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The surface-plasmon (SPO) dispersion relation for a semi-infinite electron gas is com-
puted for the quantum-mechanical random-phase approximation. The surface is assumed to
be perfectly reflecting and the boundary-value problem is solved by a symmetric continuation
of the electron gas. The linear response of the electron gas to a perturbing charge is de-
scribed by a function v which satisfies an integral equation. The integral equation for v is
solved numerically and the SPO dispersion relation is obtained by finding the pole in the den-
sity response of the electron gas to this perturbation. Graphs of the real and imaginary part
of the SPO dispersion relation are given.

I. INTRODUCTION

The surface plasmon (SPO), which is a collective
oscillation of the electron charge density at a sur-
face, has recently been the object of renewed theo-
retical attention. One model of a metal surface
which has been utilized in a number of these studies
is a semi-infinite electron gas with a perfectly
reflecting boundary. The calculations with this
model have been carried out using the random-
phase approximation (RPA) and an additional as-
sumption which neglects the quantum- mechanical
interference terms in the RPA (hydrodynamic or
quasiclassical RPA). In this paper we report the
numerical calculation of the SPO dispersion rela-
tion for a semi-infinite electron gas using the com-
plete quantum-mechani. cal RPA, which represents
the full exploitation of this widely used model of a
metal surface. The formalism to treat this prob-
lem has already been developed" '3 and in Sec. II
a brief review is presented.

The limiting long-wavelength value'4 of &~/v 2,
where w~ is the bulk plasma frequency, has been
confirmed experimentally, but there is very little
direct experimental data about the dispersion rela-
tion for the SPO. The electron-energy-loss exper-

iment on Mg films" provides a determination of the
real part of the SPO frequency, Retu, (K), where K
is the momentum parallel to the surface. The ex-
perimental values of Re~, for these films first
decrease and then increase with increasing K. "
The RPA calculations for a semi-infinite electron
gas give an Rew, which increases linearly with
increasing K. In the present calculation, the rate
of increase depends less strongly on the bulk elec-
tron density than for the hydrodynamic or quasi-
classical calculations and is reduced for densities
which correspond to metallic values. Two fac-
tors which contribute to the discrepancy between
this experimental determination of the SPO disper-
sion relation and the theoretical results for a semi-
infinite electron gas can be identified: The dis-
persion relation is more complicated for a thin film
than for a single free surface, ' and, as has re-
cently been' demonstrated, '~ the electron density
profile at the surface is important in calculations
of the SPO dispersion relation.

There are no direct experimental data for the
imaginary part of the SPO frequency, Im~, (K), but
an analysis" of semiconductor tunnelling experi-
ments' provides an indication of its magnitude.
The values obtained from the quasiclassical and



1556 D. E. BECK

quantum-mechanical calculations for semi-infinite
electron gases. are only of the order of 5 to 10%
of this value. One expects that the finite work func-
tion is important for the Im+, so it is not sur-
prising that these results do not agree. Section III
contains a discussion of the results of this calcula-
tion and a comparison with other calculations.

II. SPO DISPERSION RELATION FOR THEI
QUANTUM-MECHANICAL RPA

In earlier papers we have considered the static
response of an electron gas which fills the half-
space z &0 to an embedded or external charge Z.
The formulation of the problem presented there is
easily extended to include a time-dependent dis-
turbance and we shall only outline the theory in
the following presentation. Within the linear-re-
sponse theory the charge density p is related to
the total potential V by

p(r,'t) = f dr' dt' X(rt; r', t') V(r, t'),

where X is the linear-response function and is in-
dependent of the external disturbance. For the
semi-infinite gas considered here, y(r, t; r', t')
=y(IR —R'I, z, z'; t- t'), where 0"is the tangential
component of r and z is the perpendicular compo-
nent, and one can Fourier transform with respect
to'K, the tangential component of k, and &, the
energy variable. The electrons are bounded by the
plane z = 0 and the boundary-value problem is con-
veniently treated by introducing a symmetric poten-
tial and charge density:

p (k; &)=L (k; &o) V (k; &u)

Here

—Q 'i~ Q L (K, k„k,'; &o) V, (K, k,'; u&) .
Jig'

(5)

and

L(k; (o) =Q ii Q L(K, k„k,'; (o)
Ag

L (K, k„k,'; &) = g (K, k„k,'; &o) + g (K, k,,k,'; —&u),

(6)
with

g 2

g(K, k„2k,'; (u) =
Q g&

f(lk'+k/2 I)
Ex+f2-Eg g2++

x Ref[(k, k —k,u) +K (u —1)]j (8a)

and one makes use of the relations

Hol»=H. I»=(k'/2m)l» and p'"lk)=f(k)lk&,

where f(k) is the zero-temperature Fermi distribu-
tion, which vanishes for k)k~, the Fermi momen-
tum.

Performing the indicated integrations, ' we
obtain

Reg(K, k„k,'; a&) = —(mez/eK2)f(Ikey I/2)

x{(ku —k, k,")—sgn(ku —k, k,')

V, (K, k„v)= 2 f dz cos (k,z)V(K, z; &) (2) and

lmg(K, k„k,'; &u) = (mea/F3)f (Ikgl/2)

p, (K, k„&o)=2 f„dzcos(k, z)p(K, z; ~) . (8)

Notice that V, coincides with V for z &0 and that
SVJ'Sz is discontinuous at z = 0.

The RPA response function may be obtained by
considering the single-particle Hamiltonian Ho+ e
x V(r, t), where Ho is the Hamiltonian of a free elec-
tron and V is the self-consistent potential. The
density matrix is expanded as p' '+p"', where p+'
is the unperturbed density matrix and only the first-
order terms in p'" and V are retained in the Liou-
ville equation for the system. A complete set of
states for the half-space which vanish at the bound-
ary and correspond to specular reflection from the
surface is

g- (r, t) = (rt Ik)

= (2/Q)'i sin(k, z) e'"'" ' ~', k, )0 (4)

where 0 is the volume and E& is the energy in units
where 8=1. The dynamic RPA response of the sys-
tem is given by ' ' '

x sgn(ur) Im/[(k,"k —k,u)z+K~(u —1)], (8b)

02 u 1 —u u+1
16m k 2u u —1

(9)

where the branch cut to ddBrie the logarithm is
from —1 &u & 1. The Thomas-Fermi wave number
n is given by

(o.'/2k~)' = me'/wk~ = 0. 166r, ,

where r, is the Wigner-Seitz radius in units of the
Bohr radius. The bulk RPA linear-response func-
tion is just '

L(k; ~) =g(k; ~)+g(k; —~), (10)

where u=k+2m&o/k, k," k, +k=, and',all lengths are
expressed in units of (2k~ I . An additional integra-
tion gives

g (k; &o) = Q 'i~ Q g (K, k„k'; &u)
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and the second term in (5) comes from the quan-
tum-mechanical interference between impinging
and reflected electrons. Comparing (1) and (5) one
obtains an explicit form for X, in the quantum-mech-
anical RPA.

The potential in a charged system is also related
to the charge density by Poisson's equation which
can be written as

V(K„' z; &u) = (2m/K) f "
dz ' e

x [Z 5(z —a)+ p(K, z'; &u)], (11)

where n denotes the locatiori of the point charge Z
with respect to the surface z =0. Inserting (11) in-
to (2) and using (3), one obtains

f [v,(k;&o)- cos(k,a)]1k,=0, (18)

which is easily obtained by multiplying (14}by
e(k; &u) and integrating with respect to k,. This
sum rule ensures that the charge density goes to
zero at the surface, as can be seen by Fourier
transforming (13) with respect to k, for z = 0.

The surface charge density (16) has a pole for
complex values of &o = &o,(K) where the surface-
plasmon dispersion frequency &o,(K}is given by
the solution of the equation

D(K; ~,'(K)) = —1 . (19)

The integral equation for v, is solved numerically
by an iteration procedure which converges rapidly.
The function v, satisfies the sum rule

or

V,(k; a&) =4m[a'(K; &u)+ p, (k; &o)]/kz, a &0 (12a}

V, (k; v) = 4s[2Zcos(k, s)+ o (K; &o)+p, (k; v))/kz,

s &0 (12b)

One sees that D is independent of the size and loca-
tion of the charge Z and only the solution of (14)
with a =0 is needed to obtain D and solve the dis-
persion equation (19) for ur, . We are only inter-
ested in solutions of this equation for small values
of K and the calculation for K= 0 is of particular
interest and quite simple. It is easy to show that

where o (K; (u) is a fictitious surface charge which

is the source of the difference between V and V,.
Setting

a &0 (13a)

or

p, (k, (o)=o(K; (o}[vo(k; (u)- 1]

+2Z[v, (k; ~)- cos(k, s)], a &0 (13b)

(vp= v p) one finds from (5) and (12}that v, satis-
fies the integral equation

1
v, (k; &u) = cos(k, a)

kq (d

&o..= &o,(0) = ~, / v 2 . (2o)

The numerical calculations are simpler for real

L(0, k„k,'; &u)" k, as k, 0,
so from (14) one has vo(0; ur)=e(0; ar) '
= (1- &u~/&o ), where the bulk-plasmon frequency
&o& is given by &u~/4ez—- a/W3 and ez is the Fermi
energy e„=k„/2m. The sum rule (18) guarantees
that vo is a well-behaved function of k, so

K f dk, [vo(K, k„(o)- vo(0; (o)]/ka-0 as K 0

and (19) has the well-known solution'4

dk' L (K, k, k'; &o)

(14)
where e (k; &o) is the RPA dielectric function for
an infinite medium,

e(k; ~) =1—4+L(k; ~)/k'.
The surface charge is,. y'.ven by ' '

o(K &u)=2Ze '[1+D(K;&o)]
or

(15)

a &0 (16a)

o (K; &o) = —ZK [1+ D (K; &u)]
'

x f dk, v, (k; &o)/wk, a (0 (16b)

O. I

K/k F

0.2

where

D(K; &o}=Kf dk, vo(k; (o)/»

FIG. l. Real part of ~(K)/~„as a function of &/2k+
for three values of the Thomas-Fermi wave number e
(in units of 2k+) where ~= ~&/v2.
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FIG. 2. Imaginary part of , (K)/~ as a function of
K/2k+ for three values of the Thomas-Fermi wave num-
ber o.'(in units of 2k~) where &iso= a&go 2.

&o, and for small K the imaginary part of &o,(K) is
small. Therefore, one may approximate (19) by

8
Ds(K' &s)- &z Dr(K;~s)=-1

~ COg
(2la)

and

8
Dz(Kr +s)+~r& 'Ds(Ki ~r)=0 ~ (21b)

e, (K) = ~„[1+(a, + its) (v~K/~~) + (b, + i be) (v~K/~~)s],

(22)

where v~ is the Fermi velocity, and the values of
the coefficients a» a» b„and 5& for three values
of n are given in Table I. The values of these pa-
rameters from other calculations are also quoted

where ~,(K)= ur„+i~I and D=Ds+iD~. The solu-
tions of (21) are plotted in Figs. 1 and 2 for three
values of the Thomas-Fermi parameter n which

span the range of metallic densities. In order to
compare these results with other calculations, the
low-E values have been fitted by

in Table I, and in Sec. III the results of this cal-
culation are discussed and compared with these
other calculations and experimental data for the
SPO dispersion frequency.

HI. DISCUSSION

In an earlier paper the quasiclassical approxi-
mation for the static RPA response was obtained
by neglecting the interference term in the integral
equation for v„ then v, is given by cos(k, a)/e (k; ~)
in the quasiclassical approximation. Inserting this
into D, the dispersion equation (19) becomes

D(K; +,)=Kf „dkgvk s(k; &u,)= —1, (23)

which is just the expression obtained and solved nu-
merically by Ritchie and Marusak. 4 Their results
differ appreciably from the present calculations
for electronic density which correspond to those
found in metals, as can be seen by comparing Figs.
1 and 3 with the corresponding figures in their pa-
per. Our experience with the static calculation' '
indicates that the main source of the difference be-
tween the quasiclassical and quantum-mechanical
RPA is that the quasiclassical density response
is not zero at the boundary. Using the quasiclas-
sical RPA, analytic solutions for the surface-plas-
mon dispersion relation have been obtained for
small K. Ritchie solved a linearized hydrody-
namic equation to obtain cj, and Wagner solved
a linearized Boltzmann- Vlasov equation to obtain
a, and a&. Their values for these coefficients are
quoted in Table I and our values for a, if extrapo-
lated linearly to small a approach Wagner's value.
The numerical calculation for the quasiclassical
RPA gave a, = 0. 5, essentially independent of the
electronic density, and a value for as of about the
same size as Wagner obtained.

The experimental data on electron energy loss
in thin Mg films' (-70 A) deposited on carbon in-
dicate that Re&a,(K) first decreases and then in-
creases with increasing K. However, the surface-
plasmon dispersion relation in thin films is more
complicated than for a single free surface' so that
additional experimental data are needed to confirm

TABLE I. Coefficients in the expansion of , (K) for small K, Eq. (22). Here 0' is the Thomas-Fermi wave number.

Source

This
calculation

Ritchie
%'agner'
Kanazawad

0'/2k p

0.50
0. 75
1.00

0.401
0.307
0.230
0.5048
0.5578
0. 0

0.010
0. 004
0.001

0. 0307

0.295
0.482
0.570

1.2

0. 016
0. 014
0. 005

~((g /4g )i,/2/2isl4

0.1255
0.1537
0.1774

The value of e2 from Ref. 6.
Reference 2.

'Reference 3.
Reference 1.
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this behavior for a metal surface. Bennett finds
that by varying the electron-density profile in a
hydrodynamic calculation he can fit the experi-
mentally determined curve for Re@&,(K) in Mg. "
Kanazawa' employs approximations in his treat-
ment of this problem which retain the quantum-
mechanical aspects of the problem and obtains an
expression for the SPO dispersion relation where
the correction to &„is quadratic in K. This low-
K behavior is in better agreement with the experi-
mental results than the semi-infinite electron-gas
calculations and his value for 5& is quoted in Table
I.

Another approach to the problem has been taken
by Feibelman who formulated the problem in terms
of Hartree states. Using this formulation he has
demonstrated the insensitivity of the surface-
plasmon frequency at infinite wavelength to the de-
tails of the density profile, a result which also
applies to the present formulation as can be seen
from the arguments leading to (20). Employing a
step profile for the electron density he obtains,
for small K,

Imto, (K) = (o» v(K/2 k+)(4ez/vp)'I /2ts'4,

and an a2 corresponding to this expression is tabu-
lated in column 7 of Table I for comparison with
the other values of a2 given in the table. There
are no direct experimental data for Im~, but Ngai
et a/. "find that they are able to describe the
semiconductor tunneling data of Tsui' by using
Feibelman's value for a~ with a, =0 and that these
data are inconsistent with the large values of a,
obtained in the quasiclassical semi-infinite elec-
tron- gas calculations.

The point to be made concerning the surface-
plasmon dispersion relation is that it is sensitive

to the electron-density profile at the surface '~
except that it always approaches &u~/v 2 as
K- 0. In the semi-infinite quantum-mechanical
RPA calculation reported here the electron den-
sity is smooth and goes to zero at the boundary,
while in the quasiclassical calculation, the den-

sity has a jump at the boundary. ' 3 For small K
the Re~, calculated here is smaller for metallic
densities than the quasiclassical, and thus in better
agreement with experiment.

The Im~, is too small for both the quasiclassical
and quantum-mechanical RPA calculations and this
is certainly to be expected. The work functions of
metals are typically of the same order of magnitude
as their Fermi energies (4-10 eV). Examining
ReD, (IV), for small K one finds that most of the
contribution to the integral comes from small val-
ues of k, or from electrons with small momentum,
and for these electrons the difference between a
finite and an infinite potential step is not too impor-
tant. However, the imaginary part of ve, (14), is
small unless k, = k„ the wave number where bulk
Landau damping is possible, so that for ImD, (17),
the approximation of replacing the work function by
an infinite potential barrier is a very poor one. %e
hope to report a calculation of the SPO dispersion
relation using a finite potential barrier in the near
future.
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