2374 + 0. 2292i
0. 6283

0. 1995
0. 2285 + 0. 2298i

-2.229
0.6906

0. 1989
0.1622 +0. 2528i

0.1995
0. 2276+ 0. 2291i
0.7097

0.1993
0. 2005 + 0. 2188i

n

4 5 6 7 89IO
I I I I I I

5.0»

2.8

2.7

2.5
0.5

I

0.4
I

0.5
1/n

I

0.2
I

O. I

FIG. 2. Ratios of coefficients of the susceptibility
series X(K) for the bcc lattice. Successive ratios are
linked to emphasize the effect of the interference by non-
physical singularities. Ratios are expected to converge
onto the asymptotic line (solid line), obtained by remov-
ing the interference (redrawn from Fig. 3).

transformation, K, = 0. 2473+ 0. 0015. These values
compare favorably with the estimates provided by
the series for t = 1.

The Pads approximant analysis of the transformed
series }t(K*;1) is given in Table VIII. The bilinear
transformation maps K~ away from the origin,
whereas K4 toward the origin, while leaving K, and

Ka(K2) relatively unaffected. As may be thus ex-
pected, the second positive pole is shown more con-
sistently in Pad»» analysis of X(K";1) than in the
Pad»» analysis of }t(K), whereas the negative real
pole is the opposite. The physical and complex
poles are shown more or less the same in both ta-
bles. In comparing the Pad»» tables of X(K) and

}t(K;1) it is useful to note that what remains invar-
iant under the bilinear transformation are the [2, 4]

and [3, 5] Pad»» approximants (out of the 12 approxi-
mants shown). Particularly, the [3, 5] Pad»» approxi-
mant may be regarded as a link between the two
Pad»» tables. Based on Table VIII, a reasonable
estimate for the critical point is K, = 0. 199+0.001
or K, = 0. 248+ 0. 002. This value is consistent with

the estimate given by ratio analysis.

B. Susceptibility for bcc Lattice

The principal singularities of the susceptibility
on the bcc lattice appear to be (i) a positive real
pole at K=K,= 0. 40, which is the physical singular-
ity, (ii) a pair of complex poles at K=K~(Kz)- —0. 07
a i0. 43, and (iii) a negative real pole at K=KB
= —0.45. All these singularities are fairly consis-
tently shown in the Pad»» table (see Table III). Since
the complex poles and the negative real pole lie
quite close to the circle of convergence, they are
expected to interfere significantly with the series
expansion of (K, —K) "as one can clearly see in

Fig. 2.
As in the case of the fcc lattice, we shall apply to

the series the bilinear transformation (10) with t= —„
1, and 2. In Table V(b) we give the values of the

corresponding singularities. If only the negative
real pole K3 were to interfere the most, the trans-
formation with t= 2 would be preferred. If on the
other hand the negative real pole and the complex
poles were to interfere roughly equally, the trans-
formation with t = —,

' and 1would undoubtedly serve the
best. In Table IX the values of the expansion coef-
ficients b„(t) are given. Ratios of coefficients show

that for t= 1 the sequence of ratios is very regular;
for t= —,

' the sequence is fairly regular but not as
regular as for t=1; and for t= 2 the sequence is not

regular although considerably more so than for t = 0.
This relative behavior suggests that the interference
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TABLE IX. Coefficients of the transformed susceptibility series for the bcc lattice.

1
2
3
4
5
6
7
8
9
10

14
473

1573
512.616 66

1 651.583 33:
5 276. 935 51

16738.882 9
52 826. 220 3

166 032.464 6

b„0.)

4
16
623

239.833 333
906.033 333

3 390.541 667
12 594.706 35
46 498.678 08

170 821.160 1
625 053. 278 7

b„P-)

20
983

479.833
2 309.366

11029.708
52 365. 122

247 400, 330
1 164 072. 361
5 458 269.914

4. 1

n

4 5 6 7 8910
I I I I I

o y„(1)
~n (I)

3.7—
'L,

O~

3.5
0.5

I

0.4
1

0.3

0 0
0 Q

0.2 0.1

FIG. 3. Ratios of coefficients and linear extrapolants
of the transformed susceptibility series g (K*; 1) for the
bcc lattice.

comes from the negative real pole and the complex
poles more or less equally.

Since the series for t = 1 appears to be most regu-
lar (i. e. , least interfered by the nonphysical singu-
larities in the series expansion), we shall rely for
the asymptotic properties on the analysis of this
series. In Fig. 3, ratios of coefficients r„(I) and
linear extrapolants l„(1)are displayed in a ratio
plot Th.e values for r„(1) and l„(l) for the bcc lat-
tice are given in Table VII (bcc). A comparison
with Fig. 2 shows a dramatic change in the behavior
of the expansion coefficients.

The trend of r„(1)appears to be rather well set-
tled along the asymptotic line we have provided in
Fig. 3. Based on the intercept and the slope of the
asymptote we estimate: K,* '= 8. 534+ 0.010 (K,*
=0. 2829+ 0. 0015) and y = 1.36+ 0. 04. The inverse
transformation gives K, = 0. 3946+ 0. 0015.

Although the series for t = —,
' and 2 are not as regu-

lar as the series for t= 1, essentially the same
estimates are given by them. From a ratio plot of
5„(—,'), we obtain K, '(-,') = 3.031a 0. 020, y = 1.36
+0.06, and K, =0. 3951+0.0035. From a ratio plot
of b„(2), we obtain K,* '(2) = 4. 582 a 0.025, y = 1.86
+0.06, and K, =O. 3949+0.0040. Both series pro-

vide estimates for K, and y which are comparable
with the estimates given by the series for t = 1.

Pads approximant analysis of y(K*; 1) is given in
Table X. Based on the Pads table (Table X), a rea-
sonable estimate for the critical point is K, = 0. 283
+ 0. 002 or K, = 0. 395 + 0.003, which is consistent with
the estimate given by ratio analysis. There is slight
evidence of a second positive real pole at K*=0. I or
K=- 2. 8 (not shown in our Table X).

C. Susceptibility for sc Lattice

Compared with the singularities of the suscepti-
bility on the fcc and bcc lattices, the principal sin-
gularities for the sc lattice are given far less con-
sistently by Pads approximants (see Table IV).
This implies that not as much information is con-
tained in this susceptibility series (with 10 coeffi-
cients) as in the series for the other lattices (with
9 and 10 coefficients, respectively, for the fcc and
bcc lattices). Based on the coordination numbers,
we might argue that the susceptibility series for the
sc would need at least 3 or 4 more coefficients to
contain a comparable degree of information.

The principal singularities for the susceptibility
on the sc lattice appear to be (i) a positive real sin-
gularity at K = K,:—0. 60, (ii) a pair of complex poles
at K=K3(Kz) = — 008+f0 50, and. (iii) a negative real
pole at K=K3= -0.70. There is slight evidence of a
second positive real pole (not shown in Table IV) at
K=K4= 25. Unlike in the tmo previous cases, the
physical singularity is not the nearest singularity,
and the radius of convergence of the power series
is instead given by the complex poles. Thus the
series expansion is expected to be quite irregular
(see Fig. 4).

As in the previous two cases, we shall apply the
bilinear transformation (10) to the series. In Table
V(c) we give the values of the singularities for f = 0,
1, 2, and 3, and in Table XI the values of the corre-
sponding expansion coefficients. Referring to Table
V(c), if the interference comes from the complex
poles and the negative real pole approximately
equally, the optimum choice for t seems to be t = 2.
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TABLE X. Singularities of g™(K*;1) on the bcc lattice given by pad6 approximants to d/dK~lnj +*;1).

D/N

0. 2816
—0. 93-97

0.2819

—0.6724

0. 2985 +0.0156i
—1.042

0. 2811
0. 1446 + 0.1277i

-0.9992

0. 2843
0. 1069+0.4265i

-0.8703

0.2813
—0.4125

0. 2795

0. 2789

0.2833
0.1454 + 0. 2659i

—0.8840

0. 2840
0. 1831+ 0.3607i

—0.5723

0.2665 +0. 0061i

0.2789

0.2795

-2.303

0. 2842
0, 1471+ 0.3890i

-0.7229

0. 2791

0. 2738

0. 2831
0. 2144 + 0.2260i

-0.3678

0.2846

0. 2841
0.1916+ 0.4930i

P, 2l
0.2844

-0.2533

Ratio plots of these coefficients show that only the

sequence of ratios of b„(2) can be considered as reg-
ular. The others show signs of becoming regular.
Since even the series for t = 2 is not sufficiently reg-
ular, we need additional coefficients to establish the

trend of ratios more firmly. Thus our estimates
here mustnecessarily be more tentative than those
given for the other lattices.

In Table VII (sc) the values of r„(2) and l„(2) are
given. Ratio analysis of b„(2) gives the following

estimates: K,* ' = 8. 6V6 + 0. 020 (or K,*=0. 2791
+0.0015) and y=1. 86+0.06. Using the inverse
transformation we obtain K, = 0. 5959 + 0.0050. The

other series provide comparable estimates.
Padd approximant analysis of X(K*; 2) is given in

Table Xt.I. As may be observed, the physical sin-
gularity is given much more consistently here than

in the Pads table (Table IV) of the original series.
Except for the [2, 4] and [8, 5] Pads approximants,
there is considerable improvement in the consisten-
cy of the physical singularity. This is not unex-

pected since by the transformation the physical sin-
gularity has become the nearest singularity. Based
on the Pads table (Table XII), a reasonable estimate
for the critical point is K, = 0. 272+ 0.003 or
K, =0.596+0.015. The second positive real pole is
also rather consistently shown at K& = 0. 49, corre-
sponding to K4=- 25, which is shown only inconsis-

tently in the Pads table of }I'.(K).
In summary, the critical values given by ratio

analysis of the transformed susceptibility series are
K, =O. 2475+ 0. 0015, 0. 3946~0. 0015, and 0. 5959
+0.0050 for the fcc, bcc, and sc lattices, respec-
tively, and y=1. 36+0.04 for the 3 cubic lattices.
Pads analysis of the transformed series has pro-
vided the estimates K, =O. 248+0. 002, 0. 394+0.003,

2.22 4 5 6 789IO
I I I I I I I

2.l—

2.0(

1.8

l.7

l.6—

I

0.4
I

0.3
l/n

I

0.2
I

O. I

FIG. 4. Ratios of coefficients of the susceptibility
series g (K) for the sc lattice. Successive ratios are
linked to emphasize the effect of the interference by non-

physical singularities. Ratios are expected to converge
onto the asymptotic line drawn as n ~, obtained by re-
moving the interference.

and 0. 596+ 0.015 for the three respective lattices.
Our reasons for having given less weight to the

estimates by Pads analysis are based on our belief
that since the interference by the nonphysical singu-
larities are still present in the early coefficients of

the transformed series, the results of Pads analy-

sis cannot be taken as accurate as those of ratio
analysis.

The estimates of the critical values obtained by
Baker et al. using the Pads analysis of the original sus-
ceptibility series are K, = 0. 2492, 0. 3973, and 0. 5962

(with an error quoted tobe about 10 ~ for all three) for
the fcc, bcc, and sc lattices, respectively, andy = 1.43
+ 0. 01 for the three cubic lattices. Although these
values for the critical points do considerably dis-
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TABLE XI. Coefficients of the transformed
susceptibility series on the sc lattice.

1 3
2 9
3 26
4 74. 625
5 214. 525
6 613.152 083
7 1 733.967 262
8 4 860. 239 36
9 13 557. 792 05

10 37 725. 590 5

3
12
47

182.625
708. 025

2 740. 027 083
10570. 254 76
40 606. 453 94

155326.056 9
591943.3984

b„(3)

3
15
74

362. 625
1771.525
8 639.402 083

42 063.29226
204385. 556 0
990790.0884

4 791209.715

agree with our estimates by ratio analysis, we con-
tend that the comparison is not proper. This is be-
cause the presence of the nonphysical singularities
will, as stated before, necessarily make the Pads
values (given in four-place accuracy) suspect. If,
on the other hand, the estimates of Baker et al. are
accepted at three-place accuracy, as we have done
for our Pads values, their estimates are in agree-
ment with our estimates by Pads analysis of the
transf ormed series. The disagreement between
their value of the critical exponent y = 1.43 and our
value y=1. 36 can also be resolved if we similarly
accept their value at one order lower accuracy
(i.e. , y = 1.4).

Our result y= 1.36, if correct, can at once re-
solve the two issues earlier discussed. Namely,
it restores the argument of an essential spin inde-
pendence of the critical exponents (as is assumed
by scaling laws) which had been left in some doubt
by the previous higher value of the critical exponent
y. Also, it lends support to Bowers and Woolf who
have suggested that y = 1.38 irrespective of the

nearest-neighbor or finite-order equivalent model.

VI. HIGHER FIELD DERIVATIVES OF FREE ENERGY

Essam and Fisher first suggested the idea of
studying the 0= 0 critical behavior of higher field
derivatives of the free energy. It is defined as

82@

F&(K)= lim —kT @, inZ, P = 2, 3, 4, . . .aH+

82@- 2

=lim @, 2
H» Q

(13)

Obviously, higher field derivatives of the free ener-
gy represent a family of many-spin correlation
functions. Since F~ are obtained from the suscepti-
bility, whose critical behavior is of a power law, it
seems reasonable to make the following two as-
sumptions: (i) The dominant critical behavior of

F~ is of the power-law form

F~(K)- (K, —K) "&, K-K; (14)

where the exponents satisfy y~&y~ q
& '&y2&y~=-y.

The inequalities for the exponents derive from the
fact that since F~ are obtained by taking derivatives
of the susceptibility, the strength of the singularity
can only increase with P. (ii) The principal singu-
larities of F~ are those of the susceptibility. This
assumption need not, indeed, may not, be strictly
correct, as there may be additional nonphysical sin-
gularities associated with higher spin correlations.
However, if the strength of the physical singularity
is much greater than the strengths of these extra
nonphysical singularities, the interference by these
singularities should vanish rapidly with order.
Both assumptions can be tested by obtaining power
series expansions of F~ as in the case of the suscep-
tibility. The interest in F~ comes from that accord-

TABLE XII. Singularities of the p(K*; 2) on the sc lattice given by Pads approximants to d/dK*lnj(K*; 2).

D/N

0. 2610

0. 2664
0.1668+0.2784i
0.7248

0. 2703
0. 2394 + 0. 2686i
0.5749

0. 2716
0. 2563 a 0.2844i
0.5089

0. 2718
0. 2560 +0.2891i
0.4940

0.2609

0.2612

0.2705
0.2415 + 0. 2705i
0.5656

0.2720
0.2534 + 0. 2920i
0.4767

0.2719
0.2549 + 0. 2896i
0.4890

0. 2612

0.2614

0.2717
0.2558 +0.2869i
0.4995

0. 2719
0. 2549 +0.2896i
0.4888

0.2541

0.2666
0.1998+0. 1880i

0. 2719
0.2552+ 0. 2895i
0.4903

0.2998 +0.0076i

0. 2699
0. 2686 + 0. 2217i

t7, 2)
0.2739
0.5756
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TABLE XIII. Exact coefficients of the series expansions for pth higher field derivative of the free energy for the
three cubic lattices. After Baker et al. (Ref. 3).

a"'Cn

24
327

3 345
28 653

217479. 7
1512289.6
9 S41 725. 23

60 808 494. 14

16
138
888. 67

4 765.33
22 629. 8
98445. 57

401 005.34
1551082.47

bcc

51
1290

22 405. 5
305 205

3 500313.93
35 291 185.89

321 858 058. 80
2 708 643 241.72

34
552

6 099.67
52 503.33

379 025. 45
2 399790.29

13726 858. 00
72 402 512.75

87. 53
3 506. 12

91295.29
1788 855. 13

28 551 488.46
389 818 850. 65

4 704 41S456. 45
,51360 029 876. 09

58.35
1509.18

25 162, 20
313676. 07

3 170734. 86
27325 927. 82

207 675 673. 84
1425 491650. 98

12
73.5

324. 5
1 176
3 761.35

11002. 25
30 058.27
77 850.24

25. 5
298.5

2 317.25
13 785
68 094. 21

293 181.50
1 135642.09
4 044279. 24

43.77
S21.29

9729. 06
84 932. 58

595 047. 50
3 527 VV1. 24

18340 359.35
85 750 103.00

ing to scaling theories the gap parameter 24&

-=y~-y~, is constant for all P. For the Ising model
in three dimensions, it has been estimated that
& = 1.56 + O. 03.

The series expansions for the seduced higher
field derivatives of the free energy are given in the
form

Baker et a/. have obtained the exact values of the
coefficients a„'~' for P = 2, S„and 4, up to n = 8, on

the fcc, bcc, and sc lattices. These values are re-
produced in Table XIII. The sequences of coeffi-
cients in these series are generally smooth indicat-
ing that the expansion coefficients are dominated by
the expansion of (K, —K) "~. However, owing to
curvature in these sequences, it is difficult to obtain
reliable estimates for the critical parameters di-
rectly from ratios of coefficients.

Pads approximant analysis of these relatively
short series is not expected to be meaningful (there
are in effect only 7 terms available for getting Pads
spproximants). While the results of our Padd anal-
ysis are too scattered to be conclusive, the whole

picture of the singularities seems not inconsistent
with our second assumption. Baker et a/. have

noted that these series are not well suited for Pads
analysis because E~ seem to vanish for some small
negative real E. These zeros are then reflected as
poles close to.the origin in the logarithmic deriva-
tives of the function (to which we make Padd approx-
imants).

If the principal singularities of P~ are those of X,

then the interference by nonphysical singularities

(Kz, K2, K~, and K4) can be essentially removed by
the same transformation used for X™ in Sec. V.
Consider the bilinear transformation (10) for E&(K).
In terms K", we have

The optimum choice of t for the fcc, bcc, and sc
lattices are then expected to be t = l, 1, and 2, re-
spectively, if our assumption (ii) is reasonably cor-
rect. The values of b„~'(t) for P = 2, 3, and 4 on the

three cubic lattices are given in Table XIV.

A. fcc Lattice

Ratios of coefficients h„'~'(1) for E~(K; 1), to-
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TABLE XIV. Coefficients of the expansion for pth higher field derivative of the transformed free energy for the
three cubic lattices.

g(2)
n

24
351

4 023
39 693

353 493.7
2 921327.1

22 802 879.33
$70 145 854. 8

16
154

1 180.67
7 861.33

47 591.13
268 840. 57

1 440 606.41
7 403 950.43

12
97.5

666.5
4 101

23 501~ 35
127 879. 75
668 686.22

3 387 120.66

(1; fcc)

51
1341

25 036.5
376 342. 5

4 860 V77. 93
56 075361.51

592 557 856.5
5 836437316

(1; bcc)

34
586

7237. 67
72 492. 33

627 878. 78
4 883 741.54

34 955 889. 17
234 121613.3

(2; Sc)
25. 5

349.5
3 613.25

31474.5
243 948. 21

1735599.62
11560 156.79
73 050677. 65

y (4)
n

87. 53
3 593.65

98395.06
2 073346. 90

36268792. 76
551395415.4

7 508 771 544
,93 541 008 792

58.35
1567. 53

28238. 90
393 748. 54

4582 507.37
46 575 588. 99

425 852 331.3
3 575 559 263. 2

43.76
908. 82

13 189.29
153 512.58

1 534 987.20
13 720 978. 15

112461 140.5
859 934 931.6

16—
(j

14—

4 5 6 7 S9IO
I

g I I I I

Fg

~ Fs
o F

X

l2—

IO—

gether with those of the susceptibility X(K; 1), are
plotted in a conventional ratio plot (see Fig. 5).
We observe that the sequences of k 3, E~, and E4
all approach the same intercept, provided by
g(K*; 1). We further observe that gape between two

nearest branches of the sequences are nearly con-
stant. A reasonable estimate of the intercept at
n = for each of I'~ is X, ~ = 5. 04+ 0. 20, which is
consistent with the earlier estimate given by the
susceptibility series y(K; 1): K," ~ = 5.042+ 0. 010.
Hence, we shall assume the estimate provided by
the susceptibility series as the more nearly correct
value of the critical point and use it in the analysis
of the exponents for the higher field derivatives.

For the values of the exponents y~, we could di-
rectly make estimates of the limiting slopes from
ratio plots as in the susceptibility exponent W.

TABLE XV. Analysis of y2 for the fcc lattice based
on K~ (1)=5.042. In constructing all Neville tables,
more digits must be retained than are here displayed.

0 0
n g~ (1; fcc) (2)

g
(2)
n

(2)
Cn

4
0.5

I

0.4
I

0.3
I

0.2
I

O. I

&IG. 5. Hatios of coefficients of Xg*; 1) and ~&(K+; ])
for the fcc lattice. Observe that all the asymptotes
approach the same intercept and the gap between two
nearest asymptotes at a given n becomes nearly constant
asn

1
2

3
4
5
6
7
8

24
14.625
11.461 538
9. 866 518
8. 905 694
8.264 156
V. 805 658
7.461 595

18.958
19.166
19.26
19.30
19.32
19.33
19.35
19.36

4. 7600
4. 8013
4. 819
4. 827
4. 831
4. 834
4. 837
4. 839

4. 8426
4.87
4.85
4.85
4.85
4.85
4.85

4.86
4.85
4.84
4.85
4.86
4.86
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5.0
n

5 6 7 8910
1 I I I

4 8(~

4.?—

44 I

0.4
I

0.3
I

0.2
I/n

I

0.1

0 9 (2)

~ g IR)

FIG. 6. Limiting exponents and linear extrapolants
for p2 on the fcc lattice. The intercept of g„at n =

represents the value for p2. Xc* ~ =5. 042.

However, by taking advantage of the accurately
known E, ', a somewhat more convincing analysis
can be obtained by the following procedure. The nth
limiting slope s„'~ is given by the relation

s(P) n(y(P) K4-1)

where r~'=b„~'/b„'~', . Here, s„can be accurately
calculated up to the known number of the expansion
coefficients. The nth limiting exponent g„~' may be
analogously defined by

(P) 1 (P) /~+-1
gn +~n & c (18)

TABLE XVI. Analysis of ye for the fcc lattice based
on Kc+-i(1) 5 042

where g„'~'=-y~. When s ~' or g„'~' are plotted se-
quentially in a 1/n ratio plot, and if these values
fall on a straight line, reliable estimates for s„'~' or
g„~' can be made.

In Table XV, we have given successive values of
r„, s„, andg„ for P=2. In addition, values of the
linear extrapolants l„=[rg„—(n —1)'g„,j and the
quadratic extrapolants q„= —,'[nl„—(n —2)l„q] are giv-
en, forming a partial Neville table. For a limited
number of terms available (n = 8), these extrapolants
are not expected to provide accurate estimates but
only to indicate the nature of the trend of a se-
quence. In Fig. 6, the limiting exponents g„and the
linear extrapolants l„are displayed in a ratio plot.
As maybe observed, the last few g„ fall on a
straight line (asymptote) we have provided. The

9.0

8.9—

8.8—

4 5 6 78910l I I I I I I
I

~ ( )
o

g l5)
o

8.7—

values of the linear extrapolants, which appear to
converge onto the asymptote slowly and in a mildly
oscillatory fashion, tend to support the trend es-
tablished by g„. A reasonable estimate for g„ is
ys(fcc) = 4. 86+ 0.02.

In Table XVI, we have given values of extrapo-
lants for P = 3. In Pig. 7, the nth limiting expo-
nents g„and the linear extrapolants l„are displayed
in a ratio plot. As may be observed, the last few

g„ fall on a straight line. The values of the linear
extrapolants appear to advance towards the inter-
cept of the asymptote. A reasonable estimate for
g„ is ys(fcc) = 8.34+ 0. 03.

In Table XVG, we have given the values of r„, s„,
and g„ for P = 4 and a complete Neville table based
on g„. In Fig. 8, the limiting exponents g„are dis-
played in a ratio plot and in Fig. 9 the values of the
linear and quadratic extrapolants are given. As in
the cases of P =2 and 3 these extrapolants advance
towards the intercept of the asymptote, which is
given by g„: y4(fcc) =11.79+ 0.05.

Based on these results for y~,
' we obtain for the

gap parameter 2~&= 3. 50+0.10, 2&3= 3.48+0. 15,
and 2&4= 3.46+ 0. 25. We may conclude that 24
= 3. 50+0.20.

B. bcc and sc Lattices

Ratios of coefficients b„(1) for 1~(K*;1) on the
bcc lattice are displayed in a ratio plot (see Fig. 10).
As in the case of the fcc lattice, the sequences of
E~ are all seen to approach the same intercept pro-
vided by lt'(K; 1) and gaps are nearly constant. We
observe essentially the same pattern for the series
of F~(K*; 2) on the sc lattice (see Fig. 11).

The exponents y~ are analyzed using the procedure
outlined in the preceding part for the closed-packed
lattice. Our analysis shows that the results for
open lattices are on the whole less satisfactory than
for the closed-packed lattice. (This is not surpris
ing since there are only 8 terms in the series —the

n r„(1;fcc)

51
2 26. 294 118
3 18.670 022
4 15.031754
5 12.915 836
6 11.536 294
7 10.567 170
8 9. 849 565

(3)
Sn

45. 958
42. 504
40. 884
39.96
39.37
38. 96
38.68
38.46

(3)
g'n

10.115
9.430
9.109
8. 925
8. 807
8.728
8.671
8. 628

)(3)
n

8.75
8.46
8.37
8.34
8.33
8.33
8.33

(3)
Vn

8.33
8.28
8.29
8.30
8.32
8.34

8.6—

8.5—

8.4—

8.3
0.5

I

0.4

o o o o
I I

0.3 0.2 O. I

1/n

FIG. 7. Limiting exponents and linear extrapolants
for ys on the fcc lattice. Kc =5.042.
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TABLE XVII. Analysis of y4 for the fcc lattice based on K,* (1)=5. 042 by constructing a Neville table.

r„(1; fcc)

87.529 412
41.056 452
27. 380 279
21.071657
17.492 872
15.203 026
13.617 762
12.457 565

Sn

82. 487
72.03
67.01
64. 12
62. 25
60.97
60.03
59.33

17.360
15.286
14.291
13.717
13.347
13.092
12.906
12.766

&n

13.21
12.30
11.99
11.87
11.81
ll. 79
11.79

11.85
11.68
11.68
11.70
11.75
11.77,

same number for the fcc lattice. ) Various extrapo-
lants for open lattices, especially for the sc lattice,
do not show clear signs of convergence and our
estimates become necessarily more subjective. In
Tables XVIII-XX, we have given values of extrapo-
lants for y~ on the bcc lattice. Based on these val-
ues, our estimates are y=4. 8+0.1, y3=8. 1+0.3,
and y4 -—11.7 + 0. 5. In Tables 3QD-3DDII, we have
given values of extrapolants for the sc lattice.
Based on these values, our estimates are y&= 4. 8
+ 0. 5, y3 = 8. 2+ 1.0, and y4 = 11.5 + 1.5.

The sequences for g(K; t) and F(K; t) approach-
ing the same critical point with a nearly equal gap
suggest that our assumption about the principal
singularities must be basically tenable. Our re-
sults on the fcc lattice obtained by the transforma-
tion method seem to constitute a fairly reasonable
evidence for 2~~= M= 3.50. The results for open
lattices are generally not well convergent enough to
lend further support for the lattice independence of
the critical exponents y~.

Baker et al. ~ have analyzed the series of F~(K)
by constructing the Neville table (and not by the
Pads approximant techniques for the reasons stated
earlier). Among these series, the best estimate
for K, seems to come from the series of F4(K) on
the fcc lattice. The values of successive extrapo-

lants for this series, given in their Table XXIV,
show that while there are signs of convergence in
the sequences of extrapolants (linear, quadratic,
etc. ), the presence of curvature leads us to ques-
tion whether their seventh and final entry (K = 4. 022)
is as close to the asymptotic value as they seem to
have indicated. For the series of F~(K) and Fs(K)
on the fcc lattice, the values of extrapolants cease
to progress montonically. Thus, the results of
Neville tables are on the whole inconclusive. The
sequences for open lattices are much less regular
and their estimates are at best only tentative (i.e. ,
E,=0.4 for the bcc lattice and K,=O. 6 for the sc
lattice).

Since the series of P~(K) do not yield the critical
point unambiguously, it is difficult to expect that
this approach can yield reliable estimates for the
exponents y~. An examination of the Neville tables
(Tables XXV-XXVII of Ref. 3) reveals that while
the estimates given by Baker et al. may be the best
that can be made based on the extrapolants of the
Neville tables, none of the values for the exponents
are shown to converge satisfactorily. Indeed, to
show convergence, which is expected to be slow
owing to the presence of nonphysical singularities,

13.4 6 78910

12.3

12.2—

4 5 6 7 8910
I I 1 I I I I

13.3— 12,1—

13.2— 12.0—

13.1—

13.0—

12.9—

12.8—

(4)
n

11.9—

I I.8—

11.7—

11.6
0.5

I

0,4

o o

I I

0.3 0.2
I/n

~ ~0
0

I

O. I

12.7
0.5

I

0.4
I

0.3
I

0.2
I/n

0.1

FIG. 8. Limiting exponents for y4 on the fcc lattice.
K,*-'=5.042.

FIG. 9. Linear extrapolants and quadratic extrapolants
for p4 on the fcc lattice. The solid line represents the
asymptote for the limiting exponents redrawn from Fig. 8.
K,*-'=5.042.
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5 6 7 89IO
I I l I l I

F„
~ Fs

Fa

X

TABLE XIX. Analysis of y3 for the bcc lattice based on
K, '(1)=3.534.

k

0.5 04

O
0

k A gg
I I I

0.5 0.2 O. I

I/n

34
17.235 29
12.350 97
10.015 981
8.661 313
7.778 160
V. 157 604
6.697 630

30.47 9.62
27.40 8.75
26.45 8.48
25.93 8.34
25. 64 8. 25
25.46 8.21
25.37 8.18
25.31 8.16

7.89
V. 95
7.89
V. 92
7.96
8.01
8.05

8.0
7, 8
8.0
8. 0
8. 1
8. 2

FIG. 10. Ratios of coefficients of g QC*; 1) and F& tE:*;1)
for the bcc lattice.

one would yrobably need more than eight coef-
flc1ents. Thus, 1t seems to us that if, 1S not too un-
reasonable to regard the estimates given by Baker
eI; al. , y2=- 5. 06, ys=- 8. 69, y4= 12.32, and 2b =—3.63
(our values are y, = 4. 66, ys= S.34, y4= 11.79, and
2&=- 3. 60) for the fcc lattice, as only tentative.

VII. CONCLUSIONS

We have shown that the irregularly behaving sus-
ceptibility and other series for the S= —,

' Heisenberg
ferromagnet can be given ratio analysis by the ap-
plication of a transformation method. This method
of analysis has given us estimates for the critical
values (K, and y~), which are at variance with the
earlier estimates based on Pads analysis, but which
seem to be more consistent with other known re-
sults. We have argued that the discrepancy between
the two results can be resolved if the estimates by
Pad6 analysis are taken at one order lower accuracy
(due to the presence of nonphysical singularities).
The correctness of our contention, no doubt, can be
further tested when additional higher-order coeffi-

cients of these series are known.
Based on our study of this and other related mod-

els of magnetism, it appears that the irregular be-
havior of a series due to the presence of comPlex
Poles has its origin in noncommutation of certain
quantum-mechanical spin operators. When a series
expansion is interfered by such nonphysical singu-
larities, the effects of the interference must be iso-
lated before the asymptotic behavior of the series
can be deduced.

The transformation of various susceptibility ser-
ies indicates that the assumption of a power-law be-
havior for the susceptibility is amply justified. On

the other hand, our singular lack of success with
the transformation of the specific-heat series sug-
gests that the specific heat may obey a more com-
plicated form than the generally accepted simple
power law.

As has been pointed out, the ideas of using a
transformation method are not new. To our knowl-
edge, this method has not been previously applied
to the degree we have used for the 8= —,

' Heisenberg
model. Danielian and Stevens have considered the
transformation method for the Heisenberg suscepti-
bility series, but the limited number of then avail-
able coefficients (about 6 terms) probably made it

~ABLE XVlII. Analysis of y2 for the bcc lattice based
on X* ~ (1)=3.534.

IO
4 ~ 6 7 89IO

0

I O' I I I I

Pq

o Fs

o Fa

X

n v~~2~ (1; bcc)

16
9.625
7.666 667
6.6583S5
6. 053 825
G. 648963
5.358590
5. 139468

12.47
12.18
12.40
12.50
12.60
12, 69
12.77
12. 84

4.53
4.45
4.51
4.54
4. 56
4.59
4.61
4.63

4.37
4.63
4.62
4.68
4.72
4.75
4.76

4.8
4. 6
4. 8
4. 8
4. 8
4. 8

0 0

I I

0.5 0.2
1/n

I

O. I

FIG. 11. Hatios of coefficients of X(K*; 2) and S'p(K; 2)
for the sc lattice.
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TABLE XX. Analysis of p4 for the bcc lattice based on K~~ (1) =3.534 by constructing a Neville table.

1629

t„(1;bcc) Sn

58.352 941
26. 862 903
18.014 910
13.943 479
11.638 157
10.163 778
9.143 252
8.396 242

54.82
46.66
43.44
41.64
40. 52
39.78
39.26
38.90

16.51
14.20
13.29
12, 78
12.4V

12.26
12.11
12.01

11.89
11.47
11.25
11.20
11.21
11.23
11.28

11.3
11.0
11.1
11.2
11.3
11.4

TABLE XXI. Analysis of p2 for the sc lattice based on K,* (2) =3.678.

12
8.125
6.835 897
6. 153038
5.730 639
5.441 379
5.229 024
5.065336

8.32
8.89
9.4V

9.90
10.26
10.58
10.86
ll. 10

3.26
3.42
3.58
3.69
3.79
3.88
3.95
4.02

3.57
3.89
4.04
4.19
4.30
4.40
4.47

4.0
4.2
4.4
4.5
4.6
4.7

TABLE XXII. Analysis of y3 for the sc lattice based on K~ (2) =3.678.

n (2; sc) Sn &n Cn

25. 5
13.705 882
10.338 340
8.710856
7.750 662
7.114623
6.660 613
6.319177

21.82
20. 06
19.98
20. 13
20. 36
20. 62
20. 88
21.13

6. 93
6.45
6.43
6.47
6.54
6.61
6.68
6.74

5. 97
6.39
6.60
6.79
6.95
7.10
7.22

6.6
6.8
7.1
7.3
7.5
7.6

TABLE XXIII. Analysis of Y4 for the sc lattice based on Kc~ (2) =3.678 by constructing a Neville tab].e.

(4) (2. sc) Sn

43. 764 706
20. 766 129
14.512 492
11.639 181
9. 999 097
S. 938 823
8. 196292
7. 646 507

40. 09
34. 18
32. 50
31.84
31.61
31.57
31.63
31.75

11.90
10.29
9.84
9.66
9.59
9.58
9.60
9.63

8. 68
8.93
9. 12
9.33
9.53
9.70
9. 87

9.0
9.3
9.7
9.9

10.1
10.3
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impossible for them to carry out a systematic
study.
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