4 OSCILLATION FREQUENCIES OF PROTONS. ..

TABLE II. Parameters for an exponentially screened
Coulomb potential in silicon.
Screening Charge Proton
constant b product charge
(&) 2.2, Z,Z,/14
Experimental,
I444=1.1757 4 1.51+0.85 13.4%5.3 0.96+0.38
1441=1.5675 & 1.68+0.30 14.1+3.6 1,01:0.26
1441=1.1757,
1.9594 & 2.24+0.55 18.2x%5.6 1.30+0.40
Thomas-Fermi theory 1.543 14 1

bilities. In Table II, the potential parameters de-
duced from the data using Eq. (2) are shown. The
two choices of {111} spacing make little difference
in the results, the greater spacing in the second
case being largely offset by the greater density

1461

of atoms in the effective defining planes. A larger
effect is produced if the {111} channel is defined
using both sets of bounding planes, located at their
correct positions, In this case the exponential in
Eq. (2) is replaced by the sum of two, each with its
own value of /. In all cases, the calculated proton
charge is in satisfactory agreement with the expec-
ted value. The screening constant is also reason-
ably close to that expected theoretically if the elec-
tron density in silicon is given by the Thomas-Fer-
mi model® and the Moliére approximation is used for
the screening function, This agreement, which is
similar to that achieved for gold,* lends consider-
able confidence to the underlying model.

The authors are grateful to Bryant Welch for as-
sistance with sample preparation and with taking
the experimental data, and to D. K. Holmes and
W, E. Atkinson for several helpful discussions of
the theory of these experiments,
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A model is presented which allows planar-channeling data to be used to deduce the parameters
of the interaction potential between the channeled ions and the atoms of the solid and which

relates the stopping power of channeled ions to that of randomly directed ones.

The analysis

is based on the experimental observation of the proportionality between the stopping power
and the transverse oscillation frequency of ions traversing the planar channels of thin crystal
targets. It is applied to data on He, O, and I ions transmitted through the {111} and {100}
channels of Au crystals and on H ions transmitted through the {111} and {110} channels of Si
crystals. For both targets, the screening constants of the interaction potentials are in ex-

cellent agreement with recent Hartree calculations.

The same potentials allow the calcula-

tion of random stopping powers from the channeling data which are in good agreement with
observation, especially when account is taken of thermal vibrations of the lattice atoms.

INTRODUCTION

In an earlier paper, ! 2 model was described for
the interpretation of the energy-loss spectra -
observed®® in beams of energetic ions transmitted
through planar channels in thin single-crystal tar-

gets. The ions were regarded as executing trans-
verse anharmonic oscillations under the influence
of the planes of lattice atoms bordering the chan-
nel and as losing energy at a rate which depended
upon their position within the channel. After choos-
ing a particular plausible form for the interaction
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potential between the ions and the lattice atoms, it
was possible to find empirically a correspondingly
simple function to represent the coordinate depen-
dence of the stopping power and to make a quanti- -
tative comparison of the model with experimental
data® on the energy-loss spectra of 3-MeV *He ions
and 60-MeV "I ions transmitted through the {111}
and {100} channels of thin gold crystals. The es-
sential feature of the data which made this compar-
ison possible was the observation that the stopping
power of these ions was accurately proportional to
the frequency of their transverse oscillations in

the channels. This proportionality has now been ob-
served also for 15- and 21.6-MeV 2 ions®® and
for 10-MeV %0 ions® transmitted through the {111}
and {100} channels of gold targets and for 0.4-MeVH
ions” transmitted through the {111} and {110} chan-
nels of silicon targets. It seems reasonable, there-
fore, to adopt this relationship between the stopping
power and the oscillation frequency of channeled
ions as an empirical first principle and to examine
its consequences for the interpretation of the ex-
perimental energy-loss spectra. Using this pro-
cedure, it is possible to represent the interaction
potential between the ions and the target atoms by
almost any desired function and to deduce the form
of the corresponding stopping-power function. The
analysis also leads to a quantitative connection be-
tween the channeling data and the ordinary stopping
power of randomly directed ions. Experimental
data may be used to evaluate the parameters of the
interaction potential and of its conjugate stopping-
power function. When the latter is used to compute
the random stopping power, a particularly sensi-
tive test of the model results.

DESCRIPTION OF MODEL

Because of their high velocities and relatively
large impact parameters, channeled ions suffer
only very small deflections in their encounters with
individual lattice atoms. The correlated nature of
successive collisions slowly turns the ions away
from a plane of atoms and directs them back across
the channel, as long as their direction of motion
makes a small enough angle with the plane. In
this circumstance, and when incidence parallel to
principal crystallographic axes is avoided, the
atomic nature and regular structure of the planes
bordering the channel may be ignored and the ions
may be represented as interacting with the planar
continuum potential

V(%) = 4mxpl f;rV('r)dr, (1)
where V() is the interaction potential between an

ion and a lattice atom separated by a distance 7,
p is the atomic density of the target, ! is the half-

width of the planar channel, ¥ is the length of the
normal from the ion to the plane of lattice atoms,
and « is a factor allowing for the possibility that
there may be parallel channels of different widths
in some crystal structures (or, put alternatively,
that the atomic density in a plane differs from
2p1)." The channeled ions move between a pair of
planes, that is, they oscillate in the planar-channel
potential

Vo) =Vi(l+%) + V(I =x), —1sx=<] (2)

where the origin is taken halfway between the two
planes, a distance ! from each. The coordinates
used in the dynamical problen are shown in Fig. 1.
Since the angle between the direction of motion of
the ions and the bordering atomic planes is small
(<~0.5 deg), sinyp=tan p=9 andcosp=1 are suf-
ficiently accurate approximations. It is then pos-
sible to identify the velocity of the ion (2E/m)"/2,
where m is the mass of the ion and E is its kinetic
energy, with its longitudinal component, and to
regard the stopping power as influencing this com-
ponent only. The transverse motion may then be
considered to continue without damping. In this
approximation, an ion oscillates with a “frequency”
w defined by

wl=2f ’;"' (Vo(x) = Va(x)]*2dx, 0 =x,=<1 (3)

where x,, is the amplitude of the oscillation. Note
that w is not a true frequency: A factor (2m)'/
has been suppressed in Eq. (3) and in the experi-
mental definitions of w as well."$

Empirically, it is found''*" that the stopping
power of an ion, averaged over its oscillatory mo-
tion but corrected to its incident energy, is pro-
portional to its oscillation frequency:

- dE
= 4
( dz )E:Eo a+he, @)

where a and B are empirical constants. It will be
assumed that the model stopping power is given by

S(x,E) =sy+so(x) - 1], (5)

where s, and s, depend on the ion energy. The
spatial dependence of the stopping power is described
by the function o(x), so normalized that 0(0)=1.

The object of the following analysis is to relate o(x)
to the potential function V;(x). The parameter s, is
the minimum stopping power observed for the chan-
neled ions and is available from experimental data
separately from o and 8. When Eq. (5) is averaged
over the oscillatory motion of the ion and the result
is compared with Eq. (4), it is found that as long as
the number of half-oscillations executed by the ion
is integral, the experiments measure
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FIG. 1. Coordinates used to describe

the planar-channeling model.

a=sy-$ , (6)

B =25, [i"olx)[ Valxn) - Vale)] V2dx, 0=x,=1.

(7)
These results apply in principle when the number
of quarter-oscillations is integral, but each of these
quarter-oscillations must be complete, that is, in-
clude both a node and an antinode. An experiment
involving an odd number of quarter-waves has been
described” where the first one traversed is not com-
plete, but is centered either on a node or on an
antinode. In this instance, as in more general cases
also, Eq. (7) is only approximate and errors may be
introduced by its use.

In the previous work,1 a particular form was as-
sumed for Vz(x) and an essentially empirical search
located a function o(x) for which 8, as given by Eq.
(7), was constant. A more direct procedure is
available, however. Equation (7) is an integral
equation of the Abel type and is very easily solved.?
Assuming B to be constant, the result is

d
o) = £ L[Vl - VO], 0=x=1. (@)
The correctness of this result may be verified by
substituting it into Eq. (7) and performing the in-
dicated integration. Since V,(x) is an even function,
it is easily found that

0(0) = g [ V4 (O] 2 (9)

where the primes represent differentiation with
respect to x. As long as V3’ (0) does not vanish, the
normalization 0(0) =1 may be imposed, with the re-
sult that

2

o) = el Ve - @), 0= x=1. 10)

The function o(x) is a measure, not only of the stop-
ping power of the ions, but also of the anharmonicity
of the planar-channel potential: It deviates from
unity only insofar as V,(x) deviates from harmoni-
city. If the potential function assumed previously,
namely,

Va(x) = V, coshby, (11)
is inserted into Eq. (10), .it is immediately found
that the conjugate stopping-power function is

o(x) = coshsz bx, (12)

in agreement with the earlier result, which, in
spite of its empirical origin, is now seen to be
uniquely related to the potential (11). The analysis,
however, is no longer restricted to this potential
function. The experimental energy-loss spectra®’
are conveniently presented in terms of the curvature
parameter:

y=21%(sy - a)2/p (13a)
= V4 (0)/1 (13b)
=2V (0)/1= - 8upk[ V(1) +1V'(1)], (13c)

where the second line employs Eqs. (6) and (9) and
the third requires Egs. (1) and (2). Thus, from the
experimental data on the stopping power of ions as
a function of their oscillation frequencies, the cur-
vature of the planar-channel potential at the center
of the channel, or its equivalents asgiven by Eq. (13),
may be determined directly. Given data for a suf-
ficient number of different channels with distinct
values of /, the parameters of any potential function
may be evaluated. Examples of this procedure have
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1:6:Tand will be discussed in

It must be emphasized that no

been given elsewhere
more detail below.
assumptions have been made in the above analysis
about the nature of the functions V,(x) and o(x),
apart from their evenness and mathematical prop-
erties necessary to ensure convergence of the in-
tegral in Eq. (7). The experimental curvature pa-
rameters are independent of assumptions about the
potential.

The solution of the integral equation (7) can also
be carried out for the case where g8 is not constant
but depends on w. This general solution cannot be
used to analyze the experimental data, however,
since to do so it is necessary to know the amplitude
corresponding to each frequency. If this were
known, the potential function could be determined
kdirectly from experimental data without reference
‘to the present procedure, an objective2 which is
‘frustrated by the apparently unattainable precision
required in angular measurements. It is easily
seen from Fig. 1 that for particles on a particular
trajectory, labeled by its energy loss,®* we have

Xm= jfzp(z) dz, (14)

where the limits on the integral correspond to
those pathlengths for which the ion emerges from

the crystal with =0 and § a maximum, respectively.

Then, if the uncertainty in measuring an angle is
6y, the corresponding error in estimating the oscil-
lation amplitude is

8% = (25— 2,)00 = A50/4 = (E2/2w)50, (15)

where the second and third forms follow from the
definition of the oscillation wavelength A and its re-
lation to the oscillation frequency.” *~" Since
r~10° A, to achieve an amplitude accuracy of
~10"2 A—about 1% of a channel half-width—requires
the determination of angles with a precision ~ 10
sec, very unlikely to be attainable considering the
divergence of the incident beam, the acceptance
angle of the detector, and the considerable mosaic
spread in the crystals. It is indeed fortunate that
the alternative procedure represented by the pre-
ceding analysis is available.

Since the curvature parameters do not determine
a potential function uniquely, but only the connection
between the potential and its conjugate stopping func-
tion, it is necessary to seek an independent method
of testing any particular choice of potential function.
The stopping power of ions moving randomly through
the target may be measured easily. The motion of
such ions is not much influenced by the correlated
scatterings which characterize channeling: As they
cross a channel, their velocities are nearly un-
altered. Thus, for an ion moving randomly through
the crystal, the model stopping power, Eq. (5), may
be averaged to yield the random stopping power

MARK T. ROBINSON 4
N 1
—(Z—f) ES=s0—sl+% / o(x)dx (16)
random
0
or, using Egs. (6) and (8),
S=a+(8/m)[ V(1) - V,(0)] 2. (17)

For any assumed two-parameter potential, experi-
mental channeling data may be used with Eq. (13)
to evaluate the parameters and the values obtained
may be used in Eq. (17) to calculate the random
stopping power. The result may be compared with
experimental observation and should, moreover,
be independent of the channel orientation. It is in-
teresting to note that the so-called critical chan-
neling angle, ® that is , the angle with respect to
the planar channel at which the ion can break through
the continuum potential, is given by

Yo = E"VYV,(1) - V,(0)]'/2 . (18)

An interesting test of the planar-channeling model
could be made by using Eqgs. (17) and (18) to relate
the random stopping power to the critical angle.
Unfortunately, critical angles are difficult to mea-
sure accurately, largely because of the mosaic
spread in the target orientation, so that the com-
parison cannot be made very precisely.

The procedure for deducing interaction potentials
from planar-channeling data may now be summarized.
Curvature parameters, determined experimentally
for as many different channels as possible, provide
the necessary data. If enough data were available,
they could be used for the numerical integration of
the differential Equation (13c). For more limited
data, the parameters of an assumed potential func-
tion can be evaluated from Eq. (13b). In either case,
a check on the results can be made by calculating
the random stopping power through Eq. (17). The
latter method will be used to study several inter-
action potentials which have been widely used for
descriptions of atomic collisions in solids, using
the data available for planar channeling in gold® and
silicon.”

APPLICATION TO PLANAR CHANNELING
IN GOLD

The potentials to be considered in the gold crys-
tals are defined in Table I, which also gives the
values of the ion-independent parameter in each
case, that is, the parameter determined by the ratio
9111/Y100- Uncertainties in the parameters are
about + 10%.

Since inverse-power potentials are frequently
used in treating atomic scattering,'? it is of interest
to note that the gold planar-channeling data indicate
an interaction varying as 7"/ near the centers of
the two channels. This interaction cannot extend
all the way to the atomic planes, however, as it
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TABLE I. Definitions and ion-independent parameters
of some interatomic potential functions, based on experi-
mental curvature parameters (Ref. 6) for several ions
in gold.

Definition Ton-independent
Potential of V() parameter®
Power ay/r® £=3.50
Born-Mayer (BM) Cpue™ /oM apy=0.230 &
Screened Coulomb (Z1Z,e¥/ V)0 ()
Power (PS) @) =1—ylym+cm]t/m m>2.50

¢ (r) = drp b/ azy) arp=0.0172 &
o) =Cpe™

o)=Y aseBi”
i=1

Thomas-Fermi (TF)
Bohr (B)

Exponential sum

d b=3.22 A1
o5 [e]=1[0.35, 0.55, 0.10] _
Moliére (M) {[ﬁhlb, 45, 205] 1/6=0.310 &
b [e]=[0.25, 0.50, 0.25]
Herires (%) {[Bh[b, 2.435, 8.775]

2Bgsed on the experimental value (Ref. 6) y111/91q0
=0.604; Iyyy=1.1774 &; 149=1. 0197 A,
PThe parameter values given apply only to Au.

leads to an infinite random stopping power. Closely
related to the inverse-power potentials are a family
of screened Coulomb potentials with power-screen-
ing functions, PS in Table I. This potential with
the value m =2 was used by Lindhard in his discus-
sion of the theory of axial channeling.® More re-
cently, it has been employed by Machlin et al. i
ananalysis of some experimental energy-loss data for
0.1-MeV protons in gold {100} channels. The pres-
ent data, however, preclude the use of m =%, since
for these cases ¢™ =0 results. Since it has three
parameters, the PS potential could be caused to fit
the curvature parameters for the two channels and
the random stopping power as well, by selecting
appropriate values of m,- ¢, and Z;Z,. The theo-
retical significance of this potential is dubious’
enough, however, for this not to have been at-
tempted. Since the planar-channeling results are
clearly inconsistent with the value m =2, the agree-
ment which Machlin et gl.!! find between their cal-
culations and their experiment must be fortuitous.
The screening length obtained from the planar-
channeling data for a Born-Mayer (exponential)
potential is in good agreement with the value 0. 201
A deduced by Thompson'? for the interaction of gold
atoms using observations of the bulk modulus and
the (110) focusing energy. It is somewhat smaller
than the value 0. 287 A suggested by Abrahamson®?
for the same atoms. This implies that over the
range 7>1 A, the shape of the interaction potential
between a gold atom and other particles is not very
sensitive to the nature of the partner. The Born-
Mayer form is not especially suitable for close en-
counters, however, since it does not possess the
requisite Coulomb core. . This failing is especially
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evident when the random stopping power is evaluated
(cf. Table III and the subsequent discussion). Be-
cause of this failure, the empirical values of Cgy
are not tabulated.

The remaining potentials in Table I are all of the
screened Coulomb type. For them, besides a
screening constant, the data have been used to eval-
uate the apparent ionic charges ¢,=2,Z,/79. The
viewpoint is that since the screening constant is in-
dependent of the ion and its energy, ® it describes
the distribution of the screening electrons in the
gold crystal. The three ions are then “test charges”
which sample the electron density in the crystal.
One test of a potential then becomes the plausibility
of the deduced ionic charge. The values obtained
are compared in Table II with the equilibrium
charge states observed in the transmitted beam.

In the case where the Thomas-Fermi screening
function'* is used, the theoretically expected screen-
ing length is 0.109 ﬁ., more than six times larger
than the observed value. At the same time, the
apparent ionic charges are very large, so much so,
in fact, astobe absurd. The small screening length
and the large ionic charges all result from the well-
known fact that the Thomas-Fermi (TF) screening
function varies too slowly with distance at large

TABLE II. Ionic charges deduced for several ions
in gold using experimental curvature parameters (Ref. 6).

Energy Ionic charge Equilibrium
Ion (MeV)  Potential q1=2Z1Z,/79 ionic charge
He 3 TF 61 2
M 1.5
H 2.1
HV? 2.0
o 10 TF 146 5.5°
M 3.6
H 5.0
HV 4.8
I 15 TF 398 13¢
M 19
H 27
HV 26
21.6 TF 892 15°
M 22
H 31
HV 30
60 TF 1200 22¢
M 29
H 41
HV 40

®HV indicates the Hartree (H) potential of Table I,
corrected for the effects of thermal vibrations.

PF. W. Martin, B. R. Appleton, L. B. Bridwell,
M. D. Brown, S. Datz, and C. D. Moak (unpublished).
°C. D. Moak, H. O. Lutz, L. B. Bridwell, L. C.
Northcliffe, and S. Datz, Phys. Rev. 176, 427 (1968).
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distances from the nucleus. The procedure for fit-
ting the potential to the data tries to compensate for
this by producing the parameters tabulated. No
attempt has been made to evaluate the random stop-
ping power for the TF potential.

The three potentials remaining in Table I have
screening functions which reduce to a single expo-
nential in the range of distances near the centers of
the two gold channels. Consequently, they all yield
the same value of the screening constant. The
Moliére potential'® was proposed as an approxima-
tion to the Thomas-Fermi screening function, but
has the advantage of falling off much more rapidly
with distance. The observed screening constant is
nearly one-fifth larger than the theoretically ex-
pected value 2.75 At o1t is, however, in excellent
agreement with the value expected from a machine
calculation discussed by Tucker et al.'* They de-
scribe a relativistic self-consistent-field program
for the evaluation of atomic wave functions. The
electrostatic potential of an isolated gold atom in
its ground state, as produced by this program, is
designated as the Hartree potential in Table I. It
is compared in Fig. 2 with some related potentials
calculated by the same program, as well as with
the Thomas-Fermi and Moliére functions, and with
the empirically deduced potential. The last is
simply an exponential screening function with the
empirical value of b, passed through the Hartree
potential midway between the centers of the two
channels. It is clear from the figure that confining
the Au atom to a spherical Wigner-Seitz cell to
simulate solid-state effects does not make an im-
portant alteration in the potential and that the ion
Au* is not relevant to the present discussion. Like
the Moliére potential, the Hartree potential for gold

may be represented rather accurately by a sum of
three exponentials, with the parameters listed in
Table I. The influence of the thermal motion of the
lattice atoms must alsobe considered. It isassumed
that the displacements of the atoms normal to the
channel plane are uncorrelated and are distributed
according to a Gaussian. The effect of these dis-
placements on exponentially screened Coulomb po-
tentials has been described before.!”'""'® The
Hartree potential of Table I, with allowance made
for thermal vibrations, will be designated HV. The
inclusion of thermal effects does not alter the em-
pirically deduced screening constant but does in-
fluence slightly the value deduced for the apparent
ionic charge. The apparent ionic charges deduced
using the M, H, and HV potentials are listed in
Table II. All three yield values for the two lighter
ions in good agreement with observed equilibrium
charge states. In the case of I ions, however, the
calculated charges are, respectively, approximately
1.4, 2.0, and 1.9 times larger than the observed
values. This suggests the approximate nature of
the original view that the ions are merely test
charges. Evidently the screening of the I nucleus
by its own electrons varies significantly as the ion
oscillates in the channel.

In Table III are displayed the values calculated
for the random stopping power using some of the
potentials from Table I. The Bohr-potential values
assumed that Cz=0.35; that is, onetermonlyofthe
Moliére potential was used. This corresponds to
the potentialusedin earlier work.! The recent x-ray
value of Synacek et al.'® wasused for the mean-square
vibrational amplitude of gold atoms. The result
obtained for the random stopping power is rather in-
sensitive to the choice of the vibration amplitude,
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TABLE III. Random stopping powers computed using
various interatomic potential functions and experimental
curvature parameters (Ref. 6) for several ions in gold.

Random stopping power

Energy (MeV/ pm)
Ton (MeV)  Potential {111} {100} Observed
He 3 BM 0.310 0.326 0.58%
B 0.489 0.510 0.54°
M 0.604 0.628
H 0.730  0.759
HV® 0.583  0.600
(6} 10 BM 2.65 2.78 4.74"
B 3.53 3.59
M 4.10 4,11
H 4.73 4.70
HV® 3.94 3.98
I 15 BM 3.71 9. 04
B 4.94 8.3%
M 5.73
H 6.58
HV® 5.49
21.6 BM 5.00 5.24 11.5¢
B 6.77 7.04 10.9°
M 7.91 8.20
H 9.16 9.45
HV® 7.74 7.85
60 BM 13.4 13.2 23.99
B 18.0 17.8 23.1°
M 21.0 20.8
H 24.2 24.0
HV® 19.9  20.0

2G. W. Gobeli, Phys. Rev. 103, 275 (1956); cf.
W. Whaling, in Handbuch dev Physik, edited by S. Fliigge
(Springer, Berlin, 1958), Vol. 34, p. 204,

L. C. Northcliffe and R. F. Schilling, Nucl. Data
A7, 233 (1970).

°rms thermal-vibration amplitude 0. 0792 A (Ref. 19).

dC. D. Moak and M. D. Brown, Phys. Rev. 149, 244
(1966).

however, a 10% increase in the rms amplitude
producing only about a 1} decrease in 3. All po-
tentials used in Table III produce values of the ran-
dom stopping power from {111} channeling data that
are in very good agreement with the values from
{100} data. This verifies one of the required fea-
tures of the model. Furthermore, there is general

agreement of the calculated values with observations.

The Born-Mayer-potential results are always low,
averaging about half of the observed values, this
being due to the absence of the Coulomb core from
the potential. The Bohr-potential calculations are
somewhat better, but still do not account adequately
for the observations. The Moliére potential and

the thermally corrected Hartree potential give re-
sults in close agreement with each other; the agree-
ment with experiment is good for a particles, fair
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for O ions, and poor to fair for I ions, depending on
the energy. But this is just what is to be expected.
The «a particle is a bare nucleus with no accompany-
ing electrons so that its effective charge is the same
wherever it is in the channel. The other ions, how-
ever, carry a number of electrons. Hence, even
though they may act essentially as test charges when
near the center of a channel, as they approach
closely to a lattice atom, screening of their nuclear
charge by their own electrons must decrease and
the interaction between the ions and the gold atoms
must increase more rapidly than described by any
of the potentials used here. This would lead in

turn to higher random stopping powers than are
listed in Table III. Nevertheless, the results ob-
tained give encouraging support to the validity of

the model which has been used.

A final test of the reasonableness of the potential
derived from planar-channeling data is to evaluate
the scale of oscillation amplitudes. This is done by
using Eq. (13) to connect the amplitudes with the
oscillation frequencies. In the upper part of Table
IV, the minimum and maximum amplitudes deduced
for each ion and channel using the Hartree poten-
tial are listed. Thermal-vibration effects were
not included; they are not important even at the
largest amplitude in the table. The extreme values
of the amplitudes correspond to the extreme values
of the observed oscillation frequencies and are,
perhaps, somewhat subjective. Nevertheless, with
one obvious exception, there is good agreement
amongst the minimum amplitudes. There is simi-
lar agreement in the maximum amplitudes for the
individual channels. Furthermore, these maximum
amplitudes correspond in each case to the same dis-
tance of approach to the plane, an amount just less
than 3 times the rms thermal-vibration amplitude.
The unobserved particles of larger amplitude have
been diverted by hard collisions into the so-called
unaligned beam' and will show the random energy
loss.

TABLE IV. Oscillation amplitudes derived from
planar-channeling data using the Hartree potential.

Calculated oscillation amplitudes (&)

Energy {111} {100}
Ton (MeV) min max min max
He 3 0.431 0.874 0.434 0.765
o 10 0.455 0.977 0.437 0. 867
I 15 0,420 1,011 cee cee
21.6 0.458 0.918 0.425 0,827
60 0.407 0.920 0.216 0.756
Mean amplitudes 0.434 0.940 0.378 0. 803
[C) £0.020 +0.048 +0.094 +0.046
Half-width { 1.1774 1,0197
1= (X max 0.237 0.217
+0,048 +0, 046
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APPLICATION TO PLANAR CHANNELING
"IN SILICON

The application of the model to data on planar
channeling in silicon’ presents certain difficulties,
principally associated with the structure of the
{111} channel. This channel is bordered by pairs
of rather closely spaced planes, instead of by the

single planes found in gold or in some other channels

in silicon. In this case, it is necessary to replace
Eq. (2) by

Vi) =V +x) + V0 =)+ V(51 +x) + Vi (1 =x),
(19)

where ! is half the distance between the inner pair
of planes (1.1757 A in Si) and where « in Eq. (1) is
to be taken as 2. The inclusion of both sets of
bounding planes in treating the data on 0. 4-MeV
protons in Si is necessary, as is shown by the ef-
fects on the apparent screening constant of simpler
descriptions of the {11 1} channel.” The analysis of
these data, paralleling the analysis of the gold data
‘in every way, is summarized in Table V. The
Hartree potential was calculated using the machine
program described for gold!® for two different elec-
tronic configurations: s%?, the ground state of the
isolated ion, and sp%, the ground state in the crys-
tals. These two functions are compared in Fig. 3
with the empirically deduced potential as well as
with the Thomas-Fermi and Moliére functions.

The s%p? Hartree potential may be represented with
moderate accuracy by the sum of two exponentials;
the parameters are listed in Table V. The apparent
proton charge given by the Hartree potential agrees
well with the expected value. Again the random
stopping powers calculated for the two oriéntations

are in good agreement with each other. In calculat-
ing § trom the {111} data, it was assumed that

a and B were the same in the narrower channel as
the experimental values in the wider channel. The
agreement of the {110} and {111} values calculated
for § supports this assumption. The thermal-vibra-
tion amplitude of Si was taken from the x-ray studies
of Batterman and Chipman.? Although the Hartree

TABLE V. Application of the model to 0.4-MeV
protons in silicon {111} and {110} channels.

i Parameters of the Hartree potential for szp2 Si:

[a]=1[0.50, 0.50] [Bl1=1[b, 5b]

ii Empirical potential parameters, »=2,24 11—1;

Potential Proton charge ¢
M 1.30
H 0.91
HV? 0.90

iii Calculated random stopping power (MeV/um):

Potential {111} {110}
M s 0.152

H 0.112 0.120
HV? 0. 0855 0.0832

Observed®: 0.0675

iv Calculated oscillation amplitudes (A), Hartree

potential:
{111} {110}
min 0.493 0.206
max 0.868 0.530

2rms thermal-vibration amplitude 0. 0759 A.
YF, H. Eisen, unpublished data.
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potential with thermal effects included clearly gives
the best result for the random stopping power, the
agreement is not nearly as good as was achieved
for gold. While this may be attributable to experi-
mental uncertainties, it is more likely to originate
in limitations of the potentials used. The strongly
covalent nature of solid Si makes it certain that the
Hartree potential used here is rather approximate.
Nevertheless, the Si experiments fit the model in

a convincing manner.

CONCLUSION

The substantial success of the model described
above in accounting for both planar-channeling data
and random stopping powers in terms of theoreti-
cally well-founded potential functions strongly sup-
ports its essential correctness and lends credence
to predictions made from the model. In addition to
the geometrical effects on the energy-loss spectra
which have been discussed before,'?*5 the model
predicts a dependence of the observed spectra on
the target temperature, beyond that due to thermal
changes in volume. Thé potential factor in Eq. (17)
will decrease with increasing temperature because
of the temperature dependence of the thermal vi-
brations. The only available experiments,?! how-
ever, show that the random stopping powers of
metals are essentially independent of temperature,
in agreement with theoretical considerations.?? On
the somewhat speculative assumption that the mini-
mum stopping power s, is independent of tempera-
ture, the model implies that s, must vary with
temperature in a manner compensating for thermal
changes in the potential. Using the Debye theory
to estimate the thermal change in the vibration am-
plitudes®® of gold, it is found that s, should decrease
by about 15% between room temperature and liquid-
nitrogen temperature and by another 5% at 0 °K.
This change should produce easily measurable ef-
fects on the energy-loss spectra: As the tempera-
ture is lowered, the parameter g will decrease,
leading to a decreased separation between peaks in
the spectra (compare the experimental spectra in
Refs. 2—6). In fact, an interesting test of the model
can be constructed by measuring spectra for var-
ious pathlengths at two (or more) temperatures.
Plots of the stopping power of channeled ions as
a function of their oscillation frequencies should
then extrapolate to a crossing at the value of s,
providing an independent means of locating the
center of the channel. From the temperature de-
pendence of the slopes of these plots information
could be obtained about the interaction potential
and about thermal-vibration amplitudes as well.

It has been suggested? !! that the stopping power
of channeled ions should be proportional to the local
electron density in the target and that this in turn
should be related to the potential V,(x) through
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Poisson’s equation. While there seem to be no very
compelling reasons for either of these suggestions
to be correct, it is nevertheless instructive to con-
sider the circumstances under which they would
lead to a proportionality between the stopping power
and oscillation frequency of channeled ions.
Defining

@) ={2[vyx) - v,(0))/ V2" (0)} /2, (20)
the model stopping power may be written as
S(x,E)=sg~s,+s.f (), (21)

where the prime represents differentiation with re-
spect to x. Similarly, using Poisson’s equation to
relate the local electron density to the planar-chan-
nel potential, the stopping power should be

S (x,E) =y +(so =~y ()" () +[f"(x)] %, (22)
where y is a constant. These two representations
of the stopping power may be equated to give a dif-
ferential equation which is to be solved subject to
the boundary conditions £(0)=0 and '(0)=1. The
only solution which meets both of these conditions
is f(x) =x; that is, the two representations of the
stopping power are the same only for the harmonic
potential

Va(x) = V2(0) +3 V3(0)x2, (23)
for which the stopping power has everywhere the
value sy. This result is trivial since not only is
the stopping power independent of the oscillation
amplitude, but so also is Ithe oscillation frequency:
Just those features of the model which are required
to account for the experimental observations have
disappeared. Of course, it should not really be
surprising that this is so. The interaction poten-
tial is concerned with the spatial distribution of all
of the electrons in the system, whatever their quan-
tum states, since this is what controls the screen-
ing of the nuclear charges. In contrast, the stop-
ping power is determined by those electrons which
can be excited to higher states and should involve
not only their density but also the probability of
excitation. It must be said, then, that the origin
of Eq. (4)—the proportionality of stopping power
to channel oscillation frequency—is not understood.
The fact that it seems to apply equally well at
rather low velocities (I ions in Au), near the maxi-
mum of the (random) stopping-power curve (O ions
in Au), and in the region of applicability of the
Bethe-Bloch equation (He ions in Au, H ions in Si)
requires that the proportionality be insensitive to
the details of stopping-power theory. This might
imply its origin in some aspect of the dynamical
problem instead.
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