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We develop a model for simple diatomic crystals in which two effective-charge parameters
are associated with the infrared-active optical-phonon mode. One of these is e~z, the macro-
scopic effective charge. The definition of the second charge, here designated as e*,, the local-
ized effective charge, is model dependent and derived from a model which includes two con-
tributions to the TO-phonon frequency. One of these is a mechanical or spring-constant con-
tribution (do and the second a frequency term which provides a measure of dipole-dipole inter-
actions. e& is computed from the experimental values of the TO-phonon frequencies and values
of (do calculated from simple force-constant models. For the zinc-blende (ZB) and wurtzite
(W) crystals, e, =fez,gg, where f) is the fractional ionicity and Zef f is the effective chemical
valence. For the rocksalt (NaC1) and CsCl crystals, e* is not proportional to f&, but instead

l
shows systematic variations with ion size parameters. For the ten-electron NaC1 and CsCl
crystals, e~z~ &„, where & is the optical-frequency dielectric constant. The model calcula-
tion for e~& is more reliable for the ZB and W crystals than the NaC1 and CsCl crystals.

I. INTRODUCTION

The frequencies of the long-wavelength (q =0)
TO and LO phonons (&a~To and &of,o) and the optical-
frequency and static-dielectric constants (c„and
eo), are known for a majority of the simple diatomic
crystals, e.g., the covalently coordinated zinc-
blende (ZB) and wurtzite (W) crystals' and the ionic
NaC1- and CsCl-type crystals. 3 In these crystals,
the oscillator strength of the TO phonon is reflected
in the difference in the squares of the LO- and TO-
phonon frequencies (or alternatively, via the Lyd-
dane-Sachs- Teller relationship, in the difference
between the optical-frequency and static-dielectric
constants) and is commonly described by either of
two effective-charge parameters e~ the macroscop-
ic (transverse) effective charge, ' or e~[= 3eg/e„+ 2) j,
the so-called Szigeti effective charge. Of these
two charges, the macroscopic effective charge
is model independent and is calculated from readily
observable quantities. Qn the other hand, the def-
inition of any derived parameter describing charges
at specific positions in the crystal, e.g., e, is
model dependent, in particular, requiring assump-
tions on the form of the effective field.

In this paper, an alternative approach is taken
to the definition of a derived effective-charge pa-
rameter. We use a model in which two effective
charges are associated with each TO-phonon mode.
One of these is e~&, the macroscopic effective
charge. e& is a measure of the linear electric
moment per unit cell and includes contributions

from charge localized near the ion sites, as well
as charge distributed throughout the unit cell. ~ Qn
the other hand only localized charges give rise to
dipolar forces which contribute to the TO-phonon
frequency. We choose to assign the effective
localized charges to be on the ion sites. The defi-
nition of the second charge is then based on a model
which includes two contributions to the TQ-phonon
frequency. One of these is a "mechanical'* or
"spring-constant" frequency which is related through
force-constant models to the elastic constants, and
the other, an effective frequency derived from
dipole-dipole interactions. The magnitude of the
dipole interaction frequency yields the second ef-
fective-charge parameter e*, here designated as
the localized effective charge. For the ZB and W

crystals the local effective charge is shown to be
proportional to the product of Z,«, an effective
chemical valence and f„ the spectroscopic ionicity
defined by Phillips and Van Vechten. Similar re-
sults, but with more scatter, are found using the
ionicity scale defined by Pauling. On the other
hand, in the NaC1- and CsCl-type crystals, the
smaller variations in the calculated localized charge
show no trend with ionicity.

The association of two or more effective charge
parameters with each TO phonon is not a new con-
cept. Burstein suggested that there were two com-
ponents to the macroscopic charge, such that

8g=8g +8 g,

where e*„is the nonlocalized charge. Making spe-
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cific assumptions about the effective field, Bur-
stein et al. ' developed a relationship between coTQ

and e*, 2. The approach used in this paper is for-
mally identical to the model of Ref. 1; however,
here the charges are derived phenomenologically
and no assumptions are made about their additivity.
Verleur and Barkers and Ilegems and Pearson have
also used two charge models to describe the optical
phonons in pseudobinary alloys of 8'and ZB crys-
tals. In each ease, values of e*, are obtained by
assuming a nearest-neighbor central-force model
for the mechanical frequency. The values of e*, so
obtained are adjusted and used as parameters in
fitting the reflectance spectra of the alloy crystals.

It should be noted that there are other ways of
decomposing the macroscopic charge. The most
prevalent is the division of ef into rigid and dy-
namic contributions; for example, in the polariz-
able ion' or shell models. ' Here we make no at-
tempt to distinguish rigid and dynamic contribu-
tions, both of which are inherently included in each
of the charges discussed here.

One purpose of the present paper is to examine
the variations in effective charges among the sim-
ple diatomic crystals. Trends in effective charges
have been discussed previously, '2 '4 in each case
considering trends in the macroscopic charged eT
or a related quantity. Here we emphasize the
trends in the localized charge e,*.

In Sec. II of the paper, we develop the analysis
through which e~& can be calculated and then proceed
to tabulate values for representative cubic crys-
tals. In Sec. IG, we examine the values of e~~ and
e*, for trends with other parameters, e.g., the
spectroscopic ionicity, the ion sizes and the opti-
cal-frequency dielectric constant. In See. IV, we
discuss our results.

II. MODELS OF INTERATOMIC FORCES

Our scheme is based on two equations which re-
late the phonon frequencies to "mechanical, "plas-
ma, and dipolar interaction frequencies:

2 = 2 2~TQ +0 ~DD y

g2~ = &o2z,o —arro ——(4vNe /M) ef /e (3)

Here N is the ion pair density, M the reduced mass
of the pair, and e the electron charge. The factor
of I/e incorporates rigorously the screening of the
macroscopic field by the interband electronic tran-
sitions.

The decomposition of the restoring force for the
TO phonon in (2a), on the other hand, is not unique, '
since ~~ and Q~D are not directly observable. Ne
choose to define 0» as the contribution to ~TQ from
point dipoles at the ion sites interacting in a vacu-
um. In terms of a localized effective charge e*, ,
which is essentially the localized moment generated
per unit displacement of an ion, we find

Ann = (4vNe /3M ) ef

where the factor of 3 reQects the cubic symmetry.
All local field effects are implicitly included in e, .
The remaining contribution ~~~arises from short
range forces. The applicability of our procedure
hinges upon the existence of a realistic model from
which to evaluate such nondipolar forces.

We want to interpret ef in Eq. (4) as a meaning-
ful measure of the moment induced in the neighbor-
hood of a given atom by the local atomic displace-
ments. This is valid if the renormalization of e&*

due to local field effects can be neglected. Only if
such an interpretation of e~& is tenable would one
expect a direct correlation between e*, and a micro-
scopic characterization such as the ionicity.

To make the argument more quantitative, let us
assume that analogous to (1), the electron response
in &„ can be divided into local and nonlocal parts

= 1+47tXi+ 4gX

In the spirit of Ref. 7, X, is assumed to be a local-
ized susceptibility which describes the electron
response to the short-wavelength "local" electric
fields such as those accompanying a TO phonon,
whereas the part of the susceptibility of X„applies
only to macroscopic electric fields which are ab-
sent for a TO phonon. In this approximation, in
terms of a localized charged e~&, we would find

2 = 2 2
COLQ = COTQ + Q~ (2b)

Qf» = (4vNe /3M) ef [—,
' (1+4v)t, + 2)] .

Here (d0 is the mechanical or spring-constant fre-
quency which is related to the mechanical force
constants with Coulomb forces subtracted, fl» is
an effective frequency characterizing dipole-dipole
interactions, and 0& is a macroscopic plasma fre-
quency describing the restoring force contribution
of the macroscopic field to the LO phonon. The
macroscopic plasma frequency is model indepen-
dent and is given directly by (2b). In terms of the
dimensionless macroscopic effective charge, e~
one finds for diatomic cubic crystals7

The final term is the Lorentz local field factor for
cubic crystals. For ZnS structure crystals, Brod-
sky and Burstein' have argued that y, «X„. Since
we cannot determine X, directly, the most reason-
able approximation is to set X, - 0 in which case
Eq. (6) reduces to (4). For the alkali halides, we
expect X, to be at most comparable to X„. This
argument is based on a Kramers-Kronig analysis
of the contributions to the real and imaginary parts
of the complex dielectric constant'"' where the
demarcation point between localized and delocalized
excitations is taken by us to be the threshold photon
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TABLE I. Effective charges of the simple diatomic crystals. eq is the macroscopic transverse effective charge
and e& the localized effective charge derived in the present work [Eqs. (2a) and (4)] within three different force-constant
models: (i) CNN, (ii) Lundqvist model (Ref. 21) for NaCl and CsCl structure crystals, and (iii) KM model for zinc-
blende and wurtzite structure crystals. Experimental quantities used for the following table are taken from Refs. 1,
2, 13, and 19.

Crystal

LiF
LiCl
LiBr
NBF
NaC1
NaBr
NaI
KF
KC1
KBr
KI
RbF
RbC1
RbBr
RbI

MgO
Cao
SrO

0. 91
0. 90
0. 90
0. 95
0. 94
0. 93
0. 93
0. 96
0. 95
0. 95
0. 95
0. 96
0. 96
0. 96
0. 95

0. 84
0. 91
0. 93

Zef f

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1 ~ 0
1.0
1.0
1.0

2. 0
2. 0
2. 0

NaCl structure crystals

alkali halides

1.93
2. 75
3. 17
1.74
2. 33
2. 60
3. 01
1.85
2. 17
2. 36
2. 65
1.95
2. 18
2. 34
2. 58

alkaline oxides

2. 95
3.33
3.46

0.85
1.23
1.28
1.03
1.11
1.13
1.25
1.17
1.13
1.13
1.17
1.28
1.16
l. 15
l. 17

1 ~ 77
l. 96
2. 11

0. 92
1.12
1.18
0. 90
0. 94
0. 94
1.01
0. 96
0. 86
0. 94
0 ~ 80
1.04
0. 94
0. 91
0. 87

1.49
1.74
1.83

Lundqvist

1.11
1.15
1. 19
0. 99
0 ~ 95
0. 94
0. 89
0. 90
0. 87
0. 87
0. 78
0. 96
0. 87
0. 82
0. 75

1.92
1.96
1.98

eight-electron, non-rare-gas configuration crystals

AgC1
AgBr
CdO

0. 86
0. 86
0.79

1.5
1.5
2. 0

3.92
4. 62
5.40

1.37
1.50
2. 91

1.54
1.58

0. 47
0. 57

ten-electron, non-rare-gas configuration crystals

PbS
PbSe
PbTe
Sn Te

—0. 75
—0. 80
—0.70
—0. 70

3.0
3.0
3 ~ 0
3.0

17.2

22. 9
32. 8
45. 0

4. 8
5. 8
6.5
8. 1

2. 40
2. 31
2. 29
2. 16

2. 28

2. 45
2. 33

Cscl
CsBr
CsI

~0. 98
—0. 98
—0.98

1.0
1.0
1.0

CsCl structure crystals

rare-gas configuration ions

2. 63
2. 78
3.02

1.31
1.30
1.31

l. 00
0. 91
0. 91

0. 90
0. 84
0. 87

ten-electron non-rare-gas configuration

TlCl
T1Br

CuCl
CuBr
CUI

AgI
ZnS
ZnSe
Zn Te
CdTe
Hg Te

—0, 90
—0. 90

0. 75
0. 74
0. 69
0. 77
0. 62
0. 63
0. 61
0, 72

=0.75

2. 0
2. 0

1.5
1.5
1.5
1.5
2. 0
2. 0
2. 0
2. 0
2. 0

4. 76
5.34

Z inc-blende

3.6
4. 4
5. 2
4 ~ 9
5. 1
5. 9
7.3
7 ~ 3

14. 0

1 ~ 96
2. 06

1.12
1.49
2. 40
1.40
2. 15
2. 03
2. 00
2. 35
2. 96

1.30
1.34

1.50
1.32
l. 69
1.38
1.75
1.56
1.58
1.67
2. 02

1.00
1.03

1.51
1.38
1.74
1.38
1.84
1.69
1.74
1.76
2. 03
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TABLE I (Continued) .

Crystal

BN
AlI
AlAs
Alsb
GaP
GaAs
GaSb
InP
InAs
InSb
SiC

BeO
ZnO
cds
CdSe
GaN
AIN

0. 26
0. 31
0.27
0. 43
0. 33
0. 31
0. 26
0. 42
0. 36
0. 32
0. 18

0. 60
0. 62
0. 69
0. 70
0. 50
0. 45

Zeff

3.0
3.0
3. 0
3.0
3. 0
3.0
3. 0
3.0
3. 0
3.0
4. 0

2. 0
2. 0
2. 0
2. 0
3. 0
3. 0

Zinc-blende

4. 5
7. 6
9.0

10.2
8. 5

10.9
14 ~ 4
9.6

12.3
15.6
6 ~ 7

Wurtzite

3.0
3.7
5. 6
6.2
5. 8
4. 7

ez

2. 47
2. 28
2. 30
1.93
2. 04
2. 16
2. 15
2. 55
2.53
2. 42
2. 57

1.83
2. 09
2. 27
2. 25
3.20
2. 75

0. 81
0. 96
0.78
0.41
1.36
1.01
0. 53
0. 60

1.76
1.91
1.79
1.73

Lundqvist

1.28
l.41
1.28
0. 97
1.61
1.16
0. 91
0. 95

1 ~ 94
2. 05
1.93
1.85

energy for strong photoconductive effects. ' For a
unified treatment of ZnS, NaC1, and CsCl structure
crystals, we derive ef from Eq. (4). Corrections
to e*, due to screening and local field effects are
expected to be &15% for the entire series of crys-
tals.

The most serious problem is evaluating &~~suf-
ficiently accurately to calculate Qa» from (2a). The
only additional pieces of information available for
the calculation of co~0 for the entire range of crys-
tals are the elastic constants C,~. Therefore, we
require simple, yet realistic, force-constant mod-
els with parameters adjusted to fit selected C,~.
It is convenient at this point to introduce the di-
mensionless or reduced constants defined by
Keyes'

C,*q = C,q/C0, Co = e /r 0,
where ~0 is the nearest-neighbor distance.

If one assumes that there are only central near-
est-neighbor (CNN) short-range forces acting on
the effective ion cores, then it may be shown that3 4

&uo = (3v, e /r 08 M ) B*,
where v, is the volume per ion pair and B* is the
reduced bulk modulus [=-,' (Cf, + 2Cfz) for cubic crys-
tals]. In Table I, we have included values of ef
calculated from Eqs. (2a), (4), and (8) and the ex-
perimental B*' ' and (dTo. ' One ramification of
such a central-force model for centrosymmetric
crystals, such as NaCl and CsC1, is a relation
among the elastic constants, ~ namely, the Cauchy
relation C» = C44. This does not hold for real crys-

tais and Lundqvist ' has developed a simple model
for NaC1 crystals, in which noncentral three-body
forces account for the failure of the Cauchy rela-
tion. In the Lundqvist formulation for NaCl crys-
tals one finds

(@20-—12(Ne /M ) (B~+ C$4 —Cf2),

so that the difference in the square of the mechani-
cal frequency as calculated in the Lundqvist and the
central-force models is simply related to the failure
of the Cauchy relation. Included in Table I are val-
ues of e*, for the NaC1 crystals as calculated using
this model. We have also calculated e& for the CsCl
crystals, assuming that the first-order correction
to the corresponding expression for ~~0 is also given
by Eq. (9).

For ZB crystals, Keating22 and Martin" (KM}
have shown that noncentral forces are important.
Including a bond-bending noncentral force as done
by KM, one finds

(10)

where p* is a reduced bond-bending force constant. '
In order to derive P* from measured elastic con-
stants, a model for Coulomb contributions to the
elastic constants is necessary. We use Martin' s
results' but require that dipole interaction contri-
butions to the C,&'s be described by e*, instead of
the S parameter used by Martin'; this leads to

P* = Cqq —Cqp —0.052 e)

Equations (2a), (4), (10), and (11)are sufficient to
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TABLE II. Fractional difference b, = (~() ~To)/To
between observed TO-phonon frequency To and that pre-
dicted by the CNN and KM models for homopolar crystals.

Crystal

Si
Ge

—0. 10
—0. 16

0. 09
0. 04

& = (~o —~To)/~ro (l2)

as a measure of the accuracy of our procedure.
The values of b, are listed in Table II where we see
that ~~~ is too large in the KM model and too small
in the central-force model. Therefore, we expect
that the true values of e,* for the diatomic ZB and
8' crystals are bracketed by the results of the two-
model calculations.

determine e*, for ZB crystals, the values of which

are listed in the final column of Table I.
In Table I, we have included e~~ and e*, values for

wurtzite crystals. These are average values de-
rived from (ego= [(dgo(A, )+2(tPgp(Ey)] and a similar
expression for ~~To. To calculate co~o, we have used
Eq. (10) with the small contribution from p* inter-
polated from the values of p* in ZB crystals of
similar ionicity.

The reliability of the localized charges e*, given
in Table I depends upon the accuracy of co~&computed
from the models. One way to test the model for
ZB crystals is to apply it to Si or Ge where e~~ = e*,

=0. We can define

Z.«-2(Z~+Zs) ~
(l4)

where Z„and Z~ are the principal valence states
of the elements composing the crystal, e. g., Z„
= 2 for Cu, Ag; Z„ = 3 for Tl; and Z„ = 4 for Pb,
Sn.

In Fig. I, we show a plot of e~r/Z «vs f, for the

ZB and 8' crystals. With the exception of the I-
VII ZB crystals (CuCl, CuBr, CuI, and AgI), ef/
Z, « increases approximately linearly with f„how-
ever, the plot does not extrapolate to zero as f, -0,
as it should for the homopolar semiconductors C,
Si, Ge, and n-Sn. On the other hand, as shown in

Fig. 2 a plot of eP/Z, «shows a strong trend with

ionicity and a line can be drawn that extrapolates
to zero for f, -0. Note that the scatter for the II-
VI and I-VII crystals (f, =0.6-0.77) is greater
than that of the other crystals (SiC and the III-V,
ZB crystals). This is related, in part, to the
greater uncertainty in the data for the II-VI's and

Since there are both localized and nonlocalized, as
well as static and dynamic contributions to both e~&

and e*, , we expect the situation in real crystals to

differ from Eq. (13). For example, as shown in

Table I, e~&+e*, for all of the crystals studied.
Further, the work of Van Vechten' and others" in-
dicates that there are crystals wherein Z may dif-
fer from the classical chemical valence. In inter-
preting the value of C, the heteropolar energy gap,
for the Ag and Cu halides, Van Vechten' used a value
of Z= 2 for the Ag and Cu ions and a value of Z = 1
for the halide ions. We follow a similar procedure,
defining an effective classical valence Z,«by

III. TRENDS IN EFFECTIVE4:HARGE PARAMETERS

Part of the motivation for this paper originated
from attempts to find systematic trends in the ef-
fective-charge parameters with variables such as
the spectroscopic ionicity or the optical-frequency
dielectric constant. We now show how our proce-
dure for calculating e*, leads to the identification
of trends in that parameter, with ionicity for the
ZB and 8' crystals but with the nearest-neighbor
distance for the NaC1 crystals.

A. ZB and W Crystals

In order to discuss trends in effective charge pa-
rameters with ionicity, we first set the framework
for the discussion by giving the most naive rela-
tionship between ionicity and an effective charge
parameter. Consider a crystal A B, where Z
is the classical chemical valence. If the crystal
were composed of point-charge ions residing on the
lattice sites, and if these charges were the only
ones that contributed to the effective Coulomb
forces, then we would expect

e~=e*, —-Zf, .

l.6
I I

l.4—

l.2—

I.O—

N

CP

y'

v'
lo~ p

o& o

y~0~ ~
~ ~ CI
~ ~

~r

~ Z8, 3$L-ZZ, IK-5l:,Z-SK
o Z8, I-XII
o W, IK-32, ZL-ZZ

.2 I

0.0 0.2
I

0.4
I I

0.6 0.8 l.O

FIG. 1. Normalized macroscopic transverse charge
e~/Z, q~ for zinc-blende and wurtzite crystals vs the ion-
icityf;.



1372 L UCOVSKY~ MARTINs AND BURSTEIN

l.4

l.2—

I.O— 0
0
~ & ~

.6—

4—

.2

0.0
I

0.2
I l

0.4 0.6
I

0.8 I.O

FIG. 2. Normalized localized effective charge e~&/Zgf f
for zinc-blende and wurtzite crystals in KM model vs
the ionicity f&. Note that in contrast to e~+Z~z are well
described by a line that passes through 0 at f& =0.

e* /e =f
The latter trend was noted previously in Ref. 13.
The I-VII crystals have anomalously low values of
er, so that (ef/er) and er /a„are, respectively,
high and low compared to the trend followed by the
other crystals.

B. NaCl and CsC1 Crystals

In the tetrahedrally coordinated ZB and 8' crys-
tals, the ionicity scale of Phillips and Van Vechten'
was found to be a useful scale for understanding
trends in ef/Z„, and e,*/Z„,. The more ionic
NaCl- and CsCl-type crystals also support the same
general trend as may be seen from Table I. How-
ever, within the range of these crystals, there is
much more scatter, and it is clear that variables

I-VII's compared to the III-V's, and also to the KM
model becoming less accurate for the more ionic
crystals. The e~ values in Fig. 2 are those obtained
using the KM model for ~0. The values of 8*, ob-
tained using the CNN model for ~0 also show a trend
with ionicity; however, there is somewhat greater
scatter in the values of ef'/Z, «using CNN model
for rasa. The slope of the e,*/Z, «vs f, plot is l. 3.

There are two other linear trends in effective-
charge parameters with ionicity that hold for SiC
and the ID-V and II-VI crystals but not for the ZB
I-VII crystals. These are

(15)

other than the ionicity are necessary to describe
any trends. The role of ionic sizes~ in determining
many of the properties of the NaCl and CsCl crys-
tals has been emphasized in the literature. We find
that within the framework of the Lundqvist model~'
for &0 the interatomic separation ro does provide
an appropriate scale for discussing trends in e*, .

In this model calculation e,* is a linear function
of ~0 for each family of alkali halide crystals.
However, e,* vs ro, as calculated using the CNN
model for co~, shows considerably greater scatter
to the extent that the trends with xo are not clearly
defined. This is to be contrasted with the model
calculations for the ZB and 8' crystals, where plots
of eat/Z, «vs f, show the same trends with ionicity
when coo is calculated from the CNN model or the
KM model. In the Lundqvist model, ~' for the Li
salts e,* increases with increasing ro, whereas in
the Na, K, and Rb salts e*, decreases with increas-
ing ~o. The fact that Li salts appear to behave dif-
ferently from the others may be a figment of the
model rather than a real effect. Next-nearest-
neighbor halide-ha1. ide interactions'~ are more
important in the Li salts because of the small Li'
size. Taking such forces into account would tend
to lower the calculated values of e,* from those giv-
en in Table I, with larger decreases for larger
radius anions. This effect is not expected to be as
important as the other salts, and in any case should
stiQ yieM a smooth downward trend in e*, with ra-
dius, within each family of crystals.

Another group of compounds, crystallizing in the
NaC1 or CsCl structures, are the crystals which
nominally have ten valence electrons, i.e., PbS,
PbSe, PbTe, SnTe, TlCl, and T1Br. The "extra"
electrons apparently increase both e~ and the di-
electric constant q„ in comparison to the "normal"
eight-electron crystals. 24 To test the hypothesis
that the two effects are related, eg and ef/Z„, vs
&„ are plotted in Fig. 3. We see that over a wide
range er/Z, «o- &„' . Thus in these crystals er,
&„, ~«and other properties vary widely but the
normalized splitting of the LO and TO frequencies
squared, 4vefa/&„, remains roughly constant. This
is in marked contrast to the eight-electron crys-
tals and is particularly important in understanding
the tendency toward ferroelectricity in these com-
pounds.

IV. DISCUSSION

We have shown that the localized effective charge
e*, scales linearly with the classical valence multi-
plied by the spectroscopic ionicity for a wide range
of ionicity (0 to 0.75) for tetrahedrally coordi-
nated crystals. This is appealing in that it states
that the charge displaced in the vicinity of an atom
by the motion of that atom and its near neighbors
is proportional to the crystal ionicity. The non-
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50

20—

IO—

4
~ PbTe~ )~~PbSe

SLOPE'/ PbS

TI C tv Tl Br

I 4
N

4)
—0.5

—0.2

W crystals, unlike e$/Z, «, e,*/Zef f tends toward
zero as C or f, -0. Arguments indicate that the
full local field factor —,'(e +2), used to derive e,*
is not tenable, especially in the more covalent
crystals, " so that e,*-0as f, -0 may be fortuitous.

Burstein et al. ' observed that the reduced-LO-
phonon frequencies, &ufo —= &u„o (e'/Mro) of the
III-V and II-VI crystals were essentially constant
for each group of crystals. They conjectured that
since there were two effective-charge contributions
of opposite sign to +*„~o, that these cancelled and
that the consistency in cu~&2o reflected a consistency
in co&3. This is indeed the case, specifically

I 1 I

I 2 5 10 20 50 I 00
OPTICAL-FREQUENCY DIELECTRIC CONSTANT, eg)

= &u2+ (4mNe~/M) [e~r /e —se,* ] (17)

FIG. 3. Transverse macroscopic charge e&/Z&& vs &„
for the "non-rare-gas" configurationten-electron NaCl
and CsCl structure crystals. The data suggest ez

or (ef/Z~~) /&„= const.

local displaced charge, which is incorporated in
e&, on the other hand, is not so simply related to
the ionic character so that e~& is more complicated.
This is especially evident in the I-VII tetrahedrally
coordinated crystals where e~/Z, « =f„but e~&/Z, «
differs greatly from the II-VI materials of similar
ionicity.

The NaC1 and CsCl crystals on the other hand
span only a small ionicity range but show a large
amount of scatter in e,*. The other dominant factor
which must be taken into account to explain the
trends in e*, in these ionic crystals are the relative
ion sizes. The model we have used is not as satis-
factory for the NaC1 or CsC1 crystals, as for ZB
or 8' crystals, because possible errors due to ne-
glect of local field effects and second-neighbor
anion-anion interaction (double repulsion) may be
as large as the differences in e*, over the entire
range of crystals. Nevertheless, because the above
corrections should also be simple functions of ion
sizes, the conclusion remains that ionicity as de-
fined by Paulinge or by Phillips and Van Vechten, '
is not the dominant factor in determining the vari-
ations in the effective charges in the ionic crys-
tals.

Lawaetz has presented a correlation of ef/Z, «
with C/flu~ where %u is the valence electron plasma
frequency and C the heteropolar energy gap. He
finds that C/Fur~ is a much better parameter than
f, in the NaC1 crystals. Further, for the ZB and

or in terms of reduced frequencies and using the
KM model for ~~~, we have

(u*„2o~k,{a*++P*}+(ef'/e. —~ef'), (18)

where k, is a constant. For both the III-V and II-VI
crystals, the second term in parenthesis is small
and the first term in curly brackets is approxi-
mately a constant. Therefore, to within a factor
of better than 10/p, the Burstein et al. result is
ac counted for quantitatively.

We have used the spectroscopic scale defined by
Phillips and Van Vechten as our measure of ionici-
ty. It should be noted that for the most part, very
similar results would be found using Pauling's
scale. ~ The primary difference in using Pauling's
scale is a grouping of the III-V compounds near
0. 26 ionicity and a spreading out of the alkali ha-
lides with much scatter remaining.

Y. SUMMARY

We have developed a procedure for calculating a
local effective-charge parameter for the lattice
modes in diatomic crystals. The procedure is
based on decomposition of the TO-phonon frequency
into two components, one associated with short-
range forces and one with dipolar interactions. By
applying the calculation of the nondipolar compo-
nent to Si and Ge, we find that the model calcula-
tion of co~~ is sufficiently accurate for the ZB and
W crystals. On the other hand, the models used
for the decomposition of wTo for the NaCl and CsCl
crystals are somewhat more speculative. The
localized charge is found to scale with classical
valence and ionicity for ZB and S' crystals, but
depends more strongly on other parameters, e.g.,
relative ion size, in NaC1 or CsCl crystals.

*A preliminary version of this paper was presented at
the March, 1971 APS Meeting [Bull. Am. Phys. Soc ~ 16
427 g.971)].

~Research supported in part by U. S. Office of Naval
Hese arch.
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In this paper, ab initio energy bands for NaBr are obtained by means of the nonrelativistic
mixed-basis (MB) method. The calculation is performed self-consistently in the Hartree-Fock
limit, accurate to first order in interatomic overlap. We assume the core states to be non-
overlapping. Koopman*s theorem is assumed here. Correlation effects are then included and
are found to be important in that they reduce substantially the band gap, and also the widths
of the valence bands. The resultant bands are fitted with a pseudopotential and the density of
states of the valence and conduction bands are obtained as are the joint density of states for
both valence and core excitations. These results are compared to recent optical and soft-x-
ray absorption studies of NaBr, and the valence results are compared to x-ray emission
studies. The experimental comparisons favor the more distinctive results of this calculation
such as the wide {4eV)4p valence bands and the structured state density of the conduction
bands.

I. INTRODUCTION

Despite the great deal of effort expended in re-
cent years on calculating the energy bands of in-
sulating crystals, agreement between the results
of different calculations for the same material is
generally not obtained. ' This discrepancy between
the different calculations is due in part to the dif-
fering assumptions made in forming the crystal
potential. ~ Therefore, it seems useful to obtain
energy bands ab initio whenever possible. This
means that for insulating solids, one should use
the correct Fock operator, self-consistently if
possible, and should correct for correlation ef-
fects. There were some early attempts to produce

such ab initio calculations but these were by tight-
binding techniques and limited to the valence and
the lowest conduction band.

Recently the authors, individually and jointly,
have made considerable progress in obtaining ab
initio energy bands for these materials. ' It has
been seen from these calculations for LiCl, LiBr,
NaCl, Ar, and Kr that the ab initio energy bands
differ substantially from those obtained using ap-
proximate exchange potentials.

One of us (A. B. K. } has developed a local-or-
bitals theory which allows us to obtain accurate
self-consistent charge densities for alkali halide
crystals in their ground state in the Hartree-Pock
limit. These orbitals are accurate to first order


