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This paper presents an experimental study in bismuth of the acoustic plasma wave at mic-
rowave frequencies. We have studied the coupling, in the presence of a dc magnetic field,
of this wave to the Alfvdn mode; experiments have been performed at two frequencies: 10
and 3 GHz. The 3-GHz transmission spectrometer devised by the authors shows very
clearly the presence of the magnetoacoustic mode, while at 10 GHz hybrid and cyclotron
resonances are mixed with the phenomenon studied. The electromagnetic theory of this
phenomenon in the case of a collisionless isotropic plasma is recalled; the case of bismuth
is then fully analyzed and compared with experiment. From the coupling of the two modes,
n&0 is obtained, where n is the carrier density and &0 the band overlap.

I. INTRODUCTION

Alfven-wave propagation in bismuth has been
extensively studied' since the original work of
Buchsbaum and Gait. ~ Using compensated solid-
state plasmas, McVfhorter and May have tried,
unsuccessfully, to discover evidence for acoustic
waves, in the electron-hole gas. Yokota has
studied the theoretical coupling of the compression-
al Alfven mode with the magnetoacoustic wave in
the presence of a magnetic field; this effect has
been observed experimentally in bismuth by Lupat-
kin and Nanney' and, more recently, by D'Haenens
and Libchaber.

In this paper a theoretical and systematic experi-
mental study of the magnetoacoustic mode in bis-
muth is presented.

In Sec. II, the electromagnetic theory of this
phenomenon allows the analysis of the effect of
temporal and spatial dispersion on the wave spec-
trum. In the same section, the dispersion equation
of the compressional Alfven wave and of the mag-
netoacoustic mode is obtained in the complex case
of bismuth, from the knowledge of the conductivity
tensor for an ellipsoidal Fermi surface in the spa-
tial-dispersion regime (Appendix 8). An important
result is derived: The quantity neo (where n is the
carrier density and &, the band overlap energy) can
be obtained experimentally.

In Sec. III, the experimental apparatus used is
presented, in particular, the two-strip-resonators
transmission spectrometer used at 3 GHz.

In Sec. IV, the theoretical and experimental re-
sults are presented and compared at two frequen-
cies: 9.65 and 2. 80 GHz. It is shown that at 2. 8

GHz the magnetoacoustic mode appears very clear-
ly, while at 10 GHz hybrid and cyclotron resonance
are mixed with the phenomenon studied.

In Appendix A, it is recalled that the magneto-
hydrodynamical model of the propagation and cou-
pling of the compressional Alfven wave with the
acoustic wave can be applied to the collisionless
plasma, when the direction of wave propagation is
perpendicular to the magnetic field. This approach,
a classical one for gaseous-plasma physicists does
not yet seem to be widely known to solid-state phys-
icists.

II. ELECTROMAGNETIC THEORY OF PROPAGATION OF
COMPRESSIONAL ALFVCN MODE AND ITS COUPLING

WITH MAGNETOACOUSTIC MODE

In Sec. II A, we review the electromagnetic theory
of the Alfven and magnetoacoustic modes for an

isotropic compensated plasma. In Sec. II B we

study the limits of these results in the cyclotron-
resonance (e - ~,) and nonlocal-dispersion (qR - 1)

regime, where q is the wave vector and R the cy-
clotron radius. Finally, in Sec. IIC we present
the theory of these modes for an anisotropic plasma
like bismuth.

A. Electromagnetic Theory of Coupling of the Compressional
Alfven Mode with the Magnetoacoustic Mode

The electromagnetic theory of the coupling of the
compressional Alfven mode with the magnetoacous-
tic mode has been described by Yokota. Let us
recall it briefly. Consider an isotropic degenerated
compensated plasma gas with an electron (hole)
Fermi energy er, (e») and carrier density
n(n, =nz). The conductivity tensor, in a small spa-



MAGNE TOACOUSTIC WAVE IN AN E LEC TRON-HOLE GAS ~ . ~ 1539

are
2 2n)8 co 2 3~

~m~~

ne
im, co co„'

n)8
m (uc&

The indices i are relative to electrons and holes,'

m, is the particle effective mass and ~ the angular
frequency; the relaxation time 7' is infinite.

The important effect here is the presence in 0 „'„
of a nonlocal term which cannot be neglected: It is
comparable in magnitude to the local term when the
wave phase velocity is comparable to the carrier
Fermi velocity as q2R» = q v2«/&o„.

Under conditions (1), the Hall current vanishes
if the plasma is compensated, and the dispersion
equation reads

q2=i p2(O((r'„„+, (r"„„), (3)

where e and h refer to electrons and holes, and p, o
is the vacuum permittivity. One obtains

2 ggng&2 g 2 /pnme"5 B2/2p,
= P' B'

Since 5 nE~ is the kinetic pressure P, of a Fermi
gas, then Eq. (4) simplifies to

q'(1+ P, /P„) = (o2(p, p/B'), , (5)

where P„P are, respectively, the kinetic and
magnetic pressure and p the mass density gqn, m ~.
In terms of phase velocity, (5) reads

I/ (
2 2)1/2 (6)

where v& and v, are the Alfven- and the magneto-
acoustic-mode phase velocities:

A

2 m vp +m2v22
l~

2P l
5 m~+m2 j p j

V~ is linear in B, V, is independent of B.
Let us define B„, the acoustic coupling field,

(8)

tial-dispersion regime, is easily written in a pow-
er-series expansion up to (qR) from Eq. (B5) of
Appendix B. Let us define a right triad (Oxy2) with
Oz parallel to 8, the applied static magnetic field.
We are only interested in modes with an electrical
polarization yerpendicular to the magnetic field, and
with q parallel to Oy. Thus we need only the con-
ductivity-tensor elements in a plane perpendicular
to B, which under the conditions

qA» «1

i.e. , the field for which the magnetic pressure is
equal to the kinetic pressure, as

2=Bac= 2po pc ~

Then

For high magnetic field, B»B and

V~= Vg,

and for low magnetic field, B«B~ and

V =V

Let us note that in the low-field limit B«B~, i.e. ,
P, » P, the dispersion equation (3) is equivalent
from (5) to

g0„„+g„„=0.
Therefore, the magnetoacoustic mode is a zero-
current-density mode: The propagation mechanism
is no longer of an electromagnetic nature. From
this one concludes that, at a high magnetic field,
an electromagnetic mode exists which, when the
magnetic pressure is of the order of the kinetic
pressure, couples with a mode which can be in-
terpreted as an acoustic one. As discussed in Ap-
pendix A these modes are both compressional; their
phase velocities are independent of frequency; the
quantities 2P and 2P, are the inverse of the mag-
netic and kinetic compressibilities of an electron-
hole Fermi gas. As the magnetoacoustic mode con-
sists of kinetic-pressure fluctuations, its phase
velocity is of the order of the carrier's Fermi
velocities.

B. Effects of Temporal Dispersion on Previous Theory

(i) Consider the case of the cyclotron-resonance
regime (~- &u„) under local conditions (qR, -O).
As is well known, 7 at a low magnetic field, the
Alfven wave couples with a longitudinal mode and
propagation stops at the hybrid-resonance field B„
defined by

ar = eB„/(m,m„) /2 .
The field B„is between the electron- and hole-cy-
clotron-resonance fields. At B„the two types of
carriers oscillate in phase along the direction of
propagation, i.e. , g» = 0. Since charge densities
are screened at frequencies much lower than the
ylasma frequency, the current-density component
j„parallel to the wave vector is always zero, and
the components E„and E„of the electric field are
related by the equation

B„=—((r~ /(r~) Z„.
Near the hybrid resonance, the mode is essentially
longitudinal as q» ~ 0. The dispersion equation in
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FIG. 1. Coupling of Alfv6n waves to cyclotron waves
in the vicinity of cyclotron resonances. Theoretical re-
sults: sol hne, approximation up to {qZ) terms;
broken line, calculation to higher terms.

the local limit (qR, - G) is easily derived from Eqs.
{B7)and (C2), and the wave phase velocity is

v, = v„(1 am/a-')'I' . {12)

{ii) Taking into account the coupling with the mag-
netoacoustic mode (qR;« 1), the phase velocity be-
comes

V = V (1 -a'/B')'la{1+&' /&')'" (13)

Therefore, at low magnetic fields, the Alfven mode
couples with the hybrid longitudinal mode and with
the transverse magnetoacoustic mode. These ef-
fects have opposite results on the phase velocity.
However, the hybrid-resonance field B, varies
linearly with frequency while the acoustic-coupling
fieM does not; thus, experiments at low frequencies
such that B„«B~would show the coupling of the
Alfven wRve with the Rcoustlc wRve without any 111-

tervention of the longitudinal mode.
(iii) Let us now examine the validity of the theory

leading to Eq. (13). We begin by restricting our-
selves to the small spatial-dispersion regime of
qB& «1. 'gath the exception of the magnetoacoustic
term, the other nonlocal terms in Eqs. (BV) need
only be retained in a regime very close to cyclotron
resonance. To be precise, let us suppose that the
hole cyclotron resonance occurs at a much higher
magnetic field than the electron cyclotron resonance,
and that the coupling of the Alfven wave to the mag-
netoacoustic wave is negligibe. Under these condi-
tions, at the hole-cyclotron-resonance field, there
is no singularity in A1fvdn-wave propagation in the
local limit (qB -0) because the rotation direction of
the circularly polarized electromagnetic field is
counter to the rotation direction of holes. ~ More-
over, a theory ' taking into account all the nonlocal
terms uy to q 8 shows that it is still true in a non-

local model. However, this nonlocal theory shows
that the Alfven wave near &~ couples with a longitu-
dinal cyclotron mode and with a transverse cyclotron
mode. It also shows a surface impedance singular-
ity near —,'~,„because at that point the group velocity
cancels itself out. The main results of this theorys
are sketched in Fig. 1.

It goes without saying that, under strong nonlocal
regime qB& &1, our theory of the coupling of the
Alfven mode with the magnetoacoustic mode does
not apply. %'8 note that the wave vector decreases
with frequency. Then a lower experimental fre-
quency allows us to restore the condition of small
nonlocality (qR, & 1) at a given magnetic field.

To summarize, the experimental study of the
magnetoacoustic mode can be perturbed by the cou-
pling of the Alfven mode with the hybrid longitudinal
mode, or with a cyclotron longitudinal mode, or by
the occurence of a strong nonlocal regime. In any
case, work at sufficiently low frequencies should al-
low us to bypass these diff lcultles.

C. Theory for an Anisotropic Compensated Plasma-Bismuth

In the theoretical calculations, we use the ellip-
soidal model for bismuth band energy; the hole el-
lipsoid is invariant by rotation around the trigonal
axis (3). The electron Fermi surface is composed
of three ellipsoids slightly tilted out of the plane
perpendicular to the ternary axis. The equation of
ellipsoid (a), invariant by symmetry with respect to
the binary axis (1) reads, in the right triad
(1, 2, 3), where 2 is the bissectrix axis

20~Pe +I j + ~P3+~~3+ ~PRP3 (14)

Ellipsoids (b) and (c) are deduced from ellipsoid (a)
by +120 rotations around the ternary axis.

The hole ellipsoids equation is

2m Otgg = s(pg +pa) +'bp 8 .
The electron. and hole inverse-mass tensors are
deduced from the mass system obtained by
Williams from Alfven-wave propagation experi-
ments. The effective masses at the Fermi surface
(in units of mo) are as follows: For electrons, mq
=0.005, m&=1. 2V, me=0. 031, m4=0. 15V; hence
-=200, P='2. 106, y='86. 28, .=-'10.6V. 'For
holes, Mq=0. 064, M&=0. 064, M, =0.69; hence a
=15.62, 5=1.45. The sign of m4 is positive in the
right triad (1, 2, 3), identical with the (1', 2', 3')
triad defined by Brown, Hartman, and Koenig.
Following Smith, Baraff, and Howe1l, we use for
the electrons Fermi energy &&„hole Fermi enexgy
6», band overlap energy C„and carriers density
n the following values: c~, = 2V. 6 meV, c~„=10.9
meV, &0= 38.5 meV, n = 2. V5X 10~ m '. The band
overlap energy is given by co= c&,+c» as shown in
Fig. 2. From these quantities, one deduces that
the acoustic-coupling field value B„must be 400 6
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FIG. 2. Schematic main energy bands of bismuth
showing the overlap.

for the magnetic pressure to be equal to the kinetic
pressure.

We can now discuss qualitatively the case of bis-
muth. As shown in the isotropic model, the cou-
pling of the Alfven mode with the magnetoacoustic
mode can be observed clearly if the coupling with
the longitudinal hybrid mode and the longitudinal
cyclotron mode occurs for magnetic fields smaller
than the acoustic-coupling field.

In Fig. 3 we have plotted, depending on the ori-
entation of the magnetic field in a plane perpendicu-
lar to the binary, bissectrix, and trigonal respec-
tively, the variation of the cyclotron- and hybrid-
resonance fields for the two experimental frequen-
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FIG. 4. Table showing relative magnitude of cyclotron
masses, transverse conductivities, and spatial exploration-
radius components.

cies 2. 84 and 9.65 GHz. At 2. 84 GHz, the hybrid-
and cyclotron-resonance fields are much smaller
than the acoustic-coupling field for all orientations.
At 9.65 GHz, this takes place when the direction
of propagation is parallel to the binary axis [Fig.
3(a)]. But the contrary happens when the magnetic
field is along the binary axis [Figs. 3(b) and 3(c)].
The condition qA, «1 is less simple to discuss.
Let us note, however, that an orientation for which

all cyclotron masses are small corresponds to
long-wavelength propagation and to small spatial
dispersion, so that the condition of small spatial
dispersion is also more easily fulfilled. This can
be easily understood if one takes the crude model
of a cigar-shaped ellipsoidal Fermi surface; the
results are shown in Fig. 4. %'e have indicated the
relative magnitude of cyclotron masses, transverse
conductivities, and spatial exploration radii for the

two following situations: the magnetic field along

the large principal axis (I) and along a small prin-
cipal axis (II). It follows that, when the cyclotron
mass is small, the carrier is frozen in the plane
transverse to the magnetic field: The transverse
conductivity and the spatial exploration are both

small. This carrier only contributes to the Hall

current. Thus, in the base of bismuth, when all
cyclotron masses are small, the Alfven conductivi-

ty, and therefore the wave vector q, and the spatial
exploration radius 8, are small, so that the nonlocal
parameters qB; are small.

In Fig. 3, we have also plotted the Alfven wave

vector at frequency 9.65 GHz, and for a magnetic
field of 10 kG. It can be verified that when cyclo-
tron masses are small the wave vector is also
small.

We now develop the general theory for bismuth.
Since the electrons Bnd holes Fermi surface in bis-
muth are ellipsoidal to a good approximation, one
first needs to know the general nonlocal conductivity
tensor for an ellipsoidal Fermi surface. This ten-

sor 0 can be derived from the conductivity tensor
for a spherical surface o ~ by mathematical trans-
formations, but we prefer to derive it through sim-
ple physical arguments. This is done in Appendix
B.

In the general case, one has to solve the complete
dispersion equation (cf. Appendix C). We calculate
the conductivity tensor by summing up the contribu-
tions of each ellipsoid. This calculation is done in
the region of small spatial dispersion (qR, « I). We

just keep the magnetoacoustic term and neglect the
other nonlocal terms, i.e. , we do not take into ac-
count the coupling with the cyclotron longitudinal
mode; the temporal hybrid-resonance effect is in-
cluded. In fact, one should remark that the coupling
of the Alfven mode with the cyclotron longitudinal
mode is only noticeable in the cyclotron-resonance
region cu„- v. Qn the other hand, the coupling with
the hybrid longitudinal mode and transverse magne-
toacoustic mode begins for fields greater than B„
or B, as is obvious from Eq. (13). In this approx-
imation, the dispersion equation is quadratic in q,
and thus can be solved algebraically. The calcula-
tions are long but straightforward. They have been
processed on an IBM 1130 computer. The validity
of the small spatial-dispersion approximation
(qR, & 1) is checked a posteriori.

We will now show an interesting result: In a case
where the Alfven wave couples only with the magne-
toacoustic mode, the study of the coupling of these
two modes can yield, in principle, the quantity neo.

Let us assume that the two modes, solutions of
the dispersion equation, are electrically polarized
parallel and transverse, respectively, to the mag-
netic field. This assumption is well verified for a
high-symmetry direction or in a high-magnetic-field
regime (cf. Appendix C). The dispersion equation
is

q'=ip, ,&u(a„„—a /a„) .

(The Hall term a „„is different from zero in the
high-field limit because of the anisotropy of bis-
muth, and is of the order of 1/B2. ) As shown in

Appendix B, the magnetoacoustic term in 0 „„,called
a„„",is isotropic. (The superscript nl stands for
nonlocal. ) This is physically clear if one realizes
that this term represents the kinetic-pressure con-
tribution to the transverse conductivity o „„.

Equations (16) and (B22) then yield

where q„„ the dispersion-equation solution in the
local approximation, is linear in 1/B.

Since the three electron ellipsoids of bismuth have
the same Fermi energy &~„ the total electron con-
tribution to the kinetic pressure P, is equal to
~5&&„so that the total kinetic pressure is
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P, =-,'n(e~, +a~„) . (18) B. X-Band Methods

As shown in Fig. 2, the quantity E„,+&» is just the
band-energy overlap &p, so that

2Ig 5 flap ~

Thus, the study of the deviation of the dispersion
law from a linear law in 1/B can yield the quantity
n&p.

We can now discuss the possibility of observing
the coupling of the compressional Alfven mode with

the magnetoacoustic mode in solid-state compen-
sated plasmas. In compensated metals, the car-
riers' density is so high that the kinetic pressure
is always much higher than the magnetic pressure
in laboratory magnetic fields. Thus, for magnetic
fields such as

Bg «B «Bac t (20)

B„,B„«B -B, qR, «1, (21}

where the cyclotron-resonance field B„is defined by

(u=eB,(/m, .
But in a solid-state plasma, since the momentum

relaxes essentially to the lattice, the frequency has
to be sufficiently high such that

mT»1 .

one can excite, in principle, a very pure acoustic
mode completely decoupled from the Alfven wave.
In that case, as shown previously, the acoustic mode
is an almost perfect zero-current mode and will be
very difficult to excite. In bismuth, on the contrary,
the carriers' density is much lower than in metals,

so that the kinetic pressure, hence B„, is rather
low. Thus, the problem in bismuth is to work at
sufficiently low frequencies, such as

We use a transmission method with a sample
placed between two tuned cavities; this method was
originally used for paramagnetic spin-resonance
experiments. '

The cavities are parallelepipedic, iris coupled
to the waveguides. One of them is frequency tunable
by means of a Teflon plunger. The signal coming
from the reception cavity is sent on a hot-electron
InSb bolometer, put in the low-temperature cryostat
where the experiment is performed. The magnetic
field is modulated at a very low frequency (12 Hz).
A microwave reference signal with adjustable am-
plitude and phase is applied also to the InSb detector.
The output signal from the bolometer is sent to a
lock-in amplifier.

The static magnetic field is applied parallel to the
plane face of the sample. Figure 5 shows a simpli-
fied scheme of the cavities, detector, and coaxial
cable for the reference signal.

C. 10-cm-Band Methods

The setup of an experiment similar to the X-band
experiment should induce heavy experimental diffi-
culties related to the dimensions of parallelepipedic
cavities with a wavelength of the order of 10 cm.

A one-dimensional resonant structure is much
more compact, therefore we conceived an experi-
mental setup using two "strip" cavities tuned at the

Even for the best bismuth samples, at pumped liquid-
helium temperature, these two conditions define a
rather narrow window of frequencies from p = 2 GHz

(a&r -10) to v = 10 GHz ( B„-B«}.

III. EXPERIMENTAL METHOD

A. Sample Preparation

Single-crystal ingots are grown from a melt of
99.9999 bismuth by a modified Kapitza's method in
a hydrogen atmosphere. In a horizontal boat sub-
mitted to a temperature gradient, crystallization
starts from a single crystal germ. After crystallo-
graphic orientation using x rays, flat disks are cut
with a spark machine from the ingots. They are
mechanically lapped; the strained parts are removed
by chemical etching and electrolytic polishing. Fi-
nally the samples are annealed at 250'C during
100 h in hydrogen flow; our samples have an aver-
age collision time of about 3~10 sec.

N~~~/ FIG. 5. Schematic ex-
perimental setup for the
3-cm-band frequencies.
(a): emission cavity;
(b): reception cavity (c):
sample. (d): coupling
iris; (e): antenna for the
reference signal; (f):
InSb hot-electron bolo-
meter.
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C

FIG. 6. Exploded view of the 10-cm-band setup. (a):
ground base plate; (b): brass covers; (c): coupling loops;
(d): Teflon plunger for frequency adjustment; (e): strip
resonators; (f): coaxial cables; (g): pusher actuating th~
Teflon plunger; (h): sample position. For clarity the
coupling loops of the second cavity and the sample dia-
phragms are not shown.

same frequency and coupled by transmission through
the sample. Such a setup has very acceptable di-
mensions.

Each cavity is made of a section of a nonbalanced
copper strip line (width 10 mm, dielectric thickness
1 mm, length ~ X) short-circuited at both ends. The
dielectric is liquid helium during the experiment.
Excitation of the cavities is done magnetically: A
small loop (Q = 1 mm) put at the end of the semirigid
coaxial cable is pressed laterally against the strip
line in the neighborhood of a short-circuited end.
(In such a point there is a node of electric field and

a maximum of magnetic field. ) The coupling is ad-
justed by changing the position of the loop with re-
spect to the end of the strip line and its orientation
around the axis of the coaxial cable. The ground
base plate common to each cavity is used as sample
holder; for this purpose a circular hole of a slightly
greater diameter than the sample diameter is
drilled into the plate. The plate has the thickness
of the sample. The hole is near the short-circuited
ends of the two cavities. The sample is fixed inside

Microwave

Generator Isolator

(Klystron )
Modulator — l cavity 2 ceity-

. X-Y recorder

x

Magnetic

field
sweeping

se
shift

Lock-in

detection

30JB

Amplifier

FIG. 7. 3Gc/~ detection setup.

with silver glue. Two annular diaphragms made of
fine gold (0. 15 mm thick, external diameter 15
mm, internal diameter 4 mm), fixed also with sil-
ver glue, cover each face of the sample. They have
a double role: to suppress the microwave leakage
between the two cavities, and also to limit the ef-
fective surface of the sample in order to get rid of
surface-impedance variation with the magnetic
field, which would modify the Q of the cavities.

The characteristic impedance of the strip line is
30 0 in vacuo. This value, smaller than the vac-
uum impedance, limits diffraction losses. The
cavities are electrically isolated by two semicylin-
drical brass covers the internal faces of which are
painted with a microwave absorbant colloidal graph-
ite to avoid parasitic resonance modes. Indium
gaskets ensure a better than 100-dB isolation be-
tween the cavities.

Each cavity has two magnetic-coupling loops with
a maximum distance between them. By using one
loop for the emission and one for the reception, one
can separately measure the resonance frequency
f, and the quality factor Q of each cavity. During
the transmission experiment only one loop is used
with each cavity: one for the emission, the other
for the reception.

A small piece of Teflon, articulate on an axis
fixed on the ground base plate, furnishes a means
of tuning the cavities. This system gives a varia-
tion of f, of the order of 30 MHz.

The quality factor of the cavities was measured
by transmission. At critical coupling, Q =500
(therefore the intrinsic' quality factor Qo =1500).

Figure 6 shows the described system. The cou-
pling loops have been drawn for one cavity only.
The magnetic field B is parallel to the sample.

A detection setup for the transmitted signal in the
3-GHz band is shown in Fig. 7; the microwave with

frequency 0 is amplitude modulated at frequency ur

(typically VOO Hz) by a diode modulator.
A stub stretcher tunes the source to the first-

cavity excitation loop. Another stub stretcher
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adapts the second-cavity loop to a detection diode
fitted up on the coaxial line.

A small part of the nonmodulated signal can be
sampled at the output of the generator by an adjust-
able attenuation coupler followed by a phase shifter,
and sent onto the detection diode by means of a di-
rectional coupler, so as not to perturb the reception
cavity. The signal at frequency co from the diode
is sent on a lock-in detector. We thus have a homo-
dyne system where a reference signal interferes
with the transmitted one; one observes transmission
extrema when

2p&=d,

where d is the sample thickness, A. the wavelength
in the medium, and p an integer.

IV. EXPERIMENTAL RESULTS AND COMPARISON
WITH THEORY
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The main experimental results are presented in
the following figures. We have plotted there the
number of half-wavelengths in the sample, propor-
tional to the wave vector, as a function of the in-
verse of the magnetic field. The following theoreti-
cal results are also presented: the local di.spersion
curve taking account of the coupling with the hybrid
longitudinal mode; the curve, linear in 1/B, as-
ymptotic in the high-field limit to the local disper-
sion curve; and the nonlocal dispersion curve in-
cluding the coupling with the magnetoacoustic mode.
The deviation of the local curve from the asymptotic
one allows us to appreciate the importance of the
coupling with the hybrid longitudinal mode, the de-
viation of the nonlocal curve from the local one, and
the importance of the coupling with the magneto-
acoustic mode. We also plot for each ellipsoid the
nonlocal parameter qB„ this allows us to verify
a poste~io~i the validity of the power-series expan-
sion to the order (qR)f. The fit between the experi-
mental plot and nonlocal theory has been done for
one point (B=2000 G).

A. Coupling with the Magnetoacoustic Mode

A very spectacular and characteristic example of
Alfven- and magnetoacoustic-wave coupling is pre-
sented in Fig. 8(a). In the high-magnetic-field
limit, the wave vector displays a linear dependence
on 1/B, typical of Alfven-wave dispersion; in the
low-field limit, it tends to a constant value charac-
teristic of the magnetoacoustic wave.

The particularity of this special orientation of B
and q, is twofold: First the hybrid- and cyclotron-
resonance fields are much smaller than the acous-
tic-coupling field [Fig. 8(a)], and therefore do not
affect the magnetoacoustic interaction. Also, in
this orientation the cyclotron masses are small and
the condition of small spatial dispersion is satis-
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fied. These two points are confirmed by the general
agreement with theory; there is however a small
disagreement at very low field, probably due to a
rather large-hole nonlocal parameter, as shown in
the figure. The deviation of the local theoretical
curve from the asymptotic linear curve shows, as
discussed at the end of Sec. II C, that the coupling
with the hybrid longitudinal mode is noticeable even
at fields high compared to the hybrid-resonance
field. Therefore, the study of the coupling of the
Alfven and magnetoacoustic waves for that particu-

20t0
1/B (T .~)

FIG. 8. Dispersion law versus 1/B in the direction
q II I with (S,B)= 140'. (a) Propagation at S.66 GHz,
T=1.8'K, sample thickness 0.25 mm; g) propagation
at 2.84 GHz. T=1.8 K; sample thickness 1.36 mm.
At this frequency, in the range of magnetic field, the
local dispersion curve and its high-field asymptote
become superimposed. Theoretical curves: ———
local dispersion curve including hybrid-resonance effect;
——- linear versus 1/B curve asymptotic at high fields
to the local dispersion curve; dispersion curve
including the nonlocal magnetoacoustic and the hybrid-
resonance effect; —— curves of qR& for the dif-
ferent ellipsoids of carriers electrons a, b, c and holes
h; + experimental points.
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singularity which is not explained by the present
theory.

C. Influence of Strong Spatial-Dispersion Regime

In Fig. 11(a) an interesting example of combined
hybrid resonance and large spatial-exploration ef-
fect is presented. The experimental dispersion
curve shows the qualitative feature of the coupling
with a longitudinal hybrid mode, due to electrons a
and holes. This fits poorly with theory owing to the
large nonlocal parameter of electrons a. The ex-
perimental coupling with the hybrid mode for a given
magnetic field is much smaller than what is pre-
dicted by the small spatial-dispersion theory. We
propose the following explanation: The conductivity
of electrons a is decreased owing to their high non-
local parameter and therefore the hybrid resonance
is shifted to lower magnetic fields (i.e. , towards
the electrons-a cyclotron field). The nonlocal ef-
fect on the dispersion curve is magnified by the vi-
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FIG. 11. Same as Fig. 8: (a) Propagation at S. 65 GHz
with B II 1 in the direction q II 3; T =1.8'K. ; sample thick-
ness 0. 17 mm. (b) Propagation at 2. 84 GHz with B II 1 in
the direction qll3 T= l. 8'K sample thickness 0. S4 mm.

I

200 400

B {tlauss)

600

a small hole contribution to the Alfven current in
that orientation.

Figure 9(b), by comparison with Fig. 9(a), shows
that at lower frequencies, the coupling with the hy-
brid longitudinal mode, for a given magnetic field,
is much smaller. In fact, one observes a very
strong coupling to the magnetoacoustic mode, and
one can follow the wave propagation down to fields
twice as small as for the higher frequency. There
is, however, a slight disagreement with theory at
low magnetic field. We do not have any explanation
for it. (For this sample, frequency, and orienta-
tion, we have urf'-9, so that the effect of the finite-
ness of &o& should still be rather small. )

In Fig. 10 we present the experimental recordings
for both frequencies. In Fig. 10(a), one observes
between the theoretical hybrid-resonance field and
the onset of wave propagation, a surface-impedance
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8 // 2
q// 1-60

cA

CA
C
47

~0

tI (b)
40

/

j/+

r
r

rr

r
+

(IR j

a.b,c
e

I

20

FIG. 12. (a) Experimental recording at frequency
S.65 GHz with BII2 in the direction qlll; T=1.8 K; sam-
ple thickness 1.36 mm. (b) Same as Fig. 8 for propaga-
tion at 9.65 GHz with BII2 in the direction qll1; T=1.8 K;
sample thickness 1.36 mm.
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Vs (107cm/sec) the theoretical nonlocal curve. We interpret this
disagreement by the coupling with the cylotron
longitudinal mode near 2',h

' '" which we have not
taken into account in the theory developed in this
paper.

E. Experimental Determination of neo

, 50;,60',
,
90',

, 120;,150;,180t

FIG. 13. Magnetoacoustic-mode phase velocity versus
direction of magnetic field: for j II I (B direction
varies from 2 axis to 3 axis); ——for qll 2 (B direction
varies from 3 axis to 1 axis); ———for q II3 (B direc-
tion varies from 1 axis to 2 axis).

cinity of a hybrid resonance (o»-0). For that par-
ticular orientation and frequency, the hybrid-reso-
nance field B„(cal culate din the local limit) is much

higher than the magnetoacoustic field 8„; therefore,
the coupling with the magnetoacoustic mode is neg-
ligible.

On the other hand, an experiment at lower fre-
quency, presented in Fig. 11(b), allows us to ob-
serve clearly the coupling with the magnetoacoustic
mode; the coupling with the hybrid longitudinal

mode, although not negligible, is strongly reduced;
the agreement with theory is quite good. The im-
portant nonlocality (qR & 1) of electrons a at low

magnetic field, even for that low frequency, has no

observable effect, because for this geometry elec-
trons a have a small contribution to the Alfven con-
ductivity.

D. Influence of Coupling with a Cyclotron Longitudinal Mode

An interesting experimental recording is presented
in Fig. 12(a): One observes wave propagation from
high magnetic field down to a surface-impedance
singularity. For that orientation, the cyclotron
masses of electrons a, b, c are much smaller than

for holes. Then the hybrid-resonance field is lower
than the hole subharmonic cyclotron-resonance
field 2&v,h [cf. Fig. 3(a)]. Thus the theoretical
model of the coupling of the Alfven wave with the
cyclotron longitudinal mode applies. The hole fun-
damental cyclotron resonance is not observed. As
predicted by theory, a strong surface-impedance
singularity is observed near 2~,h. The experimen-
tal dispersion curve is presented in Fig. 12(b).
From the high-field side down, one first observes
the coupling with the magnetoacoustic mode. Then
the experimental dispersion curve deviates from

All experiments at 2. 84 GHz present a clear evi-
dence of the compressional Alfven-mode coupling
with the magnetoacoustic mode. In all geometries,
theory and experiment fit well together. In most
orientations, the coupling with the hybrid longitudi-
nal mode may be inferred by theory to be negligible
in the experimental magnetic field range of wave
propagation. The analysis of the deviation of the
dispersion curve from the asymptotic one allows
us to determine experimentally the product of the
carriers' density by the band overlap energy:

QEO= 1550+ 160 Jm

This value is consistent with the value of g&0

(1680 Jm ) derived from Smith, Baraff, and Ho-
well. ~~

In conclusion, we present in Fig. 13 the phase
velocity of the magnetoacoustic mode for different
orientations. It is interesting to point out that, as
is clear from Eq. (8), the phase velocity of this
mode presents the same anisotropy as the Alfven-
mode phase velocity in the high-field local limit.

V. CONCLUSION

The main results obtained in this paper are the
following:

(i) At 2. 8 GHz a very clear coupling of the Alfven
wave with the magnetoacoustic mode is observed in
bismuth, for all directions; at this frequency the
effects of hybrid or cyclotron resonance and non-
local terms are negligible.

(ii) At 10 GHz in the direction of very small cy-
clotron masses, (2, B)=140, qll 1, the coupling is
clearly observed; for all other directions we have
taken into account the presence of hybrid cyclotron-
resonance and nonlocal phenomena in order to get a
good agreement between theory and experiments.

(iii) Finally, a value of neo has been deduced from
these experiments. ~

One would like to emphasize the very good agree-
ment between theory and experiment in all this
work.

We have not studied here the electron-hole acous-
tic mode in the absence of a magnetic field. It is
a purely longitudinal excitation which does not cou-
ple with a transverse electromagnetic probe; this
difficulty has been clearly analyzed by McWhorter
and May. ' The best way to study this mode, al-
though still very difficult, may be a light-scattering
experiment, as suggested by Wolff. ~6
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APPENDIX A

(O7' «1,
q(v) r«1, (Al)

where 7' is a characteristic collision time of the
conducting fluid, (u) v the mean free path, and &u

and q the frequency and wave vector of the de-
scribed phenomena.

In the presence of a magnetic field the situation
is complex: When a conducting fluid element moves
in a magnetic field, an induced electric field ap-
pears, hence also an electric current density j that
modifies the magnetic field distribution and a mag-
netic force j &&B on the fluid element concerned.

Nevertheless, an elegant and simple model can
explain the magnetohydrodynamic propagation phe-
nomena if one considers the following physical
facts (Ref. 1V, p. 83):

(a) For a high-conductivity fluid, the magnetic
field lines are "frozen", i.e. , the magnetic field
flux through any contour of moving and deforming
conducting matter is constant. The inertia of con-
ducting matter can then be ascribed to the force
tubes containing it.

(b) The force j x B exerted by the magnetic field
B on the fluid element with current density j is
equivalent to a tension B2/2//0 and a transverse
pressure Bm/2po

(c) The fluid has an adiabatic compressibility

We present in this appendix a discussion of the
physical nature of the Alfven and magnetoacoustic
modes from two distinct points of view, first from
the magnetohydrodynamic theory, then from the
electromagnetic one.

The physical concepts relevant to the propagation
of magnetohydrodynamic waves in conducting fluid
are given by Alfven and Falthammer. '~ We briefly
recall Alfven's magnetohydrodynamic theory, and
show how it applies even in the case of a collision-
less compensated plasma.

In the low-frequency and long-wavelength range, '

the magnetohydrodynamic theory applies. The local
thermodynamic equilibrium is achieved under the
following conditions:

kinetic pressure fluctuations. The phase velocity
then is

(A4)

where p is the volumic mass and X the compressi-
bility given by

X =Xc +Xm ~

The magnetic compressibility is derived from the
magnetic pressure P:

P„=B'/2 p, , y „=1/2P„. (As)

Thus, the phase velocity is easily expressed as
2+ 2)1/2 (A7)

where

(5 P / )1/3 v~ = (2P /p)' ' (A8)

WT'» 1,
q(v) r»1 .

(A9)

Such a plasma can exist in gas discharge and some
astrophysical problems, but also in a solid-state
plasma, such as bismuth.

A hydrodynamic description of the problem in
terms of pressure, density, and velocity of a fluid
element does not seem possible as there is no col-
lision mechanism to randomize the velocity distribu-
tion. Nevertheless, as suggested by Alfven and
Falthammer 7 and Spitzer, and shown by Chew,
Goldberger, and Low, a large magnetic field has,
under certain conditions, an effect similar to the
usual collisions. Let us consider a magnetic field
such as

v& is the Alfven velocity, linear in B. At a magnet-
ic field large enough for the magnetic pressure to
be greater than the kinetic pressure, the wave just
described corresponds to the compressional Alfven
wave, and. at low magnetic field it yields the acous-
tical mode.

We now consider a collisionless plasma; the mean
free path is large compared to all other characteris-
tic physical dimensions. We assume that the follow-
ing inequalities are verified:

(A2)
qR «f, (A10)

where I', is the kinetic pressure of the fluid and y
the ratio C~/C„. For a system with f degrees of
freedom,

(As)

In the magnetohydrodynamic limit, we have three
degrees of freedom, so y= 3.' Therefore, for a
wave propagating perpendicular to the static mag-
netic field, a fluid element moving along the direc-
tion of propagation is submitted to magnetic and

where ~, is the cyclotron frequency and R the Lar-
mor radius. Under such assumptions, in a plane
perpendicular to the magnetic field direction, parti-
cle velocities are isotropically distributed, since
the cyclotron frequency is much greater than the
wave frequency, and the particles see spatial varia-
tions of the electric field only over a distance R
smaller than the wavelength.

The cyclotron frequency is then equivalent to a
collision frequency and the Larmor radius to a mean
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+7'&&1 ~

q(v)r «I,
(A12)

we just find the acoustical mode described above.
We want to point out an important physical fact. The

plasma frequency is much higher than the collision
frequency, and therefore, since the medium cannot
support charge fluctuations, the electrons and ions
(holes) gases are electrically locked. In other
words, the relative diffusions of the two gases are
not prevented by collisions, but by electric fields,
Let us now consider the collisionless regime. For
a neutral gas, density fluctuation just vanishes
through diffusion and there is no propagation. On
the other hand, in a compensated plasma, one easily
imagines the possibility of propagation due to the
electrical lock-in mechanism of the two gases. Let
us imagine a charge fluctuation of the ion (hole) gas
propagating with a phase velocity v~. This supposes
that the mean velocity v& of the carrier of the ion
gas is smaller than v~, otherwise the density fluc-

free path. On the other hand, the motion parallel
to B is free and the mean drift velocity can be much
greater than the phase velocity component parallel
to B, which is the Landau damping regime. How-
ever, as long Bs the phase velocity along B is great-
er than the carriers' velocity, this difficulty disap-
pears and one may use a hydrodynamic description.
The concepts of "frozen" flux, and of kinetic and
magnetic pressure can then be applied. For a prop-
agation perpendicular to the magnetic field, one can
then show the existence of the Alfven compressional
mode and its coupling with the acoustical mode, as
the conducting fluid case can be transposed to the
collisionless plasma case. However, it is impor-
tant to point out that the problem is now two dimen-
sional (cf. Ref. 18, pp. 1V, 18, 26), and that there-
fore the adiabatic compressibility coefficient y has,
for the collisionless plasma, the value y = 2 instead
of 3 for the conducting fluid.

We must point out that, from a mechanical point
of view, compressional Alfven mode and acoustical
mode are essentially longitudinal modes, as matter
is displaced parallel to the propagation direction.

We now discuss the case of a collisionless plasma
in the limit of zero magnetic field,

(A11)

Tonks and Langmuir have described the oscilla-
tion spectrum of a plasma with two types of charge
carriers. The spectrum has two branches: an opti-
cal one at the plasma frequency, and a low-frequen-
cy branch with an acousticlike dispersion relation,
which is therefore called the acoustic branch. In
the following discussion, we only consider the low-
frequency branch.

In the hydrodynamic limit

tuation would be damped by diffusion. The lock-in
mechanism then implies that this charge fluctuation
is screened by the electron gas, but this is only
possible if the mean velocity v, of the electrons is
higher than the wave phase velocity. So, under the
conditions

vz &v~&v, , (Als)

LVQC
,
'g

I

o)

~vaC

j
"vac'

,
Cvac T T Cmat

l I

l

b)

j
Lvoc,'I

l

I

I

Le Ce7
I

I

c)

c ~ ~4 )
~ Jc„

I I

I

d)

FIG. &4. Equivalent electrical circuits for propagation
of (a) electromagnetic wave in vacuum; (b) compressional
Alfvdn wave; (c) coupled Alfven and magnetoacoustic wave;
(d) magnetoacoustic wave.

a mode of propagation in which the energy is alter-
natively transferred from the ion gas to the electron
gas can exist in a binary ionized plasma. One
should note then that some electrons move at the
phase velocity of the wave in the direction of propa-
gation, and that therefore the wave is Landau
damped. However, in some special conditions, the
Landau damping is negligible. Then the dispersion
of the mode is acousticlike.

In the case of the compensated solid-state plas-
mas, this mode has been theoretically studied by
Pines ' and Pines and Schrieffer. This mode
has been observed in gaseous plasma but not in
solid-state plasmas. Conditions of observation in
bismuth were discussed by McWhorter and May,
who did not succeed in showing evidence for this
mode. The negative results of their experiments
can be explained by Landau-damping occurrence and
above all by the difficulty of launching an essentially
longitudinal electromagnetic mode with the trans-
verse excitations necessarily used at the frequencies
concerned. The application of a small (such as
~, & ~) magnetic field transverse to the wave vector
should diminish Landau damping, but above all
should create a transverse coupling.

We now use the theory developed in Sec. II to dis-
cuss the physical nature of the Alfven and magneto-
acoustic mode from an electromagnetic point of
view. We will present the phenomena of propagation
in terms of equivalent electrical circuit.

In vacuum electromagnetic propagation, energy
is alternatively stored under electric and magnetic
form or, by analogy, under capacitive and inductive
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form. The vacuum capacitance C„, and inductance
L, are, respectively, proportional to &0 and p, o.
The dispersion equation is then analogous to the
resonance equation of a parallel L-C circuit [Fig.
14(a)].

When the electromagnetic field interacts with
matter, there exists a current density j,t in par-
allel to the vacuum polarization (or displacement)
current density j «,. In the low-frequency limit
(&u«u&~, where ~~ is the plasma frequency),

j dis j mnt (A14)

For a compensated plasma, under conditions (1),

GO

jm,t= Z 2
—— . qB( E ~ (A15)Pl] (0 ) 5 —g(d

Energy is alternatively stored under inductive and
capacitive form, i.e. , under magnetic and potential
form. The energy stored under electric form (in
vacuum capacity) is much weaker than under mag-
netic form since these energies are in the ratio
(V~/c)', where v~ and c are the Alfven wave velocity
and the light velocity.

When the magnetic pressure becomes smaller
than the kinetic pressure, the nonlocal term is no
longer negligible and is in fact an inductive term
[see Eq. (A15)]. The electron (hole) current flows
through a capacitance C, (C„) and an inductance
L, (I „) in parallel [Fig. 14(c)]. In the limit P,
»P„, the matter inductance (L, +L„) is much smal-
ler than the vacuum inductance I„,. Just as in the
local regime C,~ is shunted by C „, so in this re-
gion L, is shunted by L „. We just get the equiv-
alent circuit shown in Fig. 14(d).

The energy storage is then clear: A fraction of
the energy is stored in each gas and flows in turn
from the capacitive to the inductive form, the re-
maining fraction flowing from one gas to the other.
The electron-hole gases are coupled through the
vacuum inductance, which stores a very weak frac-
tion of energy compared to the matter inductance,
owing to the very high intensities in the L „-C,t
resonant circuit. In other words, the energy given
by one gas to the magnetic field is simultaneously
almost entirely absorbed by the other gas. This
explains how the magnetic field couples the electron
and hole gases when storing only a very small frac-
tion of energy. As in the previous case, the elec-

In the high-magnetic-field limit (P„&P,), the non-
local term is negligible. It follows from (A15) that
matter impedance is capacitive. Then, the Alfvbn
current is a polarization current, just like the vac-
uum displacement current, which explains the prop-
agation mechanism. The equivalent circuit is
shown in Fig. 14(b), where C « is given by

C,t =Z, (ne /m, &u,'&) = C, +C„
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FIG. 15. Schematic diagram showing, 'the evolution
with 8 and v of the different modes for a conducting fluid
and a collisionless plasma.

tric energy is negligible.
In summary, the magnetohydrodynamic presenta-

tion gives us a description of the wave in the regime
P, »P in terms of acoustic wave, the energy flow-
ing in turn from the kinetic form to the potential
form. The electromagnetic presentation allows us
to understand how the electron and hole gases are
coupled through the electromagnetic field, though
the propagation mechanism is no longer electro-
magnetic, and gives us a physical idea of the mecha-
nism of propagation: The energy flows alternatively
from one gas to the other. This mode is a collective
mode of the electron-hole plasma. In the case of
the acoustic mode, described by Tonks and Lang-
muir, ~ the energy flows between the electron gas
and the hole gas through the residual longitudinal
electric field, while in the case of the magneto-
acoustic mode it does so through the transverse
electromagnetic field.

In summary, we present in Fig. 15 the different
modes of propagation one can obtain in conducting
matter, either conducting fluid or collisionless
plasma, as a function of the magnetic field. The
properties of the collisionless plasma in the cyclo-
tron-resonance regime have been briefly reviewed
in Sec. II. A theoretical study shows the coupling
of the Alfven wave with the hybrid longitudinal
mode, and with nonlocal wave such as transverse
and longitudinal cyclotron modes' (cf. Fig. 1). In
the regime where the kinetic pressure is larger
than the magnetic one, the acoustic mode of the
conducting fluid yields two acousticlike modes in
the collisionless limit, one in the regime ~, «(d,
the other in the regime ~,» ~. In the conducting
fluid, the energy is transferred in turn from the
kinetic form to the potential form, in the collision-
less plasma from the electron gas to the ion gas,
and vice-versa. In the regime P»P„one finds
in both cases an electromagnetic mode, the com-
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pressional Alfven mode. We note that the existence
of the acoustic mode and of the Alfven mode does
not depend critically on the value of co7'. This cor-
responds to the fact that the total momentum of a
binary plasma is invariable by collisions. (This
conclusion is not valid for a solid-state plasma
where the momentum relaxes essentially to the lat-
tice. )

APPENDIX B

We give here the expression of the conductivity
tensor for an ellipsoidal Fermi surface a s(&o,ur„q)
in terms of the conductivity tensor for a spherical
Fermi surface o '(u&, &o„q). For an arbitrary
Fermi surface, the integral expression of the con-
ductivity tensor is

2 2

(r„(q, (o, B)=, dp,
C

f'2w

devi(&F&p, &4) dQ v&(ep&p+&4')
a+4

with standard notations.
In the case of a spherical Fermi surface, defined

by the equation

V„=(2ez/mo) sinHcosg,

V„=(2ez/mo) ~sinHcosg,

Vg
——(2&~/mo) ~ cosH,

p, =(2moa. )' cosH,

(B2)

m, =mo,

2mo&g =~,pg
2

(where ez is the Fermi energy, mo the free-electron
mass), for an electron at the Fermi surface in a
spherical coordinates system with B along the polar
axis Oz, the Ox axis being chosen perpendicular
to both q and B, we get

x exp (y' —P)+-
~c roc

+I

q v(~, p„p")dp"
I &

n=(6v/3h'}(2mo")' '.
From these expressions, o (&a, &u„g) is easily
derived:

o (q, &u, &u,) = ,'(ne /—mo)(1/2r&u, )f sinHdH f dQ f dQ'

xe~[y(g' —Q)+iqR sinH(cosp —cosQ )] I (8, Q, Q ), (B2}

with

y=(v -Ao+iq, v~cosH)/~c &

qR =q„vz/&uc &

sin 8cosp cosQ
I (8, Q, Q')= sin Hsingcosp'

sin8cos8cosp

sin 8 cosg sing'
sin Hsing sing'
sin8cosHsing'

sinHcosHcosp
sin8cos8sinp

cos 8
(B4)

Standard double expansion in Fourier series of exp[iqR(cosg —cosQ )] yields

2 mo, 0 v+i(p&u, —u&+q~zcosH)
(B5)

with

W„(p, 8) =(1/2i) sin8[J~ ~(z} —J~,~(x)],

W„(p, 8) = —,'sin8[J~-, (~)+J~,(~)],

W,(p, 8) =cos8J (g),

(B6)

where J~ is the Bessel function of order p, and f(

=qRsinH. From Egs. (B5) and (B6) the conductiv-
ity tensor in a small dispersion regime is easily
written in a power-series expansion up to (qR) .
As we are only interested in modes with electrical
polarization perpendicular to the magnetic field, and
with q parallel to Oy, we just need the conductivity
tensor elements in a plane perpendicular to B.
These are
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2o„'„=, , (1 '--'8', ) + — ~R,'
ml (u 3~, +(v -i(o)' '~ ' S v i-(u

~
cosy, = —(1 —S'/o. p)' ",
slny, = f/(~ p)'" .

(89a)

(89b)

1 v-i~
5 4(o,', +(v-i(d)' ~

se v —z&d
( 1 z a~2)

m& m, &+(v -i&@)

1 v-z
2

(
~ )2 f l I (BV}

2

V -i+~ +Wc

y~ just represents the fact that the principal axes
of the electron elliptical orbit in a plane perpendicu-
lar to 8 are not the Ox, Oy axes. The quantities

g, p. , v, are easily deduced by noting that

p=m v,
from which it follows that

v, =p, /m„—(m /m„)v„—(m /m„)v„, (810)

and therefore

1 2(4lc g 2g2
+6 4(o,', +(v —i(o)'

n=~/( p-~'),
u=(W -«)/(~p-S'),
v = (o.e —L&)/(c. p —~') .

(811)

The indices i are relative to the different types of
carriers (electrons and holes).

Let us now consider the case of an ellipsoidal
Fermi surface defined in the right triad (Oxyz) by
the equation

2sz ofg QP g + PP y +jP g + 2' gPy + 2 EPy P g + @PgPg ~

The quantities aP —52 and (o, = eJf/m, , (812}

Comparing the expressions (BS}for m„n, p„v„,
v„, and v, with the similar expressions (82) for the
spherical case, one easily gets the tensor 0

&&(&u, ~„g) in terms of the tensor o (~, ~„q}
with angular frequency ~, and spatial exploration
parameter qB relevant to the ellipsoid considered:

„~„(2pe,/m, }l~'

c
(812)

are invariant under rotation around the Oz axis and

under a unitary transformation, respectively.
Physically these invariances reflect the fact that
these quantities are related to cyclotron mass m,
for B along the Oz axis and to the ellipsoid volume
V in momentum space, respectively:

m, =m, /(ap -S'}l~',

V=-,' ~(2m, e,)'"/u'".
The carrier density is then

2 y Sll (2moev)'~
gY 3 gS z)1/2

(BSa}

(BSb)

In general, the magnetic field is not along a princi-
pal axis of the ellipsoid. The real-space trajectory
is the resultant of a uniform motion along the mag-
netic field and of an elliptical trajectory in a plane
nonperpendicular to the field (the so-called tilted
cyclotron orbit). The velocity components and the
momentum component pg are

v„= (2ncv/mo)'~asine cos(y —y,), (BSc)

v„=(2pe /mo)'~'sinesiny, (Bsd)

0„',= -0,'„=0,
S0'yg= 0'

gy
= 0 y

(814a)

(814b)

S S
0'my= &yx y

(r~„=a [cos'y, o „'„+sin'y, v,'„],
E S

o'»= ((xp} [cosygo»+ slnyg0'~y ] ~

0'y„= (Qp) [cosygo'yq+slnygoyy ] ~

(814c)

(814d)

(814e)

(814f)

(814g)

ll„=got, + p, a„„+v~o„„+p, v[&r +os„], (814h)

(814i)

E E .E0'g„= Po'„„+Vo'y„

E E E0'yg= JtLO'yg+ VO'yy

E E E0'
g

= P 0'
gy + VO'

yy ~

(814j)

(814k)

(8141)

We give the tensor in the case ql B where the fol-
lowing symmetry relation holds:

v, = (ale /mo) cose+ p,v„+vv, ,

p, = (2m„e„)'Iacose,
with

(Bse)

(Bsf}

We note the following points:
(i) o» keeps the same functional form as o'„„,

while 0 „„and 0 ~ do not. The physical origin is
clear: The energy gained at time t by the charge
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s s s8 P —z(d

mp &op+(v -i&a)p
(B1.5)

carrier,

f v(f&).E &&a„rq&t')-&ot 3dfl

is essentially dependent on the relative phase of the
components of a(f') and r, (f'). Now, v„and r, keep
the same relative phase whatever the Fermi surface,
spherical or ellipsoidal. On the contrary, the rela-
tive phase of v„and r„ is dependent on Q„.

(ii) In the limit qR-O,

e ~1
Q cospy as+1 (B20)

a»" = a& cos Q~ p (ne /m p)(q R /v -i&@) . (B21)

From Eqs. (BQa) and (B13), one gets immediately

(iv) We now demonstrate an important result,
i.e. , the magnetoacoustic term in o „„is isotropic.
From Eq. (B14a), this term for an ellipsoidal
Fermi surface, o.„„",is easily derived from the
corresponding term in the spherical case, a e„" (the
superscript nl stands for nonlocal):

therefore
a„„"=(q'/v -i&p)p(nev/&'} . (B22)

a „'„»a „'„, a „'„=(ne'/mp)(1/&d, ),
then

as„= (up)'~pcosy, a„', ,

e, = (a.p —5p)tp(m, /m )(ne/B),

a'„„=ne/& .

(B16)

(B1V)

(Bla)

(B19)
I

~ 8 Shm o„„=no„„.
qR» P

(iii} In the limit &a, » &d, qR «1, we find again the
usual Hall conductivity.

Since in the above limit

Thus the magnetoacoustic term is isotropic, since
it depends only on the Fermi energy.

APPENDIX C

We recall here the general dispersion equation.
Let Oy be the direction of propagation of an electro-
magnetic mode, of angular frequency co, and wave
vector q. At low frequencies (&p«&d~, plasma fre-
quency}, the current density along Oy is necessarily
small because charge fluctuations cannot exist along
the direction of propagation. Maxwell's equations
and the medium constitutive equation j = 0 ~ E then
yield

2
q —ii&p&a(a„„ —a„„a,„/a, ) imp&-(a a a /a„ )

=0 (C1)
—i p,p&i0(am ocyayx/ay@)

Let us now suppose that the magnetic field is
along the Oz axis and that the symmetry is suffi-
ciently high so that there is no coupling (x, e) and

(y, s). Then the dispersion equation (C1) factor-
izes and reduces to the two equations

(C2)

(C3)

The two proper modes are then electrically polar-
ized, respectively, perpendicular to B and along

q' ipp&d(o-„,aa„/-a„„)

I

B. In fact, this is true also in a high-magnetic-
field regime (&d, » &p, qR «1) for a compensated
plasma. It is straightforward to show that the
product of nondiagonal terms in Eq. (Cl) is of the
order (&p/&d, ) and therefore negligible compared to
the (&u/&p, ) diagonal-terms products.

In conclusion, the general dispersion equation
factorizes as in Eqs. (C2) and (C3) either in the
case of a sufficiently high-symmetry direction or
in a high-magnetic-field regime (&p «&p„qR» 1)
for a compensated plasma.
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The surface-plasmon (SPO) dispersion relation for a semi-infinite electron gas is com-
puted for the quantum-mechanical random-phase approximation. The surface is assumed to
be perfectly reflecting and the boundary-value problem is solved by a symmetric continuation
of the electron gas. The linear response of the electron gas to a perturbing charge is de-
scribed by a function v which satisfies an integral equation. The integral equation for v is
solved numerically and the SPO dispersion relation is obtained by finding the pole in the den-
sity response of the electron gas to this perturbation. Graphs of the real and imaginary part
of the SPO dispersion relation are given.

I. INTRODUCTION

The surface plasmon (SPO), which is a collective
oscillation of the electron charge density at a sur-
face, has recently been the object of renewed theo-
retical attention. One model of a metal surface
which has been utilized in a number of these studies
is a semi-infinite electron gas with a perfectly
reflecting boundary. The calculations with this
model have been carried out using the random-
phase approximation (RPA) and an additional as-
sumption which neglects the quantum- mechanical
interference terms in the RPA (hydrodynamic or
quasiclassical RPA). In this paper we report the
numerical calculation of the SPO dispersion rela-
tion for a semi-infinite electron gas using the com-
plete quantum-mechani. cal RPA, which represents
the full exploitation of this widely used model of a
metal surface. The formalism to treat this prob-
lem has already been developed" '3 and in Sec. II
a brief review is presented.

The limiting long-wavelength value'4 of &~/v 2,
where w~ is the bulk plasma frequency, has been
confirmed experimentally, but there is very little
direct experimental data about the dispersion rela-
tion for the SPO. The electron-energy-loss exper-

iment on Mg films" provides a determination of the
real part of the SPO frequency, Retu, (K), where K
is the momentum parallel to the surface. The ex-
perimental values of Re~, for these films first
decrease and then increase with increasing K. "
The RPA calculations for a semi-infinite electron
gas give an Rew, which increases linearly with
increasing K. In the present calculation, the rate
of increase depends less strongly on the bulk elec-
tron density than for the hydrodynamic or quasi-
classical calculations and is reduced for densities
which correspond to metallic values. Two fac-
tors which contribute to the discrepancy between
this experimental determination of the SPO disper-
sion relation and the theoretical results for a semi-
infinite electron gas can be identified: The dis-
persion relation is more complicated for a thin film
than for a single free surface, ' and, as has re-
cently been' demonstrated, '~ the electron density
profile at the surface is important in calculations
of the SPO dispersion relation.

There are no direct experimental data for the
imaginary part of the SPO frequency, Im~, (K), but
an analysis" of semiconductor tunnelling experi-
ments' provides an indication of its magnitude.
The values obtained from the quasiclassical and


