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High-temperature expansions are given for the second and fourth moments of the frequency
in the spin-correlation function and the frequency-dependent susceptibility. The results are
applicable to loose-packed cubic Bravais lattices with general spin values and nearest-neigh-
bor interactions. At small wave vectors, for both the ferromagnet and the antiferromagnet, ,
the series for the reciprocal of the second moment shows the expected divergence at the criti-
cal temperature. Insufficient terms are available to yield accurate critical indices. There
is good agreement between the calculation and neutron-scattering experiments on BbMnF3.
Paramagnon peaks are not likely to be present at temperatures of order five to ten times the
critical temperature in the antiferromagnets considered, but probably do occur at favorable
points in the zone for the corresponding ferromagnets.

I. INTRODUCTION

The problem of describing the dynamics of a
Heisenberg paramagnet has not been solved. For
infinite temperatures, a number of papers have
given different approximate treatments which are
substantially consistent with one another. ' In the
temperature region near the critical ordering tem-
perature, the theory of Kawasaki' and the dynamic
scaling laws"' give a description of the dynamics
for long wavelengths.

The purpose of the present paper is to investigate
the region of temperature intermediate between
these two extremes. The method of moments'4'
is used to describe the dynamics in conjunction
with a high-temperature series expansion. This
type of treatment appears to have been first used
by Sears~3 and was developed in more detail by
Tahir-Kbeli and McFadden. ' The present paper
starts by repeating this latter work to eliminate
some algebraic errors (pointed out in Refs. 6 and
14) and to give a further term in the second-mo-
ment expansion.

The form of the series at long wavelengths essen-
tially gives a high-temperature expansion for some
dynamic critical properties. Use of such expan-
sions (for review, see Ref. 15) has proved to be one
of the most powerful tools for investigating static
critical properties; this present work appears to be
the first application of this technique to dynamic
properties.

The properties calculated are observable quan-
titatively by current neutron-scattering techniques.

The physical principles and techniques involved
have been described in the literature'@' and mill
not be discussed in the present paper. A fern such
measurements have been made and these are com-
pared to the theory in Sec. IV of the paper.

H. FORM%I. THEORY

First, formal expressions mill be given for the
dynamic spin-correlation function and the general-
ized susceptibility. Then the moments of their fre-
quency spectrum are obtained and expressed as a
high-temperature series expansion.

The dynamic spin-correlation function S (k, &u)

is the spatial and temporal Fourier transform of
the two-spin-correlation function and is given by

S-(k )= Z '"'"--' '"'(S (O)Ss(f)) df
f, m

where the superscript n=x, y, or z, N is the num-
ber of atoms in the crystal, n and m are atomic
positions and Ss(t) is the c. component of spin on the
atom at m at time t. The expectation value is to
be evaluated at the temperature T of the crystal.

It follows that

f s"(k ) 'd =z'Z ""- '(s" z's-)
Kg 15 r

(2)
where p is a positive integer or zero and 2 is the
Liouville operator representing a commutation with
the Hamiltonian.

Following the method of Opechowski'8 and of
Hushbrooke and Wood, ~'20 a high-temperature ex-
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pansion can be made of the right-hand side of the
above equation in powers of P (= kate)

' using the re-
sult

where + is the Hamiltonian of the spin system and
the expectation value is to be evaluated at tempera-
ture T=~.

It is usual to work in terms of a normalized /th
moment of the spin-correlation function (e~) given
by

((o~) = f„S-(k,~)~ d&o/ f„S (k, &u) d&u . (4)

The denominator of the above expression is equal
to the parameter S(k) whose high-temperature ex-
pansionhasbeengivenin Ref. 14. (There is a minor
error in Ref. 14. In the coefficients x4 and s4 of
Appendix 8, the terms Zm[(e —1) —p,] (e —1) '
should read (e —1)Z~ —p, Z, . Concomitant er-
rors appear in Table III. The author wishes to
thank Professor S. Rushbrooke for bringing this to
his attention. ] Inversion of this term and multi-
plication with the series for the numerator and col-
lection of terms of the same order in P gives a pow-
er series for (&o, ) in powers of P.

In an analogous manner we can make the same
expansion for the imaginary part of the generalized
susceptibility Imx (k, &u). It is convenient to take
moments of this susceptibility divided by the fre-
quency ~, since then we have the property that at
infinite temperature all the moments (&u~x ) are
identical with the moments of the correlation func-
tion (&u~). Following Marshall and Lowde, '6 Eq.
(96), we can write for temperatures above the cri-
tical temperature

&o 'Imx (k, &u) =vg geNP[(1 —e "")/kurP]S (k, &o),

where p~ is the Bohr magneton and g the gyromag-
netic ratio. In taking moments of this function and
writing them as a power series in p we take all the
same steps as with the spin-correlation function
and further expand e ""~ as a power series in p.
This gives the result that the rth temperature co-
efficient of the pth moment of the susceptibility func-
tion contains the same term as in the correlation-
function moments and also terms in the expansion
of all higher moments of the correlation function
up to the (p+z)th moment. The existence of such
relations between the two sets of moments was
first pointed out by Falk and Bruch. ' The normal-
ization of the susceptibility moments contains the
function y (k) rather than S (k), but Ref. 14 lists
this expansion as well as that for S (k) so no addi-
tional problems are introduced.

The main computation problem in determining the
rth temperature coefficient of a pth moment is in
evaluating the expectation value (Spf S-'Ko '~)„ in all

possible orders of arrangement for the two spin
terms and the (r+P) terms in ~. This is the same
problem as that originally faced by Rushbrooke and
Wood in calculating the high-temperature expan-
sion of the staggered susceptibility. This expan-
sion uses the sum of the expectation values in all
possible orders while the moments determination
involves more complicated linear combinations
arising from the application of the Liouville opera-
tor. In many cases, Rushbrooke and Wood were
able to evaluate the terms in the susceptibility with-
out in fact calculating all the individual expectation
values. Nonetheless, their calculation forms an
invaluable checking point for the present calcula-
tions. We have calculated all nonzero expectation
values for r+p& 5 and their sums agree with Rush-
brooke and Wood's calculation. The expectation
values for r,+ p & 4 were in fact derived for a pre-
vious paper'4 dealing with static properties. The
computational method used is essentially the same
as that of Rushbrooke and Wood" and involves the
same restrictions of a loose-packed cubic Bravais
lattice with nearest-neighbor interactions only.

A further check on the data is furnished by the
constraint that all moments, to all orders of P, go
to zero' at k = 0. This property can be checked
separately for each particular grouping of the r+ p
lines on the graphs of Rushbrooke and Wood. ' '

The detailed forms of the moments obtained are
listed in the Appendix. Except for the highest term
in the second moment these expressions have also
been calculated by Tahir-Kheli and McFadden. '
Our data disagree with those calculations for the
term in P~ for the second moment and for the term
in P for the fourth moment, though lower terms in

p agree. The discrepancies in both cases are for
the two lowest terms in the moments when expressed
as series in powers of S(S+ 1), while the highest
term agrees. This means that in a practical com-
putation of the moments, the differences are of little
importance except for the case S=-', . It is believed
that the present calculation is correct, however;
errors in the earlier work have been noted by the
authors of Refs. 6 and 14.

Since submission of this paper for publication,
Dr. K. Binder has drawn my attention to a paper2"
that calculates a parameter equivalent to the spatial
Fourier transform of the term c, listed inthe Appen-
dix. There appear to be some discrepancies be-
tween this calculation and the terms listed in the
present paper for graphs with two and three ver-
tices, though the four-vertex graphs agree.

III. CRITICAL DYNAMICS

A. Ferromagnets

Ferromagnetic spin properties show critical
divergences as the temperature tends to the critical
temperature and the wave vector tends to zero.
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%eak singularities in properties may occur at gen-
eral wave vectors, ~ but these are not likely to be
apparent in short series such as are given in this
paper. Thus only the small wave-vector proper-
ties are considered in this section. de Gennes~ has
shown that at small wave vectors

(&n) dy2

where n is a positive even integer. For cubic sym-
metry, d„ is independent of the direction of k.

The coefficients d„can be expressed in terms of
the high-temperature series for (&u~) and (~ ) by
expanding the cosine functions defining the terms
o in Appendix A. Table I lists the results for sim-
ple-cubic and body-centered-cubic lattices with
spins of &, 1, and —,'. The series for the reciprocal
of d3 is also given. The series are normalized in

all cases to give a leading temperature-independent
term of unity.

It is to be expected that there will be a critical
"slowing down" ' so that the coefficien s d„wi
tend to zero as the critical temperature is ap-
proached from above. The coefficients given in
Table I do show such a tendency. This is perhaps
illustrated more clearly in the series for (&o3) '
which should diverge at T,. For spin &, with the
simple-cubic and the body-centered-cubic lattices,
the ratios of the successive terms in the expansion
are 35. 5, 26. 1, and 26. 9 and 47. 1, 32. 8, and 38.0,
respectively. One might expect rather generally
that these ratios will tend to values of J/kT, as one
goes to higher terms in the expansion if the quan-
tity (&u ) ' does indeed diverge at T,. For the two
lattices the critical ratios are 24. 8 and 34. 7, re-
spectively, so that the series are certainly con-
sistent with the expected divergences. Unfortunate-

ly we do not have a sufficient number of terms for
any reliance to be placed on critical indices ob-
tained from these ratios.

The treatment is believed to be the first high-
temperature series for dynamic critical properties.
It would be desirable to connect this work to the
hydrodynamic approach to critical properties of
Kawasaki' and of Halperin and Hohenberg. Unfor-
tunately this is not straightforward since hydrody-
namic theory gives a Lorentzian frequency depen-
dence at small wave vectors and frequencies. The
width of the Lorentzian function is Dk, where D
is the diffusion constant. .&he difficulty that arises
is that the moments of a Lorentzian function are in-
finite while the actual moments are known to be
finite. There must be some kind of truncation of
the Lorentzian form at high frequencies. Models
to describe this truncation have been proposed in
Refs. 1-3. The results show that the relationship
between the diffusion constant and the moments is
model dependent. Thus it may not be possible to
relate simply the critical behavior of the diffusion
constant to that of the moments.

B. Antiferromagnets

A similar treatment to that of Sec. IIIA can be
carried out for the Heisenberg antiferromagnet.
Here it is appropriate to calculate the moments at
a wave vector g corresponding to the antiferromag-
netic reciprocal lattice. Table II lists the results
for the simple-cubic and body-centered-cubic lat-
tices with spins of —,', 1, and -', . The series for the
reciprocal of the second moment is also given. As
with the ferromagnet, the series are normal. ized
in all cases to give a temperature-independent term
of unity.

TABLE I. The first four expansion coefficients of the second moment and its inverse for a simple-cubic and a body-

centered-cubic ferromagnetic lattice with spin values 8 of y, 1, and ~~. The expansion is in powers of 0 =pJ at long

wavelengths and has been normalized to give a leading temperature-independent term of unity.

Spin
S

Coef-
ficient

sc
lattice

bcc
lattice

Second moment
sc

lattice
bcc

lattice

Inverse second
moment Fourth moment

sc bcc
lattice lattice

1
—3.5

3.75
—l.583

1
—8.5
20.0

—21.43

1
—35.500
333.35

—3897.7

1
—4. 5

6.583
—4

1
—11.167

38.67
—171.0

1
—47. 167
677. 5

—17726

1
3.5
8.5

15.04

1
8. 5

52. 25
295. 6

1
35.500

926.9
24969

1
4.5

13.667
36.375

1
ll. 167
86.03

699.8

1
47. 167

1547.2
58745

1
—4.389

1
—10.62

1
—44. 03

1
—5.654

1
—13.91

1
—58.35
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As with the ferromagnet, it might be expected
that there will be a critical "sloming down" so that
the moments tend to zero as the Neel temperature
is approached from above. The coefficients in
Table II do reveal such a slowing down tendency.
Vfe can adopt the same procedure as with the ferro-
magnetic case and write down the ratio of succes-
sive terms in the series expansion for (&ua) '. With
spin —,

' and simple-cubic and body-centered-cubic
lattices these ratios are 34. 5, 26. 2, and 2'7. 7 and
46. 2, 32. 8, and 38. 8, respectively. For these
two lattices the critical ratios are 25. 1 and 35.0,
respectively, so that the series are consistent
with the expected divergences. There is not, how-
ever, a sufficient number of terms for any reliance
to be placed on critical indices obtained from these
ratios.

For the Heisenberg antiferromagnet, dynamic
scaling' predicts that the frequency function mill
have a characteristic width at q=7 that scales as
the reduced temperature to a power of 3v/2 (=1.04).
It seems reasonable to take this characteristic
width as proportional to the square root of the sec-
ond moment. This will be correct so long as the
dominant contributions to the second moment come
from sufficiently low frequencies that the critical
transition dominates the properties.

IV. NUMERICAL VALUES

Much work in evaluating numerical results has
already been carried out by McFadden and Tahir-
Kheli. ' A lot of their emphasis was on limitingly
high temperatures, however, and in this section
we look at lower temperatures. Particular empha-
sis is placed on comparison to the recent mork of

FIG. 1. Characteristic
frequencies in rubidium
manganese fluoride as a
function of temperature at
the points y@y, 8~» and

Open circles are the
experimental results of
Tucciarone et al. (Ref. 23),
and the lines the results of
the calculations given in the
present paper. No dispos-
able parameters are used
in the calculations. 0.4 0.6

(T-TN)/ T

8 8 8

o

I

4 4

LO

Tucciarone, Corliss, and Hasting on rubidium
manganese fluoride. They parametrize their fre-
quency spectra by frequencies v~ such that half
the area under a spectrum lies between frequencies
—+~ and +~~. If the spectra were Gaussian in
shape this mould correspond to

u&r = 0. 676 (&u )

Figure 1 shows the calculated values of co~ using
this equation and also the data of Tucciarone et aE.
The agreement is reasonably good seeing that no
disposable parameters have been used in the calcu-
lation.

It is also of interest to examine the temperature
variation of the line shape. This is conveniently
done4 in terms of the parameter n given by

(&4)
3( 2)2

n is zero for a Gaussian line shape, infinite for a

TABLE II. The first four expansion coefficients of the second moment and its reciprocal for a simple-cubic and a
body-centered-cubic antiferromagnetic lattice with spin values S of &, 1, and ~~. The moments are taken at the antiferro-
magnetic reciprocal lattice point (gyes for the simple-cubic. lattice, 100 for the body-centered cubic lattice) and are ex-
pressed in powers of 8" =P ) JI'. The expansions have been normalized to give a leading temperature-independent term
of unity.

Spin
S

Coef-
ficient

sc
lattice

Second moment
bcc

lattice
sc

lattice
bcc

lattice

Inverse second
moment Fourth moment

sc bcc
lattice lattice

21

1
—2.5
—0.25

0.417

1
—7.5

9.333
—19.907

1
—34.5
286. 68

—3769.66

1
—3.5

1.25
—3.5

1
—10.167

24. 444
—149.611

1
—46. 167
615.29

—17178.6

1
2. 5
6.5

16.46

1
7.5

46. 917
301.782

1
34.5

903.56
25052. 1

1
3.5

11.0
37.625

1
10.167
78.917

703.412

1
46. 167

1516.07
58764. 3

1
-3.648

1
—11.43

1
—53.50

1
—5.311

1
—15.87

1
-72.92
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Lorentzian, and ——,
' for two 5-function peaks at

+(d .
Since just the first temperature coefficient of

(a& ) is known, only the first temperature coeffi-
cient of 0. can be determined. When this term
is numerically determined from the expressions
given in the Appendix, it is found to be small through-
out the zone in both body-centered-cubic and simple-
cubic lattices. This is because the temperature
dependence of (ru4) tends to be of the same sign as
that of (&o') and of somewhat larger magnitude. It
follows that at high temperatures, where the first
term dominates, the main effects of temperature
changes are to be observed in changes of width and
area of a frequency distribution rather than in
changes of shape.

It is of particular interest to examine the value of
n at the points in the zone where it has its lowest
value. With S=—'„ this occurs at the point —,'-,' —,

' for
the simple-cubic lattice where e=-0. 225 at T= ~
and at the point 100 fox the body-centered-cubic
lattice where n = —0. 211 at T = ~. These points
give spectra that are more "square topped" than a
Gaussian shape, though the value of u is not suffi-
ciently negative that it is necessary to have maxima
at frequencies other than zero. We believe that a
value of a less than —0. 4 is required for it to be
formally necessary for a peak to have at least one
maximum at a nonzero frequency, though we have
no proof of this.

For smoothly behaved distributions, values of a
in the region -0.25 to —0. 3 would probably ensure
the existence of peaks at nonzero frequencies. It
is apparent that not-very-large changes in u might
be required at the particular points in the zone
mentioned above in order to give such peaks. How-

ever, calculations show that the first temperature
coefficient of n at both the points mentioned above
is positive. Thus the effect of decreasing the tem-
perature is to make the peaks more nearly Gaus-
sian in shape. This conclusion is qualitatively con-
firmed by the experiments of Tucciarone et al.
for rubidium manganese fluoride and of Schulhof'4
for manganese fluoride (in this case the lattice is
body-centered tetragonal not body-centered cubic
as assumed in the present calculations).

The calculations show that there will be no separa-
tion of the scattering into discernible "paramagnon"
peaks at high temperatures. With only the first
temperature coefficient of the fourth moment, we
are not able to make any predictions about the be-
havior near to the critical temperature.

In contrast to this result the analogous calcula-
tion for the ferromagnet shows a negative value of
the first temperature coefficient of n in a ferromag-
net at —,'-,'2 for the simple-cubic lattice and 100 for
the body-centered-cubic lattice. Thus at a temper-
ature of ten times the critical temperature o. is

—0. 280 in the simple-cubic lattice and —0. 263 in
the body-centered-cubic lattice. It is likely that
paramagnon peaks will be present in both lattices
at relatively high temperatures (of order 5T,) at the
particular points in reciprocal space mentioned
above. Experimentally, this effect has not been
looked for owing to the dearth of good Heisenberg
ferromagnets.

APPENDIX

In this appendix formal expressions are given for
the high-temperature expansions of the moments.
Following Rushbrooke and Wood, ' ' it is conve-
nient to work in terms of the spin variable X, equal
to S(S+ 1), and in terms of the dimensionless re-
duced temperature 8, given by kBT/J, where Z is
the Heisenberg exchange parameter. Then

It is found that

Qo = z —0'y

a~ =+40& (z —o&) [8(5P2 —3)X + 4(15@—8) X+9]

as=
pygmy ((8 0'g) [18(X + 6X 1)

+60(z —1) (X +3X) —210X (2z —1)]
+40X o, (z —1) +20X o+2

+ 120(X —X) (z —z —oa) —80X op(z —1)

—60X'o2+40X'o, + 100X zP,} .
The notation is the same as that of Refs. 14, 19,

and 20 except that the symbol Z of Ref. 14 has been
replaced by o. z is the number of nearest neigh-
bors to any given atom, p~ is the number of nonin-
tersecting circuits of four neighboring atoms in-
volving both a given atom and a particular one of
its nearest neighbors. For the simple-cubic and
body-centered-cubic lattices, z equals 6 and 8 and

p~ equals 4 and 12, respectively.
a„ is the sum of the cosines of the scalar product

of k and the end points of a11 the nonintersecting
walks of z steps between neighboring atoms, start-
ing from the origin.

Formally,

o&=Z cos(k p),
P

oz=ZZ cos[k ~ (p+p')](1 —5
& &, )

D P

era =Z Z Z cos[k (p + p' + p ")](I —5 & &. )
P Pt Ptt

The summation giving 02 is similar to that giving



o2 with the added restriction that (p+ p') must be
an atom on a closed nonintersecting circuit of four
neighboring atoms including the atom at the origin.
Formally,

oz =Z Z cos[k ~ (p+ p')] (1 —n;;, )
jy

At k=0, oa= 2zpz .
An ana, iogous series can be formed for (a&zz) by

the equation

It is found that

ho= ao,

Ag=Qg q

&z =~~~ (z —o,) [(5p, —S)X' —(5z -2)X+S],

h, = +(z -o,) (24zZP —20p,X2+ Sozx -12X—9).

The expressions for the 5 coefficients are sim-
plex than those for the a coefficients.

The fourth moment can be expanded in an analo-

gous manners glv1ng

Xze'-
(GP )=

( )
Z c'ye

Vfe shouM define series for both the correlation
function and the susceptibibty, as we did for the
second moments, but for the terms with ~ equal to
0 or 1 the two sets of coefficients are identical.
Thus only the one series is written down here with

the coefficients given by

co = P7X[2(5z —2) (z —op) —S(z —z —crz)] —~g (z —og),

c,=-~[9(z-o,)(-SX'+22X-V)

+ So(z —o,) (z —1)(- SX'+11X)

+ 40o, (z —1) Xa+ 120(zz —z —oz) (X —X)

—SOo'z(z —1)X +40osX + 60X (2pzo, —om)] .
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